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AN ALMOST SECOND ORDER FEM FOR A WEAKLY COUPLED
SYSTEM OF TWO SINGULARLY PERTURBED DIFFERENTIAL
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ABSTRACT. In this paper, we consider a Boundary Value Problem(BVP) for a weakly coupled
system of two singularly perturbed ordinary differential equations of reaction-diffusion type with
discontinuous source term. The solution of this type of problem exhibits boundary and interior
layers. A numerical method based on finite element method on Shishkin and Bakhvalov-Shishkin
meshes is presented. We derive an error estimate of order O(N~21In* N) in the maximum norm.
Numerical experiments are also presented to support our theoretical results.
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1. INTRODUCTION

Differential equations with a small parameter (0 < ¢ < 1) multiplying the high-
est order derivatives, termed as Singularly Perturbed Differential Equations (SPDESs),
arise in diverse areas of applied mathematics, including linearized Navier - Stokes
equations of high Reynolds number, heat transfer problem with large Peclet number,
drift diffusion equations of semiconductor device modelling, chemical reactor theory,
etc., In general, this type of equations exhibit boundary and/or interior layers. Stan-
dard numerical methods like finite difference and finite element methods on uniform
mesh for solving this type of euations fail to produce good approximations to exact
solutions. Many authors [1, 2, 3, 6, 14] have developed efficient numerical methods
to resolve boundary and interior layers. A good number of articles have been ap-
pearing in the past three decades on non-classical methods which cover mostly single
second order equation. But, a few authors only have considered system of SPDEs
[9, 11, 12, 13].

In this paper, we consider the following system of singularly perturbed second or-

der ordinary differential equations of reaction-diffusion type with discontinuous source
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term:

1) Lyu := —euy(z) + ap(2)ug (x) + ap(x)us(z) = fi(z), =€ Q UQT,
' Loti := —culy(z) + ax (x)uy () + ags(z)us(z) = folz), € Q UQT,

(12) Ul(O) = 0, ul(l) = 0, UQ(O) = 0, UQ(l) = 0,

with conditions on coefficients

(1.3) apa(x) <0, ag(x) <0,

(1.4) an(z) > laa(2)],  agn(r) > lan(z)], VYre,
and for the matrix A = [a;]

(1.5) EAET > ateT  for every € = (£1,6) € R?

Here ¢ > 0 is a small parameter, a > 0, Q = (0,1), Q= = (0,d), Q" = (d,1), d € Q,
and up, ug € COU(Q)NCH Q) NC2(QUNT), @ = (ug,ug)T. Further it is assumed that
the source terms f, f are sufficiently smooth on €\ {d}; both the functions f,(x)
and fo(z) are assumed to have a single jump discontinuity at the point d € 2. That
is fi(d—) # fi(d+),i = 1,2. In general this type of discontinuity gives rise to interior
layers in the solution of the problem. Because f;,7 = 1,2 are discontinuous at d the
solution @ of (1.1)—(1.2) does not necessarily have a continuous second derivative at
the point d. That is uy,us & C*(Q2). But the first derivative of the solution exists

and is continuous.

Systems of this kind have applications in electro analytic chemistry when in-
vestigating diffusion processes complicated by chemical reactions. The parameters
multiplying the highest derivatives characterize the diffusion coefficient of the sub-
stances. Other applications include equations of prey-predator population dynamics.
As mentioned above, in general, classical numerical methods fail to produce good ap-
proximations to singularly perturbed equations. Hence various methods are proposed
in the literature in order to obtain numerical solution to singularly perturbed system
of second order differential equations subject to Dirichlet type boundary conditions
when the source terms are smooth [9]. Motivated by the works of H-G. Roos et al.[8],
in the present paper we suggest a numerical method for the above BVP. This method
is based on Finite Element Method (FEM) with layer adapted meshes like Shishkin
and Bakhvalov-Shishkin meshes. For this method we derive an error estimate of or-
der O(N~2In® N) for Shishkin mesh, O(N~2) for Bakhvalov-Shishkin mesh, in the
maximum norm. In order to capture a boundary layer with a numerical method, it
is essential that the approximate solutions generated by the numerical method are
defined globally at each point of the domain of the exact solution. The numerical
solution obtained from a finite element method defined only at the mesh points, is

extended it to the whole domain by a simple interpolation process such as piecewise
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linear interpolation. Because we want our technique to be capable of extension to
complex problems in higher dimensions, we only consider the finite element subspaces

by piecewise polynomial basis functions.

In this connection we wish to state that the authors from [13] proved almost first
order convergence with respect to € on a Shishkin mesh of the finite difference method
with special discretization at the point d. When we compute numerical solutions, it
is not desirable to obtain error estimates in L' or L? norm, as they do not detect the
local phenomena such as boundary or interior layer. Therefore the most appropriate
norm for the study of singular perturbation problem is the maximum norm [6]. The
main significance of this paper is that the error estimate for numerical solution is given
in terms of the maximum norm. Now we define the maximum norm of 4 = (uy, us)
as

|0 Jloo = max{[| uy [loo, [| u2 loc}, | w1 [loo= max |ui(z)],
z€(0,1]

2 floe = max Jus ()], | @ lloote e = maxt | w1 [loofeiy2as [l 2 Mootz -

| w floofzir2 = max |ui(@)], [| u2 [[oofs; y,eq= max |us(z)].
TE€[Ti—1,7; xE€[Ti—1,24]

Further we define
a(@)] = |(ui(2), ua(x))] = max(|ui(2)], [uz(z)]).

Remark 1.1. Through out this paper, C' denotes generic constant that is independent

of the parameter £ and N, the dimension of the discrete problem.

Lemma 1.2. [13] The solution u of the problem (1.1)~(1.2) can be decomposed of
smooth part v and layer part w as @ = U+ w, v = (v1,vs), W = (wy,wq). Then, for
each k, 0 < k < 3, we have

C(1+e0=*2e (x)), €Q,

(@) <
C(1+el " ey()), ze€QFi=1,2

C(eHe(x), zeQ,

jw(z)] < ,
C(eHFDey(z)), € i=1,2.

where  eq(x) = eV 4 e_(d_x)\/g, ex(x) = e VT L omVT g v =

mingeq{an (z) + ai2(), az () + az(z)}.

This paper is organized as follows. Section 2 presents a weak formulation of
the BVP (1.1)—(1.2) and describes a finite element discretization of the problem.
Section 3 presents a role of projection operator on approximation space and error
representation. It also includes an analysis of the corresponding scheme on Shishkin

and Bakhvalov-Shishkin meshes and an interpolation error in the maximum norm. In
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Section 4 we present a detailed error analysis of the projection operator, consistency

part and other error terms. The paper concludes with numerical examples.

2. ANALYTICAL RESULTS

A standard weak formulation of (1.1)—(1.2) is: Find @ = (uy, us) € (H}(R2))? such
that

(2.1) B(a,v) = f*(v), V€ (Hy(Q))?,

with
B(u,v) := (B1(u,0), B2(,v)) and f*(0) := (f1(v), f3(0)),

where

(2.2) Bl('ﬁ, @) = €(u/1, Ui) + (allul + a1auo, Ul),
(2.3) Bg(ﬂ, @) = 5(u'2, ’Ué) + (a21u1 + ag0Us, 'Ug),
and

fi (@) = (fr,01),
f2(v) = (f2,v2).
Here H{(S2) denotes the usual Sobolev space and (-, -) is the inner product on L?(2).
Now we define a norm on (HJ(f2))? associated with the bilinear form B(-,-), called
energy nNorm as
lalll = le(fual? + Juzl?) + a(llull + lluallf)],

1/2

where ||ullo := (u,u)"? is the standard norm on L*(Q2), while |u]; := ||u']|o is the

usual semi-norm on H{(Q). We also use the notation [|@|lg = (|Juy||2 + |luz|/2)'/? for
the norm in (L*(9))?. B is a bilinear functional defined on (H{(2))%. We now prove

that it is coercive with respect to |||.]||, that is
o Lo
| Ba, ) = 5[ull,
where |B(u, @)|? = By (4, u)? + By(t, u)>.

Lemma 2.1. A bilinear functional B satisfies the coercive property with respect to

Proof. Let u € (H}(Q))?. Then

|B(@,@)] = +/Bi(a,u)?+ By(u,u)?

> %[|Bl(u,u)|+|32(uau)|]

= 5[5(1/1’ uh) + e(ub, ug) + (anu + apug, ur) + (agiur + ageus, us)]
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Vv

1 1
St + fusf) + [ af? + 1))
0
1
= §[E(|U1|? + Jual?) + a(ur, ur) + a(ug, ug)]

o 1
|B(u,w)| > 5[6(\U1\?+\U2\?)+a(IIU1!I3+IIU2H3)]-
Therefore we have
o 1,
|B(u,u)| > 5|||U|||2-

O

Also we observe that B is continuous in the energy norm, that is, | B(u,v) |<
Bl[|@l]] - ]||9]]| for some 3 > 0. Further f* is a bounded linear functional on (H](£2)).
By Lax-Milgram Theorem [14] we conclude that the problem (2.1) has a unique

solution.

2.1. Discretization of Weak Problem. Let QY = {zg,71,..., 2y} to be the set of
mesh points z;, for some positive integer N. Fori € {1,2,... N} weset h; = z;—x;_4
to be the local mesh step size, and for i € {1,2,..., N} let h; = (h; + hiy1)/2. We
use linear finite elements with a lumping process. That is, for discretization of (2.2)
and (2.3)

N-1 N-1
Bin(u,v) = e(uy,vy) + Z i1 () 01,5 + Z 11012 (3 ) U, V1 i,
i=1 =1
N-1 N-1
th(ﬂ, T)) = 5(u'2, Ué) + h; 1a921 (:E,)ul iU24 h (a?i)ulivm
i=1 =1

and f(v) is replaced by ZN 1¢N h; i [V, + %(h%fk%_lvk%_l +hg+1fk%+lvk%+l)
for k =1,2. and uy; = ug(z;). Then we have

By(@,v) := (Byn(u, v), Bay(u,0)),
and fi(0) i= (fin(0), f3,(0)).
Now the discrete problem of (2.1) is: Find @, € V;? such that
(2.4) By (tn, o) = fi(0n), Yo, € Vi,

where Vh2 = Vi x Vj, V}, is a finite dimensional subspace of H&(Q) and the basis

functions of V}, are given by

%ﬁfl, T € [T, 7]
gi(z) = m};_:x, T € [Ti, Tit]

0, € ¢ [%‘—17 $i+1]-
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Then {®;}?22 where ®; = (¢;,0) for i = 1(1)N — 1 and &; = (0,¢y_s;1) for
i = N(1)2N — 2, is a basis function of V;2. Here we define a discrete energy norm on

V;2 associated with a bilinear form By (-, -) as

lanlllv, = [e(lunl? + luanl}) + alllunll§ oy + lluznllf gx]™?

where [lunll2 g = Y0 hud  and [nllooy = a2y + a3 ]2 is a dis-
crete norm on V2. By, is a bilinear functional defined on V2 and it is coercive with
respect to ||[.[|lv,. That is, |By(tn, 4s)| > <|[|s][}, . for some ¢ > 0. We can also
prove that it is continuous and f; is bounded linear functional on V;2. By Lax-Milgram
Theorem, we conclude that the discrete problem (2.4) admits a unique solution [14].

The difference scheme corresponding to the discrete problem (2.4) is

(

(L{VUMLS[UZ) == (Bifl,iv EifZ,i)v 1= 1<1>N - 17 { # %7
7 . (L{VU%’LQ[U%) = <%[h%f1,%—1 + h%+1f1,§+1]7
%[hgfz,g_l + hgﬂfzgﬂ])’

where
_ Uriv1— Uy Uy — Ui - -
LYU; = —¢( Slas o 2 4 hiay1(2:)Ur s + hiaia(75)Usyg
iy hi
_ Usiv1 — Uy  Usy—Usy - —
LYU; = —¢( s 222 = 1) + +hiagi (2:) Ui + hiag(x;)Usy

iy hi

and UZ = (ULZ',UQ,Z'), Ul,i = Ul(.ilfi), flyi = fl(.ilfl) and similarly for U27Z" fg’i, 1 =
1(1)N — 1.

3. ERROR ANALYSIS - I
Now the given discrete problem is: Find @, € V;? C (Hg(€))? such that

(31) Bh(ﬂh, T_Jh) = f;:(’(_Jh), Yoy, € Vh2

Since the above discrete problem admits a unique solution and some interpolant
u! € V;2 of w is well defined. We define a biorthogonal basis of V;? with respect to By,
to be the set of functions {A/}2Y7% where A/ = (A, A)) for j = 1(1)2N — 2, which
satisfies the condition

(3.2) By (®;, V) = (8;4,6,5) for i,j=1(1)2N —2.

In otherwords

By (@, N) = §; for 4,5 =1(1)2N —2,
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where 0;; is the Kronecker symbol. Then the components w;;, and ug, can be uniquely
represented as

N-1
= ZBM((UM,U%),(Aiaké))@
=1

N-1
and wuy, = Z Bon((win, uzn), AT A7) 6
i=1
Define linear transformations Pp, P, : (H}(2))? — V}, such that
N-1 o
Plﬂ = Z Blh((uh u2)7 (>‘217 >‘Z2>>¢Z
i=1
N-1
and Pu = Z Bon((u1,u2), (>\]1V+i_17 )\éwi_l))(f?i-

i=1
Let P = (P, P,) and i), € V;2. Then

Puy, = (Pyiy, Pyuy,)
N—-1

= (Z Bin((win, uan), (N}, A5)) b,
i=1
N-1

> Bonl(wan ), (AT ), )

i=1
= (Urh, Uan).
That is, Puy, = Uy, Yy, € Vh2.
Hence P is a projection operator on V;2. Now, the error % — 1y, can be written as,
(3.3) u— 1, =1u—u + P —a)+ Pu— .

We estimate this error in the rest of this section.

3.1. Shishkin and Bakhvalov-Shishkin Meshes. For the discretization described
above we shall use meshes of the general type introduced in [5], but here adapted for
the boundary layers at x = 0 and x = 1 and the interior layers at + = d. Let N > 8
be a positive even integer and

d 1—-d
alzmin{Z,T\/%lnN}, 09 = min{ 1 ,T\/gln]\f}, T > 2.

Our mesh will be equidistant on Qg, where

QS: (O’l,d—Ul)U(d—l—Ug,l—Ug)
and graded on Qy where

QO = (O,Ul)U (d—O'l,d>U (d,d"‘O'g) U (1 —0'2,1).
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We choose the transition points to be
IN/g = 01, T3N/§ = d— oy, INj2 = d, T5N/8 = d + oy, 7y =1 — 0.

Because of the specific layers, here we have to use four mesh generating functions
©1, P2, 3 and 4 which are all continuous and piecewise continuously differentiable,
with the following properties: ¢; and @3 are monotonically increasing, ¢, and @, are

monotonically decreasing functions and

©1(0) =0, p1(1/8) = In N,
2(3/8) = In N, p2(1/2) = 0,
p3(1/2) =0, ©3(5/8) =In N,
04(7/8) =In N, w4(1) = 0.

The mesh points are

(2,0, i = 01N/

o1+ +(d —201)(i — N/8), i=N/8+1(1)3N/8,

d—2,/2p5(t:), i =3N/8+1(1)N/2,
R P = u(t), i = N/2 4 1(1)5N/8,

d+0s+ 2(1—d—205)(i — 5N/8), i=5N/8+1(1)TN/8,

\1—2 Zpa(ts), i=TN/8+1(1)N,

where t; = i/N. We define new functions 11,1, 3 and 1, by
i =—Iny;, i=1(1)4

There are several mesh-characterizing functions v; in the literature, but we shall
use only those which correspond to Shishkin mesh and Bakhvalov-Shishkin mesh with

the following properties

max [¢)| = CInN for Shishkin mesh,
max |¢)'| = C for Bakhvalov-Shishkin mesh.

For Shishkin mesh we take
Ui(t) = e ¥, o(t) = et
Us(t) = e BTN gy () = TN,
whereas for Bakhvalov-Shishkin mesh
G =1—8(1—N"Ot  g(t) = 1—4(1 = N"H(1 - 20),
Ys(t) =1—4(1 = N"H(2t 1), Yy(t)=1-8(1—N"1H(1-1).
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The set of interior mesh points is denoted by QY = QN \ {x, TN/, N} Also, for the

both meshes, on the coarse part g we have
hi <CN'.
It is well known that on the layer part [§]
h; < C\/eN “In N for Shishkin mesh
and

h; < C(v/e+ N') for Bakhvalov-Shishkin mesh.

In the later analysis, the following estimates of e;(z) and e(z) will be used [8]:

C, ZIZ'EQ_HQQ C, ZIZ'EQ—l—ﬂQQ
BA) el < ex(a) <
CN™, xze€Q NQg. CN™, zx€ Qr N Qg.

3.2. Interpolation Error. To derive an error estimate, we consider the interpolation
error in the maximum norm. Let f € C?[x;_1,x;] be arbitrary and f! a piecewise

linear interpolant to f on €. Then from the classical theory, we have

I(fF = f)z)] < Q/M |f1 Ot —2ia)dt, @ € [viy, 2.

Now we compute the interpolation error for u;,7 = 1,2 seperately.
Lemma 3.1. If /¢ < CN~! and for the Shishkin mesh, we have

CN~2In* N, €N
lui(z) — ul (z)] < rE
CN_2, x € Qg

and for the Bakhavalov-Shishkin mesh it holds
lui(z) —ul(z)] <CN2, z€Q uUQt, i=12.

Proof. We now give a proof for the case ¢ = 1 for the Shishkin mesh. To prove the
estimate we use the decomposition of solution as smooth and layer components and

triangle inequality

(3.5) (w1 —ug) (@) < [(v1 = v1) ()] + [(wr = wi)(2)].

On Shishkin mesh, let € [z;-1,2;] C Q7 N Q. Then by using (3.4) we have to
compute the first term of (3.5)

=@l < 2 [ Pl v

Ti—1

< 20/ l (t—xi_l)dt+20/2 Ler(t) | (t— sy )dt

2 2
o on-ti

< C—
- 2 2
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(v —vi)(2)] < CNT2
Again the second term of (3.5) will be

|(wr — wy)(2)]

IN

2||wl(x)||Loo[xiflyxi}
CN™™
(wy —wi)(z)] < CN72

IA

Now let © € [z;-1,2;] C Q™ N Qy we have

=@l < 2 [ Pl v

Ti—1

< 20/ l (t—zi_l)dt+20/2 Ler(t) | (t— i y)dt

h?
=L
2

IN

(v —v)(2)] < CN7%,

and also the layer component will be

- oD@ < 2 [ @l -z

< 205—1/1 L en(t) | (t — i y)dt
12
< -l
< (e 5
< Ce'y/eN'InN)?
|(wy —wi)(z)] < CN?In*N.

Similarly we can obtain a similar estimate for x € QF.

To prove estimates on Bakhvalov-Shishkin mesh, we follow the above procedure.
If 2 € [x;_1,7;] C Qg then hy < CN! and if € [z;_1,2;] C Qo then h; < C(y/e +
N~1). Using the fact that max [¢)| = C and /¢ < CN~! we can arrive the required
result. O

Then the interpolation error of @ in maximum norm is

CN—2In®> N, for Shishkin mesh,

(3.6) la — @'l <
CN~—2, for Bakhalov-Shishkin mesh.

4. ERROR ANALYSIS - II

Let 2 € QY be a mesh point. From equation (3.3), the second term at the points

of the mesh is

P(a' —a)(xy) = (Pi(a' —a)(wx), Po(@’ — @)(x1).
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Each of the components of the above will be estimated seperately. We have
Pi(a' —a)(zr) = Bul(((ug —w), (u — U2))’ (AT, A3))
—1
= e((u —w) Z — ) ()AL,
1 -

+ Bia12(1’i)(u£ - Uz)(ifz))\]fz
1

=2

i

Using integration by parts and the fact that (A\¥)” =0, wl(z;) = ui(x;), ub(x;) =
ug(x;) for i = 1(1)N — 1, we have P (u! — u)(z) = 0. Similarly Py(a! — @)(x;) = 0.
Therefore, we have

(4.1) P(a! — @) (xy) = 0.

The remaining part of this section is devoted for the estimation of the third term
of the error representation (3.3). For this representation, we first need the following

L'— estimates of discrete Green’s functions X and .

Lemma 4.1. On an arbitrary mesh, the discrete Green’s functions ()\{,)\j) for By,
satisfy | Moy < C and [N po) < C, where | M|l = Sy [0 |M|da and
j N T;
Ml = 3m [, [Xlda.
Proof. Following the procedure adopted in [8, 10], we can prove this theorem. O
Let K = (Kl,Kg) = Pﬂ—ﬂh = ((Plﬂ—ulh), (PQTL—Ugh)). That is, K1 = Piu—uqy,

and K2 = PQQ_L — Ugp.- 1\IOW7

K1 = Plﬂ—ulh

N-1 N-1
= ZBlh((u17u2)7(>\iv>\Z ZBlh u1h7u2h) (>\217>\2)>¢
i=1 i=1
N-1 N-1
= ZBlh (w1, u2), (A1, A3) ¢Z+Zf1 (AL A))0s — D Bi((u, uz), (A, X))
i=1 i=1
N-1
ZBlh u1h,U2h) ()\17)\2))¢
—1
N-1 N-1 N-1

= (Bun — B1)((u, ug), (A}, A3)) —

=1 i

' M

1

Ky = Y (Buin— Bi)((u,u2), (A, X5)¢s + Z(fl Fin) (AL 28)) &,

1 i=1

'l
where uy(x;) = uy 4, us(z;) = ug,; and ay2(z;) = a12,;. Then we have

Ki(zx) = (Bin — Bi)((u1, u2), (A}, A5)) + (ff = fin) (A1 A3))
= Blh(<u17 u2)7 (Alfv XS))
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= Bi((u1,u2), (A1, A5)) + 1 (A1, %)) = fin (M1, A2))

N—1 N—1
= E(Uia (A]f)/) + }_Liall,iul,i)\lf,i + Z Bia12,iu2,i)\lf,i - 5(7/17 (Ak)/)
i=1 i=1
1 1
— / all(x)ul(x))\k(x)dx — Q19 (a:)uz(a:)kk(x)dx
0 0
1 N-1 B
+ [ h@r @ = Y R,
0 i=1
N-1 1 N-1
K (;Uk) = (Z hian,iuu)\lii — / CLH(.CI,’)Ul(ZZf))\k(LU)dl') -+ (Z hzalg ;U 2)\1 i
=1 0 i=1
1 1 N-1 B
- [ an@uaN@dn) + ([ @@ - Y Ra)
0 0 i=1

Similarly we get

N-1 1
KQ(;IZ‘k) = (Z ]_”LZ'CLQLZ'ULZ')\Q{;—R_I — / 921 (Jf)Ul(l’))\év—i—k_l(ﬂf)dl‘) + (Z }_LZ'CLQQ,Z'UZZ’)\Q?—R_I
i=1 0 i=1

- aa(e)us(a N )+ / A @) — 3 B AN,
0 0

7

Il
—

Now we define
N—1

N-1 N z -
Kf (l’k) = Z Biallﬂ'ulﬂ'}\ii — Z/ (all(z)ul (1’))1)\If($)dllf + Z hialg,iuu)\’f,i
i=1 i=1 Y Ti-1 i=1

N T N z; N-1
= / (ara(@)us(z)) M (x)da + > / FL@)N (@)dz =Y hifiaMf.
i=1 Y Ti—1 i=1 Y Ti=1 i=1

Then we can write Ki(xy) as

N

Ka(o) = Ki (@) + Y [ (an@)un(0)) = oy @A)

i=1

(4.2 230 [ (anloua(@)! ~ (el M@

- Z /m ((fr(@)" = fi(z)) N (z)dz.

The later sums of Ki(x) can be bounded by

3 [ @) - @) @]

IN

C(llur = willoollanlloe + llaty = anllocllualloo) ATl 210

C(llur = uilloo + N7l lloo) AT ][22

N
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< Cllu —wlloe + N77%)
< ON ?max|¢/|?,

43) 13 [ (onn (@) = n@n @) M@l £ ON 2 max |y,
@0 13 [ (o) - @)@l £ ON 2|y,
and

@5 1Y [ (- M@ < ON e <ON

If we define K (xy) similar to K7 (zy), then we can write

Ka(er) = K3 + Y [ (o (@)us(e)) = (as(oyus @)X+ (0)do
(4.6 =30 [ (eno)uale)) = (ean()uate) 2 @)

- Z /xl ((fa(z))! = fo(2) AT (2)da.

We can also estimate the later sums of Ky(zy) as done for Ki(zy). In the pointwise
errors, Ki(xy) and Kj(xy) it remains only to estimate the expressions K (x)) and
K (xy). First we write K (x)) and K}(z) in the form

(4.7) K7 (zx) = (@), A + ((azu2)', A — (1, AT,
(4.8) K3 (zk) = ((az1un)", 710 4 ((asoua)', AYTF70 = (fa, AT 1),

where

N-1 N
0."m =3 hugla)et =3 / g(0)(2)d,
i=1 i=1 Y Ti-1

for a piecewise linear function g, not neccessarily continuous. For integrals in the
previous formula, we use Simpson’s rule

N-1

Y (hilgi = gi-0) = P91 — gt

i=1

(1.9 (964 =5

In order to estimate K;(xy) and Kj(xy), we start with the decomposition of the

solution u. Hence we seperately analyze smooth part v and the layer part w. Now

the equation (4.7) can be rewritten as

(410) Kf(l’k) = <(€U¥)I, )\If>h + <(CL11U)1 + algwg)l, )\If>h
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The first term in the above expression containing the regular component v; can be
easily estimated. In fact,

N-1
g " "_ 7
| <(5U1/)Ia)‘11€>h |< 6 (h'i(vi/,z Ul—:— 1) — h'i-l-l(vl,i-i-l Ulj)))‘lf,i-
i=1
Then we have
- N-1
| ((ev))", A | < 6 (B lloy oo s + 2 V) 1 Lo o] AT
=1
N-1
e " h -+ hH_l
< SONTo] e
=1
< CyeN"! Zm’;i
i=1
< CVeNTYM e

by using (1.2), h; < CN~' i =1(1)N — 1 and | Af||11) < C. Finally, we get
(4.11) | {(ev))", A)n [ CVENT

Let us denote the coefficient in < (ay;w; + a12w2)1, )\’f > corresponding to )x’ii by
m;. Depending on the values of index i, we consider different cases. In general, g;*

denotes right-limit and left-limit of a function g at a mesh point z;.

Case 1: When%+1§i§%—1or%+lgig%—l. That is,

[;_1,2i11] C Qg. The coefficient m; can be estimated by

im;| = | hi(al_l,iwl_,i - aﬁ,i_lwlﬂ_l) - hi+1(a1_1,i+1w1_,i+1 - azrl,iwfi) |

+ | hi(al_2,iw2_,i - aﬁ,i—lw;i—l) - hi+1(a1_2,i+lw2_,i+l - afz,iw;,i) |

IA

CBZ [le HLoo[xiq,xiH} + ||w2 HLoo [xiflyl'iJrl]]

< Ch;lmax|e;(z)] + max |ex(x)]], from (1.2) and (3.4).
z€QNg z€Qg

(4.12) | m; |< ChyN~".

Case 2: Whenlgig%—lor%—l—lgig —10r—+1<z<——10r
% +1 < i< N—1. That is, the subinterval [x;_1, z;11] C €. The layer part will be
calculated by estimating m;. We have
_ - - + + - - + o+
m; = hi(all,iwl,i - all,i—lwl,i—l) - h'i-l-l(all,i—l—lwl,i—l—l - all,iwl,i>
. + + - - + ot
+ hi(a12,iw2,i - a12,i—1w2,i—1) - hi+1(a12,i+1w2,i+1 - a12,iw2,i)
= hi(—all,z'+1w1,z'+1 + 2a11 ;w15 — ale’—lwl,i—l)
+ (hi = hiv1) (@11 i1 — a11iws )

+ hi(—a12i+1W2 41 + 2a12,,Wa; — Q12— 1Wa,i—1)
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+ (hi - hi+1)(a12,i+1w2,i+1 - a12,iw2,i)
= ay1,i(hi(—w1 41 + 2w11; — wii—1) + (i — hiv1) (Wi — w1y))
+ hi(a1,; — ari-1)
(wl,i—l - wl,z') + hi-i—l(all,i-l-l - all,i)(wl,z’ - wl,z'+1)
+ w1 i(—hip1a11,i01 + (hi + hiy)
Q11,4 — hiall,i—l)au,i(hi(_w2,i+1 + 2w21,¢ — wz,i—1) + (hz - hi+1)(w2,i+1 - w2,i))
+ hi(ara,; — a12i-1)(Wa,i—1 — Wa;) + hiv1(a12,41 — a12,;) (W, — Wait1)

+ wo i (—hit1012,i41 + (hi + hiy1)ai2,; — hiarzi—1).
Using the Taylor’s expansion for each of the terms in the previous expression yields

/
hz‘all,i(_wl,i—i-l + 2wy — wl,i—l) = hi(hi - hi+1)a11,iw17i

B hih2
B - a1 zwil(e ) - T_Han,iwi/(eiﬂ),
hia12,i(_w2,i+1 + 2w2,i - w2,i—1) = hi(hi - hi+1)a12,iwé7i
h3 hih?
— 7a12,2wg(02> — = a12,2w2 (‘9@4-1)7

H—l(h - hi+1)a11,iw,1(fi+1),

+1(h z+1)a12 iw;(§i+1)a

i) = _hia12(pi)w2(§i)>
= _h?+1al11(/7i+1)w/1 (Eit1),

(h2 hz2+1>aI12,z‘w2,i

( i) =
( i) =
(i1 — wi) = =hlay (p)wy (&),
( )
)( )
( ) =

- §(h3al2 (M) + h?+1a/1/2(77i+1))w2,i7

Where 9i7 giv pi7 771 S [xi—h xz]

To derive an estimate for |m;|, we need the following lemma.

Lemma 4.2. For the points x;_1,z;, 241 € Qo, x; # d = TN of the mesh with T > 2
the following holds

| (hi = higa) (Wi —wi) | < ChipaN72,
| (hi = higa)(wainn —way) | < ChipaN72,
| (hi = higa)w,; | < CN72
and | (h; — hi+1)w;7i | < CN2
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Proof. Let i1, %, 2ip1 € QN Q" and z; Ad ==z

vz

i — i = 2\/§N-1 16(0) = 6 (pis) |

for pi, pit1 € (tiz1,tiz1). Also | wyip1 — wi; |[= higa | w,17i(ai+1) |,  iy1 € (24, Tig1)
| (hi = his1) (Wi —w1,) | < CVEhipaN T2 | ¢ (1) || wy(cvirs) |
_ ¢/ Z; =1
< CVehipnN 2(101236’3 )2er(ig)e
< Ch‘+1N_2(maxwl)2€1(0"+1)
>~ i wl(l’z) 7

< ChipaN 72 (1 (tis1)) Per(ais).
Using the fact that max| ¢, | = C and e; (1) < ¥1(t;)? + N7, we have
| (hi = higa) (Wi —wi) | < Chipa N2 (1 (8:)* + N77) (¢ (tigr))
| (hi — hiv1) (w101 —wiy) | < Chia N2,
since 7 > 2. When [x;_1,2;41] C [d,d + 03] and [z;_1,2;41] C [1 — 09, 1], the above
estimate is also true for these intervals. From the previous analysis, we get
hiayyi(—wyip1 + 2wy, —wy i) < Ch;N~? 4+ Ch;N~? max | ¢l1 l,
hi@a;(—wa i1 + 2wa; — way—1) < Ch;N72+ Ch;N~*max| ¢ |,

and

IA

hiv1)aryi(wy i1 — W) Chi1N72%,
(hi — hiy1)aiz,; (o1 — way;) < Chi N2

O

Applying the above Lemma 4.2 to each of the terms in m; of Case 2, we have
(4.13) Im;| < Chy N~? max [/,
Now it remains to prove the estimates at the transition points.

Case 3: When x2;,7 € {%, %, %, %} and i # % At these points wy ;, w1 ;41
and ws;, wa ;41 are bounded by CN~7. Then, using the expression for |m;| given in
Case 2,

(4.14) | m; |[< ChyN™".

Case 4: When i = % That is, z; = d
(= o= F + o - -+ . F
m; = hl(all,iwl,i all,i—lwl,i—l) hZ-‘rl(all,z’—i-lei-',-l all,iwl,z')
- - + + - - + .+
+ hi(al2,z’w2,i - alz,i—lwz,i—1) - hi+1(a12,i+lw2,i+l - a12,iw2,i)

_ + .+ - -
= hi(_all,i+1w1,i+1 + Ay Wyt agy Wy — all,i—lwl,i—ﬁ
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hi(—a12,i41Wa,i41 + @Tg,iwii + Qg Wy — a12,i—1Wa,;—1)
Imi| < hil(afy; — aap)w); + (agy; — anio)wi] + hilan g (w]; — wi )
+ ayy i1 (wi; — wii)| + hal(afy; — arzi01)ws,; + (a5, — arzi-1)wy,|

+ hi|a12+1,i(w;,i — Waip1) + Ar2i-1(Wy; — Wai1)
1 —//

< Chihiga[wiy] + ChY|wiy| + Chy(hi(ar i1 — aqy )@ ; — 2hz+1@11 w0y (95)

1 " _ _
+ §hfa117,~_11111 ('19 ) + Rl) + Ch; h,+1|w | + C’h2|w2 Z| + Ch (hi(aflli—l — CL127Z-)’LU

1 o 1 _

— P05 (0:) + Shim @5 (0:) + Ra), 0i € [wi, @il.
We use the asymptotic expansion of the layer components w; = w; + R; and wy =
wy+ Ry, that can be derived using the technique from [4]. It can be concluded that the
leading part w] of w| and w} of w) are continuous at + = d, enabling us to use Taylor’s
expansions for estimating wi; — wy 41, wy; — w11 and w3, — wa i1, Wy, — Wai1.

Since Ry, Ry contain lower order terms, we have
(4.15) | m; |< Chiv/eN~' + Chyv/eN 2 max |¢'|* + Ch;N ™% max |¢/|?,
and we use the estimate of max |¢)| in the above result to obtain

Chi(v/e+ N"H)N-'In’ N, for Shishkin mesh,

| mi [< _
Chi(v/e+ N"HN~'  for Bakhalov-Shishkin mesh.

Collecting estimates (4.12)—(4.15) from the previously analyzed cases and using 1/ <
CN~1, we have

=

-1
|| >\]1€,i
1

=

‘< (a11w1 + a12U)2)I, )\If >h| <

i

=

~1
C(N™™ + N ?max [¢/) hik,

)
1

IN

i

CN~? max |[¢'[[| A} || 21
CN~?max ||,

IA
Il

IA

since 7 > 2 and | A1) < C.
From (4.10), (4.11) and the above estimate, we have
(4.16) Ki(z1) < CyeN™' + ON "2 max [¢/|.

A similar estimate is also hold for Kj(xy), from (4.8). Therefore from equations
(4.2)-(4.6), (4.16) and max |¢'| = C'In N (in case of Shishkin mesh), for p = 1,2 we

have

Ky(z;) < CyeN'+CON?In®N.

!/
2,
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Since |K (z;)| = max(| K ()], | K2(z;)]), we have

|Pu(x;) — un(a;)| = |K(z;)| < CV/eN~"+ CN?In® N.
Therefore we conclude

Lemma 4.3. Let u and uy, be solution of the BVP (1.1)~(1.2) and (2.5) respectively.

Then for Shishkin mesh, the pointwise maximum norm of the error satisfies

() — tp(2;)| = |Pu(z;) — ap(2;)] < CVeN'HCN2In® N, ;€ QY. O

Now, since V}, uses linear Lagrange elements, we can easily derive a bound for
the error u; — uj, on each element [z;_;,x;],9 = 1(1)N,j = 1,2. For arbitrary
ie{l,2,..,N} and = € [z;_1,x;], the triangle inequality implies

Juj (@) = wjn(@)] < fuy(z) — wj(@)] + [uj(2) — wjn(@)],j = 1,2.

The difference between the piecewise linear function u§ and wj;, at the point z is

estimated by

uj(2) — (@) = [u(zion)dioa(2) +uj(2:)0i(@) = wjn(wi1)Pia () — wjn(:)di()]
uj(@io1) = wjn(@i-1)|Gi-1 () + [uj(@s) — ujn(w:)|di(x)

< CyeN'+CN2m*N, by Lemma4.3 for i=2(1)N —1,

IA

where ¢; are functions defined in Section 2.1. The same bound holds for i = 1 and

i = N. Therefore for each interval [z;_1,x;] we finally obtain the error estimate
(4.17)  Juj(z) — un(2)| <@ — @' ooy 10 + CVEN '+ CN?In* N, j = 1,2

where ||ﬂ - TLIHOO[IFLI@'} = maX(Hul - U{HOO[SCFl,Ii}? ||U2 - uéHOO[Sszl,IJ)

5. ERROR ESTIMATE

The following theorem gives us the result on the maximum norm of the error

@ — Uy, not just on the mesh points, but on the whole domain [0, 1].

Theorem 5.1. Let u and uy, be solution of BVP (1.1)~(1.2) and (2.5) respectively,
Ve < CN~Y and 7 > 2. Then we have

CN~2In*N, for Shishkin mesh,

[ — o <
CN~—2,  for Bakhalov-Shishkin mesh.

Proof. For Shishkin mesh, the theorem follows from the inequality (4.17) and the
results on interpolation error (3.6). Similarly we can prove for Bakhalov-Shishkin
mesh. O

Remark 5.2. All the results in this paper also hold in case when the functions f;

and f, have more than one point of discontinuity.
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6. NUMERICAL EXPERIMENTS

In this section we experimentally verify our theoretical results proved in the

previous section.

Example 6.1. Consider the BVP
—eu{ () + 2ur(2) —uz(x) = fi(z), =e€Q UQT,

6.1
o1 —euy (@) — ui(2) + 2uz(x) = fox), =€ Q UQT,
(6.2) u1(0) =0, wuy(l) =0, wug(0) =0, wuy(l)=0,
where
1, 0<z<05, 2, 0<x<0.5,
fi(z) = and  fa(z) =
08, 05<z<1 1.8, 05<z<1.

Example 6.2. Consider the BVP
—euf(z) + 2(x + 1)’ () — (1 + 2*)uz(z) = fi(z), z€Q UQ,

6.3
(63) —euly (1) — 2cos(mx/4)uy(x) + 2.2 Tuy(x) = folx), z€Q UQT,
(6.4) u1(0) =0, wu(l) =0, wug(0) =0, wuy(l)=0,
where
2¢”, 0<x<0.5, 10 +1, 0<x<0.5,
fi(x) = and fo(x) =
1, 05<z<1 2, 05<z<l.

For our tests, we take ¢ = 2718 which is sufficiently small to bring out the

singularly perturbed nature of the problem. We measure the accuracy in maximum

norm and the rates of convergence rV are computed using the following formula:
EN
N
T = lng(W),

where
EY =|| an — gy oo,

and @} denotes the piecewise linear interpolant of ;. In Table 1, we present values
of EN r¥ for the solution of the BVPs (6.1)—(6.2) and (6.3)—(6.4) for Shishkin and
B-Shishkin meshes respectively. The Figures 1 and 2 depict the numerical solution
of the BVP (6.1)—(6.2) for Shishkin mesh with N = 512. We compare the values
of EN,r¥ for the solution of the same BVP (6.1)—(6.2) for Shishkin mesh using
the standard upwind scheme adopted [13]. From these tables, it is obvious that
the method presented in this paper performs well. The numerical results are clear
illustrations of the convergence estimates derived in the present paper for both the

type of meshes.



166 A. R. BABU AND N. RAMANUJAM
TABLE 1. Values of EV and r" for the solution of the BVPs (6.1)-(6.2)
and (6.3)-(6.4) respectively.
N Shishkin mesh B-Shishkin mesh Shishkin mesh B-Shishkin mesh
EN rN EN rN EN rN EN rN
32 | 7.5324e-03 | 0.0542 | 6.8353e-02 | 2.4161 || 4.5727e-03 | 0.0788 | 1.0557e-01 | 2.3448
64 | 7.2545e-03 | 0.4497 | 1.2807e-02 | 2.1880 || 4.3295e-03 | 0.1207 | 2.0782¢-02 | 2.1671
128 | 5.3117e-03 | 0.9314 | 2.8106e-03 | 2.0923 || 3.9818e-03 | 0.5378 | 4.6273¢e-03 | 2.0866
256 | 2.7851e-03 | 1.2331 | 6.5912e-04 | 2.0460 || 2.7426e-03 | 1.1084 | 1.0894e-03 | 2.0447
512 | 1.1848e-03 | 1.2217 | 1.5961e-04 | 2.0230 || 1.2723e-03 | 1.1524 | 2.6405e-04 | 2.0226
1024 | 5.0802e-04 - 3.9272e-05 - 5.7236e-04 - 6.4986e-05 -
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