
Neural, Parallel, and Scientific Computations 17 (2009) 215 – 238

Speaker Recognition

Using Parallel Neural Network Modules

Glen E. Deal
1
 and Fredric M. Ham

2

1
Northrop Grumman Corporation,

Aerospace Systems Sector, Melbourne, Florida, USA
2

Department of Electrical and Computer Engineering,

Florida Institute of Technology, Melbourne, FL, USA

Abstract

This paper presents methods for improving the performance of Artificial Neural Network

Speaker Recognition systems based on a novel negative reinforcement training algorithm.

A brief background of current speaker recognition technology is presented including

various options for feature extraction and feature mapping. We then present custom

MATLAB implementations for four separate closed-set speaker recognition systems,

each using a different parallel-architecture neural network mapping algorithm. The

performance of the negative reinforcement training algorithm as applied to each of the

four mapping algorithms is tested and illustrated a set of Receiver Operating Curves. The

negative reinforcement training algorithm is shown to provide a significant improvement

in correct recognition rate over a similarly configured baseline system.

1. INTRODUCTION

The problem of speaker recognition generally consists of mapping a sample of speech to

a particular speaker based on a set of speech parameter measurements or “feature

vectors”. Possible applications of speaker recognition technology include speaker

verification for access to a physical site or to a computer network, telephone banking

transaction authentication, and security screening for airline passengers, to name a few.

This problem has been the subject of much recent research [1-19]. The problem is

usually broken into two distinct phases: feature extraction and feature mapping.

Feature extraction is concerned with producing a numeric representation of a speech

sample that can be processed by a computer. A very simple feature extraction method

could be implemented by taking the Fast Fourier Transform (FFT) of the speech sample

and using the FFT coefficients as the feature vector. More sophisticated algorithms

include Principal Component Analysis, Wavelet Analysis, and Cepstral Vector Analysis.

The main goal of the feature extraction algorithm is to produce a representation that is

dependent only on the speaker and independent of the content of the speech. In this

Received February 13, 2009 1061-5369 $15.00 © Dynamic Publishers, Inc.

216 Deal and Ham

respect, speaker recognition has the opposite problem from speech recognition, where

one wants the feature vector to be dependent only on the content of the speech and

independent of the speaker. The recognizers developed and demonstrated as part of this

paper use two options for feature extraction: Cepstral Vector feature extraction and

Wavelet feature extraction. The wavelet feature vectors are produced using the Princeton

WAVELAB_802 software. The algorithm for extracting the cepstral vectors for a speech

sample has been implemented in custom MATLAB code and will be presented in detail

in Section 2.

Once a feature vector is obtained, the vector must be mapped to a speaker. If the

speaker is known to be one of a set of N possible speakers, the problem is categorized as

a “closed-set” recognition problem. If the formulation of the problem allows the speaker

to be outside the set of known speakers, we have an “open-set” recognition problem. In

either case, there are a number of options for algorithms to map the feature vector to a

speaker. The classical Bayesian approach is known to have the best performance from a

probability of error standpoint if the marginal probability distributions of each feature

vector component with respect to the members of the speaker set are known [20]. Other

options include Principal Component Regression techniques and Nearest Neighbor

methods. In practice, methods based on parallel architecture Artificial Neural Networks

(ANNs) have been shown to have superior performance [2]. The four recognizers

developed and demonstrated here all use parallel ANN schemes in which a separate ANN

is trained for each speaker in the speaker set. The four separate feature mapping

algorithms along with the improved negative reinforcement training approach are

described in detail in Sections 3-8.

2. FEATURE EXTRACTION

Our approach involves implementing a baseline recognition system using the best current

algorithms for speaker recognition and then demonstrating a significant improvement in

performance over the baseline system using the negative reinforcement algorithm. The

baseline system uses a 15-element Cepstral Vector Feature Extraction algorithm and then

implements an Artificial Neural Network to map the feature vectors to members of a

closed speaker set.

2.1 Cepstral Vector Feature Extraction

As discussed in Section 1, the main goal of the feature extraction algorithm in a speaker

recognition system is to produce a numeric representation of a speech sample that is

characteristic of the speaker and independent of the content of the speech. Cepstral

Vector Feature Extraction has been shown to have superior performance in this

Speaker Recognition Using Parallel Neural Network 217

respect [3]. The following steps describe the process for extracting a feature vector for

each speech sample [21].

Step 1: Normalize the discrete-time speech sample and remove the mean:

For a discrete-time speech sample y = y(k), k=1,N

 y normalized = y / max(|y|) (1)

 y n, m = y normalized, mean removed = y normalized – mean(y normalized) (2)

Step 2: Apply a symmetric Hamming Window:

 y n, m, h = y n, m · [W hamming | W
*
 hamming] (3)

 .1
2

,...1,0,
100

)
1

2
cos(4654

min 



N

hwhereN

h

gham



W (4)

Step 3: Calculate the Power Spectral Density Syy(k) of the signal yn,m,h

kj

k yyyy ekRS  

)()((5)

where Ryy(k) is the autocorrelation of the signal yn,m,h (estimated as the periodogram of

the signal)

Step 4: Apply Mel-frequency scaling to the PSD S(k):

)]([log)(kSkS em 

 where 000003.0,1125   (6)

Step 5: Take the inverse discrete cosine transform:

),/2cos()(
1

)(
1

0
NknkS

n
nx

N

k mm 



 for n = 0, 1, 2 …, N-1. (7)

Step 6: Take the derivative of the sequence)(nxm , i.e.,)(nxm


Step 7: Concatenate)(nxm
 with)(nxm to form the augmented sequence:

)](|)([jxixx mm

a

m


 where i = 1, 2, …5 and j = 1, 2, …10 (8)

218 Deal and Ham

Step 8: Take the absolute value of
a

mx :

a

m

a

absm xx , (9)

Step 9: Take the natural log of
a

absmx , :

][log ,log,,

a

absme

a

absm xx  (10)

Step 10: Remove the mean value:

)(log,,log,,

a

absm

a

absmdmeanremove xxx mean (11)

Step 11: Scale the range of the feature vector between [-1, 1]:

)(/ max, removedmeanremovedmeannormalizedremovedmean xxx  (12)

2.2 Wavelet Feature Extraction

In addition to the Cepstral Vector Feature Extraction algorithm (which was implemented

in custom MATLAB code for this paper and discussed in some detail in the previous

section), the recognizer performance was also evaluated using wavelet feature vectors.

This feature extraction method uses the wavelet transform, which represents the speech

sample in terms of multiple timeshift and time-scalings of a selected finite-duration

waveform or “wavelet.” The theory of wavelet feature extraction will not be discussed in

detail here. The bibliography includes an excellent text on this topic [22].

The wavelet feature vectors were calculated using the Periodized Biorthogonal Wavelet

Transform function from the Princeton WAVELAB_802 library. This choice was based

on published results [23] which demonstrated reliable speaker recognition using the

biorthogonal discrete wavelet transform with a triangular shape decomposition scaling

function. Those results found that analysis levels 3 through 8 of the wavelet transform

provided reliable speaker identification information, while the first two levels tended to

be somewhat noisy.

Speaker Recognition Using Parallel Neural Network 219

3. LMS RECOGNIZER

After feature extraction, the next phase of the speaker recognition process involves

mapping each feature vector to a speaker. The mapping technique used in our baseline

system uses an artificial neural network to map a cepstral vector representation of a

speech sample to the member of the speaker set most likely to have produced the speech

sample. In order to train the neural network and evaluate its performance, the feature

extraction algorithm described above is used to produce two sets of feature vectors for

each member of the speaker set. One set of feature vectors is used to train the neural

network and the second set is used as test data to evaluate the recognition performance of

the mapping network.

In practice, the test data might be collected years after the training data and might be

recorded in a significantly different environment. For the baseline (LMS) recognizer

demonstration discussed in this section, the two data sets were collected using the same

recording equipment, in the same environment, and with minimal background noise. The

more sophisticated recognizer implementations discussed in Sections 6-8 used more

realistic recordings from a widely-used speech corpus to evaluate the impact of recording

quality and background noise.

There is a wide variety of neural network architectures and training algorithms that

can be used to map an N-element feature vector to one member of an M-element speaker

set. For the baseline recognizer, we have chosen a relatively simple single-layer network

using a Least Mean Square (LMS) training algorithm [24].

A separate neural network is trained for each member of the speaker set. The

networks are arranged in a parallel structure so that each network is presented with the

same 15-element cepstral vector at each training or test interval. During the training

phase, each network is trained to produce a large output when the input is from the

speaker associated with that network and to produce a small output when the input in

from any other speaker. During the test phase, the input vector is mapped to a speaker by

choosing the speaker associated with the network that has the largest response to the test

vector.

For the baseline recognizer, the training of each branch of the parallel network is

accomplished separately. The training process begins by initializing each synaptic weight

to a small random number. The input to the network is then presented with feature

vectors which alternate between vectors from the “desired” speaker and vectors from one

of the other speakers. The LMS training method is illustrated in Figure 3-1.

220 Deal and Ham

w1(k)

X

w2(k)

X

wn(k)

X

x1(k)

x2(k)

xn(k)

Σ
•
•
•

Σ

d(k)
LMS Algorithm

v(k)

e(k)

+

-

Figure 2-1 LMS Training Algorithm

At each training interval, the weights are adjusted as follows:

)()()()()1(kkekkk xww  (13)

where:)(kw is the synaptic weight vector at training interval k,

)(kx is the input feature vector at training interval k,

 e(k) is the “error” at interval k defined as)()()()(kkkdke xw

 d(k) = 1 when the input feature vector is from the desired speaker

 d(k) = 0 when the input feature vector is not from the desired speaker

and)(k is the “Learning Rate Parameter” defined as follows:

  /9.0)0( (14)

where  is the largest eigenvalue of the covariance matrix formed by the input vectors,

and

)/1/()()1( kkk  (15)

where determines the rate of adaptation of the learning rate parameter and is set to 200

for our demonstration.

After the network training phase is complete (evidenced by the stabilization of the

synaptic weights), a separate set of feature vectors is used to test the performance of the

network. During the test phase, an input from an “unknown” speaker is presented to the

Speaker Recognition Using Parallel Neural Network 221

input of the parallel network and the most likely speaker is chosen as the member of the

speaker set associated with the network branch which produces the largest output. The

key performance measure for the system is the probability of correct speaker recognition.

4. DESCRIPTION OF THE NEGATIVE REINFORCEMENT

TRAINING ALGORITHM

The background and approach discussions above are all based on previously published

work in the field of speaker recognition. We now move on to the algorithm

improvements that form the basis of the paper.

In the baseline system, each of the neural network stages in the parallel recognizer is

trained independently by applying the LMS algorithm while alternately presenting a

feature vector from the speaker associated with that stage, then a feature vector from

another speaker in the speaker set. When the feature vector is from the speaker for which

the network is being trained, the desired output is set to “1” and when it is from another

speaker, the desired output is set to “0.” After the weights stabilize for one stage, the

same algorithm is used to train the next stage.

The proposed training algorithm trains all the stages in parallel. The same feature

vector is simultaneously presented to all the parallel stages. The LMS algorithm is

applied as the input cycles through feature vectors from each speaker in the set. The

desired output for the stage corresponding to the source of the current input vector is set

to “1” and the desired output for all the other stages are set to “0.” Each time the

algorithm cycles through the M speakers in the speaker set, each stage of the recognizer

is presented with one “true” input and M-1 “false” inputs, one from each of the other

speakers in the set.

The results presented in Section 5 show that this training algorithm provides a

significant improvement over the baseline system in terms of correct recognition rate.

One drawback to this approach is that the entire network must be re-trained when a new

member is added to the speaker set. Adding a speaker to the baseline system would only

require training one more stage for the new speaker.

5. LMS RECOGNIZER PERFORMANCE

This section will present the results of a preliminary evaluation of the performance of the

baseline (LMS) system and of the performance improvements afforded by the enhanced

algorithm. This evaluation was made using a 3-member speaker set. Two separate

recordings of the same recitation were made for each speaker: one for training data and

one for test data.

222 Deal and Ham

Two versions of the LMS mapping program were implemented and evaluated. Both

programs attempt to map the cepstral feature vectors from the feature extraction program

to the speaker most likely to be the source of the speech sample.

The first version is the baseline recognizer. This version does not implement the

negative reinforcement training and is used as a performance baseline against which to

evaluate the proposed algorithm enhancement. The recognizer reads two data files

generated by two separate executions of the feature extraction program. One data file

contains training data and the second contains test data. The first phase of the program

implements a LMS training algorithm to train each of the 3 parallel stages, in turn, using

training data from the corresponding speakers. The second phase uses the test data to

evaluate the performance of the recognizer in terms of correct recognition rate.

The second version adds the negative reinforcement training algorithm described in

Section 4 to the baseline recognizer.

The same training and test data sets were used to evaluate both recognizer versions.

The measured performance of the recognizers is summarized in Tables 5-1 and 5-2.

Sample convergence plots for the synaptic weights are presented in Figure 5-1. The

columns of the performance tables represent the recognizer’s estimate of the speaker

while the rows represent the actual speaker. For example, in Table 5-1, when the actual

speaker was Speaker 1, the recognizer correctly identified Speaker 1 a total of 179 times.

The recognizer incorrectly identified Speaker 1 as Speaker 2 at total of 17 times. This

format for reporting performance of a mapping network is sometimes referred to as a

“confusion matrix.”

As we can see from the Tables, the addition of the negative reinforcement algorithm

to the baseline system improved the overall correct recognition rate from 85.5% to

94.0%.

Table 5-1. Confusion Matrix for Baseline Recognizer

Correct Recognition Rate =

85.5%
Speaker Prediction

1 2 3

Actual

Speaker

1 179 17 0

2 18 152 26

3 1 23 172

Speaker Recognition Using Parallel Neural Network 223

Table 5-2 Confusion Matrix for Recognizer with Negative Reinforcement

Correct Recognition Rate =

94.0%
Speaker Prediction

1 2 3

Actual

Speaker

1 196 0 0

2 13 164 19

3 0 3 193

 0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 1

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 8

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 15

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
-0.305

-0.3

-0.295

-0.29

-0.285

-0.28

-0.275

-0.27

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 1

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 8

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
0.1085

0.109

0.1095

0.11

0.1105

0.111

0.1115

0.112

0.1125

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 15

Speaker Number 2

W
e
ig

h
t

V
a
lu

e

Training Iteration Number

Training Iteration NumberTraining Iteration Number

Training Iteration NumberTraining Iteration Number

Training Iteration Number

W
e
ig

h
t

V
a
lu

e

W
e
ig

h
t

V
a
lu

e

W
e
ig

h
t

V
a
lu

e
W

e
ig

h
t
V

a
lu

e

W
e
ig

h
t

V
a
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 1

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 8

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Iteration Number

W
e
ig

h
t

V
a
lu

e

Synaptic Weight Convergence Plot:

(With Negative Reinforcement Training)

Weight Number 15

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
-0.305

-0.3

-0.295

-0.29

-0.285

-0.28

-0.275

-0.27

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 1

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 8

Speaker Number 2

0 1000 2000 3000 4000 5000 6000 7000
0.1085

0.109

0.1095

0.11

0.1105

0.111

0.1115

0.112

0.1125

Synaptic Weight Convergence Plot:

(Without Negative Reinforcement Training)

Weight Number 15

Speaker Number 2

W
e
ig

h
t

V
a
lu

e

Training Iteration Number

Training Iteration NumberTraining Iteration Number

Training Iteration NumberTraining Iteration Number

Training Iteration Number

W
e
ig

h
t

V
a
lu

e

W
e
ig

h
t

V
a
lu

e

W
e
ig

h
t

V
a
lu

e
W

e
ig

h
t
V

a
lu

e

W
e
ig

h
t

V
a
lu

e

Figure 5-1 Synaptic Weight Convergence Plots

224 Deal and Ham

6. MULTI-LAYER PERCEPTRON RECOGNIZER

6.1 MLP Recognizer Description

The results presented in the previous section demonstrated the performance enhancement

provided by the proposed recognizer improvements using a very simple single-layer

recognizer implementing the LMS training algorithm. We now move on to more

sophisticated ANN implementations beginning with the Multi-Layer Perceptron (MLP).

The MLP architecture (Figure 6-1) uses several layers of neurons including an input

layer, one or more “hidden” layers, and an output layer. The figure is representative of

the recognizer implemented for this paper, which supports a variable length input vector,

two hidden layers with variable number of neurons, and a scalar output. In general, the

MLP recognizer may have any number of hidden layers and the output layer may be

n-dimensional.

As with the LMS recognizer discussed earlier, the goal of the MLP recognizer is to

map feature vectors to their source speakers. The parallel architecture is similar to that

illustrated in Figure 1, consisting of a bank of recognizers each of which is trained to

produce a large response for its associated speaker and a small response for all other

speakers in the speaker set.

During the training phase, each parallel recognizer branch is presented with a

succession of training vectors and the weight matrices are adjusted according to a

backpropagation training algorithm which we will now present without derivation. The

derivation of this and the other training algorithms used in the project are included in the

referenced text by Ham and Kostanic [24].

Referring to Figure 6-1, let)(kxi
 represent the i

th
element of the input vector at

training interval k , and let)()(kw s

ij
 represent the synaptic weight corresponding to the

synapse which connects the i
th

input element to the j
th

neuron for layer s. Then, the

synaptic weights for layer s form a weight matrix W
(s)

.

Up to this point, the MLP layer is similar to the LMS network presented earlier, with

successive input vectors multiplying a weight matrix which is adapted to achieve a

desired output. However, the MLP network introduces the complication of a non-linear

“activation” function f
(s)

(
.
) which seeks to better model the behavior of biological

neurons. Our MLP recognizer uses the binary sigmoid function, a typical activation

function for this application. This results in a small output from the artificial neuron until

the activity level (input) to the neuron reaches a certain amplitude. The neuron then

“fires” producing a significant output in response to a small change in the input.

Speaker Recognition Using Parallel Neural Network 225

x1

x2

xn

•
•
•

Σ

Σ

Σ

x3 Σ

f (1)(·)

f (1)(·)

f (1)(·)

f (1)(·)

•
•
•

Σ

Σ

Σ

f (2)(·)

f (2)(·)

f (2)(·)

Σ f (3)(·) y

Input

Vector

n0 x 1

First Hidden Layer

n1 neurons

Second Hidden Layer

n2 neurons

Output Layer

1 neuron

Response

Vector

(Scalar)

Weight Matrix

for Layer 1

n0 x n1

Weight Matrix

for Layer 2

n1 x n2

Weight Matrix

for Layer 3

n2 x 1

•
•
•

x1

x2

xn

•
•
•

Σ

Σ

Σ

x3 Σ

f (1)(·)

f (1)(·)

f (1)(·)

f (1)(·)

•
•
•

Σ

Σ

Σ

f (2)(·)

f (2)(·)

f (2)(·)

Σ f (3)(·) y

Input

Vector

n0 x 1

First Hidden Layer

n1 neurons

Second Hidden Layer

n2 neurons

Output Layer

1 neuron

Response

Vector

(Scalar)

Weight Matrix

for Layer 1

n0 x n1

Weight Matrix

for Layer 2

n1 x n2

Weight Matrix

for Layer 3

n2 x 1

•
•
•

x1

x2

xn

•
•
•

Σ

Σ

Σ

x3 Σ

f (1)(·)

f (1)(·)

f (1)(·)

f (1)(·)

•
•
•

Σ

Σ

Σ

f (2)(·)

f (2)(·)

f (2)(·)

Σ f (3)(·) y

Input

Vector

n0 x 1

First Hidden Layer

n1 neurons

Second Hidden Layer

n2 neurons

Output Layer

1 neuron

Response

Vector

(Scalar)

Weight Matrix

for Layer 1

n0 x n1

Weight Matrix

for Layer 2

n1 x n2

Weight Matrix

for Layer 3

n2 x 1

•
•
•

Figure 6-1 Multi-Layer Perceptron Block Diagram

Let v
(s)

 = W
(s)

x
(s)

be the vector of activation levels at layer s. Then the output of the

neuron will be f
(s)

(vi), which, for the binary sigmoid activation function is:

avbs

e
vf




1

1
)((16)

Where a is a constant which determines the abruptness of the activation.

The training algorithm also involves the first derivative of the activation function,

g
(s)

(v), which, for the binary sigmoid activation function is:

)](1[)()(vfvfavg bsbsbs  (17)

The training algorithm begins by setting all the synaptic weights to small random

numbers. The feature vectors calculated by the feature extraction algorithm are then

presented to the network as inputs, cycling through vectors form each of the speakers in

the speaker set. The goal of the algorithm is to adjust the weights so that the final output

of the network is large when the input corresponds to a particular speaker and small when

the input is from any other speaker. Accordingly, the algorithm is deigned to minimize

the “error” in each layer - That is, to minimize the difference between the actual output of

each layer and the desired output.

The learning rule for the MLP network is [24]:

226 Deal and Ham

)(

,

)()()()()()1(s

iout

s

j

ss

ji

s

ji xkwkw  (18)

where

)()()()(

,

)(s

j

s

jout

s

j vgxd  (19)

for the final output layer and

)()()(
1

1

)1()1()(s

j

n

h

s

hj

s

h

s

j vgw
s






  (20)

for the hidden layers.

6.2 TIMIT Speech Corpus

The LMS recognizer performance discussed in the previous sections was accomplished

using the prototype recognizer and used “.wav” formatted recordings for training and test

data. These recordings were adequate to demonstrate the concept of the proposed

recognizer improvements. However, the recordings were practically noise-free and

represented a very small speaker set. To train and test the MLP and other advanced

recognizers, we need a more realistic set of speech data.

The Texas Instruments / Massachusetts Institute of Technology (TIMIT) Acoustic-

Phonetic Continuous Speech Corpus, was commissioned by the National Institute of

Standards and Technology (NIST) for just this purpose.

The subset of the TIMIT corpus used for this evaluation consists of speech

recordings of 12 speakers recorded in a realistic background noise typical of an office

environment. For a full description of the TIMIT speech corpus and information on

ordering the CD-ROM, see the NIST report [25].

6.3 Explanation of Receiver Operating Curves

The performance results from the prototype LMS recognizer presented in Section 5 were

based on simply selecting the predicted speaker based on which parallel module had the

largest output. In practice, the decision threshold for each parallel module may be

different. The selection of these thresholds is based on the relative cost of having a false

detection (false alarm) vs. the cost of a missed detection. If the threshold is set very low,

we never miss a detection but we have a high false alarm rate. If the threshold is set too

high, we don’t have any false alarms but we have a high rate of missed detections. The

Receiver Operating Curve (ROC) is a useful tool for presenting performance of a

recognizer in these terms. The ROC is simply a plot of Probability of False Alarm vs.

Speaker Recognition Using Parallel Neural Network 227

Probability of Correct Detection as threshold is varied from 0 to infinity. Obviously, the

ideal recognizer is one which achieves 100% correct detection with 0% false alarms. So,

the figure of merit for our recognizers is the degree to which they approach this ideal

performance.

6.4 MLP Recognizer Performance

The MLP recognizer was implemented and tested using custom MATLAB code which

supports a variable number of neurons in each of the two hidden layers. The test results

presented here are based on 15 neurons in the first hidden layer and 5 in the second

hidden layer, each with a binary sigmoid activation function.

The performance for the MLP recognizer (and the remaining recognizers) will be

presented in terms of ROC curves representing recognizer performance against a selected

set of speakers. To facilitate comparison of performance, the same training and test data

was used for the MLP recognizer and for the other two advanced recognizers to be

presented in the following sections. The training and test data consists of 80 speech

samples (40 for training data and 40 for test data) from each of 12 speakers selected from

the TIMIT speech corpus. This provides a total of 480 test samples for each ROC plot.

Performance will be presented and compared for each of the three recognizer algorithms

(MLP, RBF, and PLSR), and for both of the feature extraction algorithms (cepstral and

wavelet feature vectors). The ROC plots for the MLP recognizer are presented in

Figures 6-2 and 6-3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC - MLP Mapping Network - Speaker 2

False Alarm Rate

C
o
rr

e
c
t

R
e
c
o
g
n
it
io

n
 R

a
te

Figure 6-2. ROC Plot, MLP Binary Sigmoid, Speaker 2, Cepstral Features

228 Deal and Ham

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC - MLP Mapping Network - Speaker 6

False Alarm Rate

C
o
rr

e
c
t

R
e
c
o
g
n
it
io

n
 R

a
te

Figure 6-3. ROC Plot, MLP Binary Sigmoid, Speaker 6, Cepstral Features

7. RADIAL BASIS FUNCTION RECOGNIZER

7.1 RBF Recognizer Description

The next mapping network we will consider is the Radial Basis Function (RBF)

recognizer. The RBF recognizer block diagram is shown in Figure 7-1. The RBF

network consists of an input layer, a single hidden layer, and an output layer. As always,

the goal is to iteratively adjust the network parameters during the training phase so that

the network will produce a large output when the input vector is from its associated

speaker and a small output otherwise.

 The network design involves selecting an RBF activation function, k , a set of

initial “center vectors”, ck , and corresponding “spread parameters”, σk. While a number

of options are available for the functional form of)(k [24], the form chosen for our

implementation is the Gaussian function:

)exp(),(
2

2

k

k

k

cx
cx





 (21)

Speaker Recognition Using Parallel Neural Network 229

x1

x2

xn

x3

Φ1

Φ2

ΦN

Σ

•
•
•

•

•

•

y

input layer hidden layer output layer

W

x1

x2

xn

x3

Φ1

Φ2

ΦN

Σ

•
•
•

•

•

•

y

input layer hidden layer output layer

W

x1

x2

xn

x3

Φ1

Φ2

ΦN

Σ

•
•
•

•

•

•

y

input layer hidden layer output layer

W

Figure 7-1 RBF Recognizer Block Diagram

The center vectors, one for each neuron in the hidden layer, are intended to provide a

representative sampling of the input vector space. The most common approach to

selecting the initial center vectors, and the approach used in our RBF implementation, is

to select the centers at random from the set of training vectors. Once the center vectors

have been chosen, the initial values for the spread parameters for each center are

calculated according to:

K

dmax (22)

where d max is the maximum Euclidian distance between the selected center and all the

other centers and K is the number of centers.

The training algorithm begins by initializing the weights in the output layer to small

random values, then iteratively calculates the network parameters according to the

Stochastic Gradient method:

Present an input (feature vector) and calculate the network output:

 



N

k

kkk cnxwny
1

},),({)(


 (23)

Update network parameters according to:

)()()()1(nnenwnw w  (24)

230 Deal and Ham

 Deal and Ham

)]()(}[),(),({
)(

)()(
)()1(

2
ncnxncnx

n

nwne
ncnc kk

k

k
ckk k

 


 (25)

)]()(}[),(),({
)(

)()(
)()1(

3
ncnxncnx

n

nwne
nn kk

k

k
kk k

 


  (26)

where

 T

N N
cnxcnxcnxn }],),({},,),({},,),({[)(

21 21   (27)

)()(ˆ)(nynyne d (28)

7.2 RBF Recognizer Performance

The RBF recognizer was implemented and tested using custom MATLAB code which

supports a variable number of neurons in the hidden layer. The test results presented here

are based on 15 neurons in the hidden layer, each with a Gaussian Radial Basis function.

The RBF recognizer was trained an tested using speech data from 12 speakers

selected from the TIMIT speech corpus (the same data that was used for the MLP

recognizer). The ROC plots for the RBF recognizer are presented in Figures 7-2 and 7-3.

Figure 7-2. ROC Plot: RBF Gaussian, Speaker 2, Cepstral Features

Speaker Recognition Using Parallel Neural Network 231

Figure 7-3. ROC Plot: RBF Gaussian, Speaker 6, Cepstral Features

8. PLSR RECOGNIZER

8.1 PLSR Recognizer Description

The Partial Least Squares Regression (PLSR) algorithm is one of a family of analysis

methods known as “factor analysis” methods. The goal of the PLSR algorithm is to find

a “calibration model” which predicts certain physical quantities related to a set of

empirical measurements. In our case, the empirical measurements are the feature vectors

extracted from training samples of speech data and the quantity to be predicted is the

likelihood that the feature vector corresponds to a particular speaker.

We begin by defining a data matrix A containing all the empirical measurements

from the training data. Each row of A contains a feature vector from one of the speakers,

alternating through the speakers in the speaker set. So if the total number of

measurements (the number of speakers times the number of training samples per speaker)

is m and the number of elements in the feature vector is n, we can write nmRA . The

same A matrix is used for all the parallel modules.

Next, we define a “target vector” 1 mc R so that each element of c corresponds to a

row of A.. Each parallel module has a different target vector populated so that cm = 1, if

the corresponding measurement in A is from the speaker associated with the module and

cm = 0 otherwise. Our goal is to find a calibration model
1ˆ 

  n

PLSRfb R , which produces

a reliable estimate of c when employed during the test phase:

 PLSRftesttest bAc  ˆˆ (29)

232 Deal and Ham

8.2 PLSR1 Calibration Algorithm

An iterative approach, referred to as the PLSR1 calibration algorithm [24], is used to

produce the calibration model for each of the parallel modules. The following steps

comprise the PSLR1 algorithm:

Step 1: Mean-Center and Variance-Scale the training data. For each column of A,

calculate the mean and standard deviation of the elements in the column. Subtract the

mean value of the column from each element in the column. Then, divide each element

by the standard deviation of the column. Set parameter h to 1 (where h represents the

number of PLS factors).

Step 2: Form the weight-loading vector:

cc

c
T

T

h

A
w ˆ (30)

then, normalize the weight-loading vecor:

2
ŵ

ŵ
ŵ

h

h
h  (31)

Step 3: Generate the “score” vector:

 hh wAt ˆˆ  (32)

Step 4: Calculate the Regression Coefficient:

h

hhv
tt

t
t

ˆˆ

ˆ
ˆˆ

T
h

T
h c (33)

Step 5: Calculate the Loading Vector:

h

h
tt

tA
b h

T

ˆˆ

ˆ
ˆ

T
h

 (34)

Step 6: Calculate the residuals in A and c.

 T
hbt-AE hA

ˆˆ (35)

 hc t-ce ˆˆ
hv (36)

Step 7: Increment h, repeat from Step 2, substituting EA for A and ec for c. Continue

until h reaches the optimal value – producing the minimum Standard Error of Prediction.

This value is determined empirically be calculating SEP for each pass through the

algorithm.

Speaker Recognition Using Parallel Neural Network 233

8.3 PLSR Recognizer Performance

The RBF recognizer was implemented and tested using custom MATLAB code which is

based on a PLSR1 calibration algorithm using 10 PLS factors.

The PLSR recognizer was trained and tested using data from 12 speakers selected

from the TIMIT speech corpus. The ROC plots for the PLSR recognizer are presented in

Figures 8-1 and 8-2.

Figure 8-1. ROC Plot: PLSR, Speaker 2, Cepstral Features

Figure 8-2. ROC Plot: PLSR, Speaker 6, Cepstral Features

9. CONCLUSIONS

This paper presented a novel negative reinforcement training algorithm for neural

network speaker recognition systems and demonstrated that the performance of this

algorithm is significantly improved over a similarly configured recognizer that does not

234 Deal and Ham

employ negative reinforcement training. The performance of the algorithm was

presented in terms of Receiver Operating Curves for two separate feature extraction

schemes (cepstral vector and wavelet transform) and four separate classifier algorithms

(LMS, MLP, RBF, and PLSR).

The prototype (LMS) implementation of the proposed recognizer enhancement

significantly improved the performance over the baseline system in terms of probability

of correct recognition. The addition of the negative reinforcement algorithm to the

baseline LMS system improved the overall correct recognition rate from 85.5% to 94.0%.

All three of the advanced mapping algorithms – MLP, RBF, and PLSR – consistently

provided over 90% correct recognition rate with less than 10% false alarm rate when

operating on cepstral feature vectors. Table 9-1 summarizes the performance of the three

advanced mapping algorithms using each of the feature extraction methods in terms of

Probability of Correct Detection (Pcd) vs. Probability of False Alarm (Pfa). It is

important to note that these numbers are based on the probability of mapping a single

cepstral feature vector to the correct member of the speaker set using a standard NIST

speaker corpus and realistic recording conditions. Since a brief speech recording could

easily produce thousands of samples of the feature vector, any of the three advanced

recognizer algorithms could achieve near perfect recognition performance with this

speaker set and recording conditions.

All three of the mapping algorithms demonstrated significantly better performance

when operating on cepstral feature vectors vs. wavelet feature vectors. This result is

consistent with results from other recent research [1, 3, 6, 16, 17], and underscores the

power of the cepstral vector algorithm as a speaker recognition tool.

Table 9-1 Recognizer Performance Summary

Feature Vector Option

Cepstral Wavelet

Pcd Pfa Pcd Pfa

Multi-Layer Perceptron 94% 8% 85% 10%

Radial Basis Function 93% 6% 74% 18%

Partial Least Squares Regression 95% 5% 82% 16%

It is somewhat difficult to compare performance with existing speaker recognition

systems due to the variability in training and test conditions used in the published work.

Speaker Recognition Using Parallel Neural Network 235

Variables affecting the performance include number of speakers in the speaker set, length

of recording samples used, recording environment, etc. We have attempted to quantify

these variables in our results by using a standard (TIMIT) speech corpus and presenting

the results in terms of ROC curves based on single feature vector tests. The best

performance benchmark we found is an overview paper published by MIT-LL [24] which

shows typical performance for recognizers operating on “conversational speech” with 2

minutes of training data and 30 seconds of test data to be in the range of 7% - 15%

probability of missed detection with an equal false alarm rate. Admittedly, this

information is slightly dated (publication date is 2002), but we have found no

documentation of major breakthroughs in performance since that date. Since all three of

our recognizers (MLP, RBF, and PLSR) matched the upper end of this range while

operating on single cepstral feature vectors (representing a fraction of a second of test

data), we believe there is good evidence of substantial performance improvement using

the proposed negative reinforcement algorithm.

There are several areas related to this topic that could benefit from additional

research. First, it would be interesting to determine the degree to which performance

could be further improved through the use of more complex recognizer architectures

(e.g., increasing the number of hidden layers and/or the number of neurons in each layer

for the MLP recognizer). Secondly, our RBF recognizer was implemented using the

Gaussian basis function, but there are several others that could be implemented for

comparison (e.g., cubic approximation function, thin-plate spline function, or

multiquadratic function). Finally, we have stated that our results were obtained using test

samples consisting of a single feature vector. Since a brief sample of speech could easily

produce hundreds of feature vectors, further research should be conducted to determine

the performance improvement achievable by implementing a decision scheme based on

multiple feature vectors. For example, a majority vote decision scheme might be

implemented to minimize spurious false alarms.

REFERENCES

 [1] H. Seddik, A. Rahmouni, M. Sayadi. “Text independent speaker recognition using

the mel frequency cepstral coefficients and a neural network classifier” First

International Symposium on Control, Communications and Signal Processing, March

21-24, 2004, pages 631 – 634.

[2] X. Yue, D. Ye, C. Zheng, and X. Wu. “Neural networks for improved text-

independent speaker identification” Engineering in Medicine and Biology Magazine,

IEEE , Volume: 21 , Issue: 2 , Mar/Apr 2002, pages 53 – 58.

236 Deal and Ham

 [3] S. Guruprasad, N. Dhananjaya, and B. Yegnanarayana. “AANN Models For Speaker

Recognition Based On Difference Cepstrals” Proceedings of the International Joint

Conference on Neural Networks, Volume: 1 , 20-24 July 2003

pages 692 - 697.

 [4] F. Mueen, A. Ahmed, A. Gaba. “Speaker recognition using artificial neural

networks” Students Conference, ISCON '02, Proceedings IEEE , 16-17 Aug. 2002,

Volume 1, pages:99 – 102.

[5] V. Moonasar, G.K. Venayagamoorthy. “A committee of neural networks for

automatic speaker recognition (ASR) systems” International Joint Conference on

Neural Networks, IJCNN '01, 15-19 July 2001, Volume 4, pages 2936 – 2940.

 [6] Kajarekar, S.S. "Four Weightings and a Fusion: A Cepstral-SVM System for

Speaker Recognition" Automatic Speech Recognition and Understanding, 2005 IEEE

Workshop on , vol., no.pp. 225- 230, Nov. 27, 2005.

[7] Porwal, G.; Patil, H.A.; Basu, T.K. "Effect of speech coding on text-independent

speaker identification" Intelligent Sensing and Information Processing, 2005.

Proceedings of 2005 International Conference on , vol., no.pp. 415- 420, 4-7 Jan.

2005

 [8] Zilca, R.D.; Kingsbury, B.; Navratil, J.; Ramaswamy, G.N. “Pseudo Pitch

Synchronous Analysis of Speech With Applications to Speaker Recognition” Audio,

Speech and Language Processing, IEEE Transactions on, Volume 14, Issue 2,

March 2006 Page(s):467 – 478.

 [9] Eriksson, T.; Kim, S.; Hong-Goo Kang; Chungyong Lee. “An information-theoretic

perspective on feature selection in speaker recognition” Signal Processing Letters,

IEEE, Volume 12, Issue 7, July 2005 Page(s):500 – 503.

 [10] Faundez-Zanuy, M.; Monte-Moreno, E. “State-of-the-art in speaker recognition”

Aerospace and Electronic Systems Magazine, IEEE, Volume 20, Issue 5, March

2005 Page(s):7 – 12.

[11] Kodukula, S.R.M.; Mahadeva Prasanna, S.R.; Yegnanarayana, B. “Neural network

models for extracting complementary speaker-specific information from residual

phase” Proceedings of 2005 International Conference on Intelligent Sensing and

Information Processing., 4-7 Jan. 2005 Page(s):421 – 425.

[12] Jing Deng; Thomas Fang Zheng; Zhan-Jiang Song; Jian Liu; Wen-Hu Wu. “Using

predictive differential power spectrum and subband mel-spectrum centroid for robust

speaker recognition in stationary noises” Machine Learning and Cybernetics, 2005.

Proceedings of 2005 International Conference on, Volume 8, 18-21 Aug. 2005

Page(s):4846 – 4851.

[13] Yong-Qiang Bao; Li Zhao; Cai-Rong Zou. “Study on speaker recognition under

noise environments based on PCANN” Machine Learning and Cybernetics, 2004.

Proceedings of 2004 International Conference on, Volume 6, 26-29 Aug. 2004

Page(s):3770 – 3774.

[14] Wanfeng Zhang; Yingchun Yang; Zhaohui Wu. “Exploiting PCA classifiers to

speaker recognition” Neural Networks, 2003. Proceedings of the International Joint

Conference on, Volume 1, 20-24 July 2003 Page(s):820 – 823.

Speaker Recognition Using Parallel Neural Network 237

[15] Reynolds, D.A. “An overview of automatic speaker recognition technology”

Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). IEEE

International Conference on, Volume 4, 13-17 May 2002 Page(s):IV-4072 - IV-

4075.

[16] Siew Chan Woo; Chee Peng Lim; Osman, R. “Development of a speaker

recognition system using wavelets and artificial neural networks” Intelligent

Multimedia, Video and Speech Processing, 2001. Proceedings of 2001 International

Symposium on, 2-4 May 2001 Page(s):413 – 416.

[17] George, S.; Dibazar, A.; Liaw, J.-S.; Berger, T.W. “Speaker recognition using

dynamic synapse based neural networks with wavelet preprocessing” Neural

Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on, Volume

2, 15-19 July 2001 Page(s):1122 – 1125.

[18] Inal, M.; Fatihoglu, Y.S. “Self organizing map and associative memory model

hybrid classifier for speaker recognition” Neural Network Applications in Electrical

Engineering, 2002. NEUREL '02. 2002 6th Seminar on, 26-28 Sept. 2002 Page(s):71

– 74.

[19] Hsieh, C.-T.; Lai, E.; Wang, Y.-C. “Robust speech features based on wavelet

transform with application to speaker identification” Vision, Image and Signal

Processing, IEE Proceedings, Volume 149, Issue 2, April 2002 Page(s):108 – 114.

[20] H. Avi-Itzhak and T. Diep. “Arbitrarily tight upper and lower bounds on the

Bayesian probability of error” IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-18(1):89-91, 1996.

[21] F.M. Ham and S. Park. “A Robust Neural Network Classifier for Infrasound Events

Using Multiple Array Data” Proceedings of the 2002 World Congress on

Computational Intelligence – International Joint Conference on Neural Networks,

Honolulu, Hawaii, May 12-17, 2002, pp. 2615-2619.

[22] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press,

Wellesley MA, 1996.

[23] F. Farahani, P.G. Georgiou, and S.S. Narayanan. “Speaker Identification Using

Supra-Segmental Pitch Pattern Dynamics” Proceedings of the International

Conference on Acoustics Speech and Signal Processing, 2004.

[24] F.M. Ham and I. Kostanic, Principles of Neurocomputing for Science and

Engineering, McGraw-Hill, New York, 2001.

[25] J.S. Garofolo, et.al. “TIMIT Acoustic-Phonetic Continuous Speech Corpus”

National Institute of Standards and Technology, NISTIR 4930, 1993.

