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Abstract 

This paper presents methods for improving the performance of Artificial Neural Network 

Speaker Recognition systems based on a novel negative reinforcement training algorithm.   

A brief background of current speaker recognition technology is presented including 

various options for feature extraction and feature mapping.  We then present custom 

MATLAB implementations for four separate closed-set speaker recognition systems, 

each using a different parallel-architecture neural network mapping algorithm.  The 

performance of the negative reinforcement training algorithm as applied to each of the 

four mapping algorithms is tested and illustrated a set of Receiver Operating Curves.  The 

negative reinforcement training algorithm is shown to provide a significant improvement 

in correct recognition rate over a similarly configured baseline system.  

1.  INTRODUCTION 

The problem of speaker recognition generally consists of mapping a sample of speech to 

a particular speaker based on a set of speech parameter measurements or “feature 

vectors”.  Possible applications of speaker recognition technology include speaker 

verification for access to a physical site or to a computer network,  telephone banking  

transaction authentication, and security screening for airline passengers, to name a few.  

This problem has been the subject of much recent research [1-19].  The problem is 

usually broken into two distinct phases: feature extraction and feature mapping.   

Feature extraction is concerned with producing a numeric representation of a speech 

sample that can be processed by a computer.  A very simple feature extraction method 

could be implemented by taking the Fast Fourier Transform (FFT) of the speech sample 

and using the FFT coefficients as the feature vector.  More sophisticated algorithms 

include Principal Component Analysis, Wavelet Analysis, and Cepstral Vector Analysis.  

The main goal of the feature extraction algorithm is to produce a representation that is 

dependent only on the speaker and independent of the content of the speech.  In this 
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respect, speaker recognition has the opposite problem from speech recognition, where 

one wants the feature vector to be dependent only on the content of the speech and 

independent of the speaker.  The recognizers developed and demonstrated as part of this 

paper use two options for feature extraction:  Cepstral Vector feature extraction and 

Wavelet feature extraction.  The wavelet feature vectors are produced using the Princeton 

WAVELAB_802 software.  The algorithm for extracting the cepstral vectors for a speech 

sample has been implemented in custom MATLAB code and will be presented in detail 

in Section 2. 

Once a feature vector is obtained, the vector must be mapped to a speaker.  If the 

speaker is known to be one of a set of N possible speakers, the problem is categorized as 

a “closed-set” recognition problem.  If the formulation of the problem allows the speaker 

to be outside the set of known speakers, we have an “open-set” recognition problem.  In 

either case, there are a number of options for algorithms to map the feature vector to a 

speaker.  The classical Bayesian approach is known to have the best performance from a 

probability of error standpoint if the marginal probability distributions of each feature 

vector component with respect to the members of the speaker set are known [20].  Other 

options include Principal Component Regression techniques and Nearest Neighbor 

methods.  In practice, methods based on parallel architecture Artificial Neural Networks 

(ANNs) have been shown to have superior performance [2].  The four recognizers 

developed and demonstrated here all use parallel ANN schemes in which a separate ANN 

is trained for each speaker in the speaker set.  The four separate feature mapping 

algorithms along with the improved negative reinforcement training approach are 

described in detail in Sections 3-8. 

2. FEATURE EXTRACTION 

Our approach involves implementing a baseline recognition system using the best current 

algorithms for speaker recognition and then demonstrating a significant improvement in 

performance over the baseline system using the negative reinforcement algorithm.  The 

baseline system uses a 15-element Cepstral Vector Feature Extraction algorithm and then 

implements an Artificial Neural Network to map the feature vectors to members of a 

closed speaker set.   

2.1 Cepstral Vector Feature Extraction  

As discussed in Section 1, the main goal of the feature extraction algorithm in a speaker 

recognition system is to produce a numeric representation of a speech sample that is 

characteristic of the speaker and independent of the content of the speech.  Cepstral 

Vector Feature Extraction has been shown to have superior performance in this  
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respect [3].  The following steps describe the process for extracting a feature vector for 

each speech sample [21].   

Step 1:  Normalize the discrete-time speech sample and remove the mean: 

For a discrete-time speech sample y = y(k),  k=1,N 

 

 y normalized = y / max(|y|) (1) 

 y n, m  =  y normalized, mean removed = y normalized – mean(y normalized)  (2) 

 

Step 2:  Apply a symmetric Hamming Window: 

 

 y n, m, h = y n, m · [W hamming | W
*
 hamming ] (3) 
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Step 3:  Calculate the Power Spectral Density Syy(k) of the signal yn,m,h 

 
kj

k yyyy ekRS  

 )()(  (5) 

where Ryy(k) is the autocorrelation of the signal yn,m,h (estimated as the periodogram of 

the signal) 

 

Step 4:  Apply Mel-frequency scaling to the PSD S(k): 

)]([log)( kSkS em   

  where 000003.0,1125    (6) 

 

Step 5:  Take the inverse discrete cosine transform: 
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Step 6:  Take the derivative of the sequence )(nxm ,  i.e., )(nxm
  

Step 7:  Concatenate )(nxm
 with )(nxm   to form the augmented sequence: 
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a

m
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 where i = 1, 2, …5  and j = 1, 2, …10 (8) 
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Step 8:  Take the absolute value of 
a

mx : 

 
a

m

a

absm xx ,  (9) 

Step 9:  Take the natural log of 
a

absmx , : 

 ][log ,log,,

a

absme

a

absm xx   (10) 

Step 10:  Remove the mean value: 

 )( log,,log,,

a

absm

a

absmdmeanremove xxx mean  (11) 

Step 11:  Scale the range of the feature vector between [-1, 1]: 

 )(/ max, removedmeanremovedmeannormalizedremovedmean xxx   (12) 

2.2 Wavelet Feature Extraction  

In addition to the Cepstral Vector Feature Extraction algorithm (which was implemented 

in custom MATLAB code for this paper and discussed in some detail in the previous 

section), the recognizer performance was also evaluated using wavelet feature vectors.  

This feature extraction method uses the wavelet transform, which represents the speech 

sample in terms of multiple timeshift and time-scalings of a selected finite-duration 

waveform or “wavelet.”  The theory of wavelet feature extraction will not be discussed in 

detail here.  The bibliography includes an excellent text on this topic [22]. 

The wavelet feature vectors were calculated using the Periodized Biorthogonal Wavelet 

Transform function from the Princeton WAVELAB_802 library.  This choice was based 

on published results [23] which demonstrated reliable speaker recognition using the 

biorthogonal discrete wavelet transform with a triangular shape decomposition scaling 

function.   Those results found that analysis levels 3 through 8 of the wavelet transform 

provided reliable speaker identification information, while the first two levels tended to 

be somewhat noisy.    
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3. LMS RECOGNIZER 

 

After feature extraction, the next phase of the speaker recognition process involves 

mapping each feature vector to a speaker.  The mapping technique used in our baseline 

system uses an artificial neural network to map a cepstral vector representation of a 

speech sample to the member of the speaker set most likely to have produced the speech 

sample.  In order to train the neural network and evaluate its performance, the feature 

extraction algorithm described above is used to produce two sets of feature vectors for 

each member of the speaker set.  One set of feature vectors is used to train the neural 

network and the second set is used as test data to evaluate the recognition performance of 

the mapping network.   

In practice, the test data might be collected years after the training data and might be 

recorded in a significantly different environment.  For the baseline (LMS) recognizer 

demonstration discussed in this section, the two data sets were collected using the same 

recording equipment, in the same environment, and with minimal background noise.  The 

more sophisticated recognizer implementations discussed in Sections 6-8 used more 

realistic recordings from a widely-used speech corpus to evaluate the impact of recording 

quality and background noise. 

There is a wide variety of neural network architectures and training algorithms that 

can be used to map an N-element feature vector to one member of an M-element speaker 

set.  For the baseline recognizer, we have chosen a relatively simple single-layer network 

using a Least Mean Square (LMS) training algorithm [24].  

A separate neural network is trained for each member of the speaker set.  The 

networks are arranged in a parallel structure so that each network is presented with the 

same 15-element cepstral vector at each training or test interval.  During the training 

phase, each network is trained to produce a large output when the input is from the 

speaker associated with that network and to produce a small output when the input in 

from any other speaker.  During the test phase, the input vector is mapped to a speaker by 

choosing the speaker associated with the network that has the largest response to the test 

vector. 

For the baseline recognizer, the training of each branch of the parallel network is 

accomplished separately. The training process begins by initializing each synaptic weight 

to a small random number.  The input to the network is then presented with feature 

vectors which alternate between vectors from the “desired” speaker and vectors from one 

of the other speakers.  The LMS training method is illustrated in Figure 3-1. 
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Figure 2-1  LMS Training Algorithm 

 

At each training interval, the weights are adjusted as follows: 

 

 )()()()()1( kkekkk xww   (13) 

 

where: )(kw is the synaptic weight vector at training interval k, 

 )(kx is the input feature vector at training interval k, 

 e(k) is the “error” at interval k defined as )()()()( kkkdke xw  

 d(k) = 1 when the input feature vector is from the desired speaker 

 d(k) = 0 when the input feature vector is not from the desired speaker 

and )(k  is the “Learning Rate Parameter”  defined as follows: 

  /9.0)0(   (14) 

where  is the largest eigenvalue of the covariance matrix formed by the input vectors, 

and 

 )/1/()()1(  kkk   (15) 

where  determines the rate of adaptation of the learning rate parameter and is set to 200 

for our demonstration. 

After the network training phase is complete (evidenced by the stabilization of the 

synaptic weights), a separate set of feature vectors is used to test the performance of the 

network.  During the test phase, an input from an “unknown” speaker is presented to the  
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input of the parallel network and the most likely speaker is chosen as the member of the 

speaker set associated with the network branch which produces the largest output.  The 

key performance measure for the system is the probability of correct speaker recognition.  

4.  DESCRIPTION OF THE NEGATIVE REINFORCEMENT  

TRAINING ALGORITHM 

The background and approach discussions above are all based on previously published 

work in the field of speaker recognition.  We now move on to the algorithm 

improvements that form the basis of the paper.   

In the baseline system, each of the neural network stages in the parallel recognizer is 

trained independently by applying the LMS algorithm while alternately presenting a 

feature vector from the speaker associated with that stage, then a feature vector from 

another speaker in the speaker set.  When the feature vector is from the speaker for which 

the network is being trained, the desired output is set to “1” and when it is from another 

speaker, the desired output is set to “0.”  After the weights stabilize for one stage, the 

same algorithm is used to train the next stage. 

The proposed training algorithm trains all the stages in parallel.  The same feature 

vector is simultaneously presented to all the parallel stages.  The LMS algorithm is 

applied as the input cycles through feature vectors from each speaker in the set.  The 

desired output for the stage corresponding to the source of the current input vector is set 

to “1” and the desired output for all the other stages are set to “0.”  Each time the 

algorithm cycles through the M speakers in the speaker set, each stage of the recognizer 

is presented with one “true” input and M-1 “false” inputs, one from each of the other 

speakers in the set. 

The results presented in Section 5 show that this training algorithm provides a 

significant improvement over the baseline system in terms of correct recognition rate.  

One drawback to this approach is that the entire network must be re-trained when a new 

member is added to the speaker set.  Adding a speaker to the baseline system would only 

require training one more stage for the new speaker.   

5.  LMS RECOGNIZER PERFORMANCE 

This section will present the results of a preliminary evaluation of the performance of the 

baseline (LMS) system and of the performance improvements afforded by the enhanced 

algorithm.  This evaluation was made using a 3-member speaker set.  Two separate 

recordings of the same recitation were made for each speaker: one for training data and 

one for test data. 
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Two versions of the LMS mapping program were implemented and evaluated.  Both 

programs attempt to map the cepstral feature vectors from the feature extraction program 

to the speaker most likely to be the source of the speech sample.   

The first version is the baseline recognizer.  This version does not implement the 

negative reinforcement training and is used as a performance baseline against which to 

evaluate the proposed algorithm enhancement. The recognizer reads two data files 

generated by two separate executions of the feature extraction program.  One data file 

contains training data and the second contains test data. The first phase of the program 

implements a LMS training algorithm to train each of the 3 parallel stages, in turn, using 

training data from the corresponding speakers.  The second phase uses the test data to 

evaluate the performance of the recognizer in terms of correct recognition rate.   

The second version adds the negative reinforcement training algorithm described in 

Section 4 to the baseline recognizer.  

The same training and test data sets were used to evaluate both recognizer versions.  

The measured performance of the recognizers is summarized in Tables 5-1 and 5-2.  

Sample convergence plots for the synaptic weights are presented in Figure 5-1.  The 

columns of the performance tables represent the recognizer’s estimate of the speaker 

while the rows represent the actual speaker.  For example, in Table 5-1, when the actual 

speaker was Speaker 1, the recognizer correctly identified Speaker 1 a total of 179 times.  

The recognizer incorrectly identified Speaker 1 as Speaker 2 at total of 17 times.  This 

format for reporting performance of a mapping network is sometimes referred to as a 

“confusion matrix.” 

As we can see from the Tables, the addition of the negative reinforcement algorithm 

to the baseline system improved the overall correct recognition rate from 85.5% to 

94.0%.   

 

Table 5-1.  Confusion Matrix for Baseline Recognizer 

Correct Recognition Rate = 

85.5% 
Speaker Prediction 

1 2 3 

Actual  

Speaker 

1 179 17 0 

2 18 152 26 

3 1 23 172 
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Table 5-2  Confusion Matrix for Recognizer with Negative Reinforcement 

Correct Recognition Rate = 

94.0% 
Speaker Prediction 

1 2 3 

Actual  

Speaker 

1 196 0 0 

2 13 164 19 

3 0 3 193 
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Figure 5-1  Synaptic Weight Convergence Plots 
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6.  MULTI-LAYER PERCEPTRON RECOGNIZER 

6.1 MLP Recognizer Description 

The results presented in the previous section demonstrated the performance enhancement 

provided by the proposed recognizer improvements using a very simple single-layer 

recognizer implementing the LMS training algorithm.  We now move on to more 

sophisticated ANN implementations beginning with the Multi-Layer Perceptron (MLP).  

The MLP architecture (Figure 6-1) uses several layers of neurons including an input 

layer, one or more “hidden” layers, and an output layer.    The figure is representative of 

the recognizer implemented for this paper, which supports a variable length input vector, 

two hidden layers with variable number of neurons, and a scalar output.  In general, the 

MLP recognizer may have any number of hidden layers and the output layer may be 

n-dimensional. 

As with the LMS recognizer discussed earlier, the goal of the MLP recognizer is to 

map feature vectors to their source speakers.  The parallel architecture is similar to that 

illustrated in Figure 1, consisting of a bank of recognizers each of which is trained to 

produce a large response for its associated speaker and a small response for all other 

speakers in the speaker set. 

During the training phase, each parallel recognizer branch is presented with a 

succession of training vectors and the weight matrices are adjusted according to a 

backpropagation training algorithm which we will now present without derivation.  The 

derivation of this and the other training algorithms used in the project are included in the 

referenced text by Ham and Kostanic [24]. 

Referring to Figure 6-1, let )(kxi
 represent the i

th 
element of the input vector at 

training interval k , and let )()( kw s

ij
 represent the synaptic weight corresponding to the 

synapse which connects the i
th 

input element to the j
th 

neuron for layer s.  Then, the 

synaptic weights for layer s form a weight matrix W
(s)

. 

Up to this point, the MLP layer is similar to the LMS network presented earlier, with 

successive input vectors multiplying a weight matrix which is adapted to achieve a 

desired output.  However, the MLP network introduces the complication of a non-linear 

“activation” function  f
(s)

(
.
) which seeks to better model the behavior of biological 

neurons.  Our MLP recognizer uses the binary sigmoid function, a typical activation 

function for this application.  This results in a small output from the artificial neuron until 

the activity level (input) to the neuron reaches a certain amplitude.  The neuron then 

“fires” producing a significant output in response to a small change in the input.   
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Figure 6-1  Multi-Layer Perceptron Block Diagram 

 

Let v
(s)

 = W
(s)

x
(s) 

be the vector of activation levels at layer s.  Then the output of the 

neuron will be  f
(s)

(vi), which, for the binary sigmoid activation function is: 

 
avbs

e
vf




1

1
)(  (16) 

Where a is a constant which determines the abruptness of the activation.   

The training algorithm also involves the first derivative of the activation function, 

g
(s)

(v), which, for the binary sigmoid activation function is: 

 )](1[)()( vfvfavg bsbsbs   (17) 

The training algorithm begins by setting all the synaptic weights to small random 

numbers.  The feature vectors calculated by the feature extraction algorithm are then 

presented to the network as inputs, cycling through vectors form each of the speakers in 

the speaker set.  The goal of the algorithm is to adjust the weights so that the final output 

of the network is large when the input corresponds to a particular speaker and small when 

the input is from any other speaker.  Accordingly, the algorithm is deigned to minimize 

the “error” in each layer - That is, to minimize the difference between the actual output of 

each layer and the desired output.   

The learning rule for the MLP network is [24]: 
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s
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for the final output layer and 
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s

j vgw
s





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for the hidden layers. 

6.2  TIMIT Speech Corpus 

The LMS recognizer performance discussed in the previous sections was accomplished 

using the prototype recognizer and used “.wav” formatted recordings for training and test 

data.  These recordings were adequate to demonstrate the concept of the proposed 

recognizer improvements.  However, the recordings were practically noise-free and 

represented a very small speaker set.  To train and test the MLP and other advanced 

recognizers, we need a more realistic set of speech data. 

The Texas Instruments / Massachusetts Institute of Technology (TIMIT) Acoustic-

Phonetic Continuous Speech Corpus, was commissioned by the National Institute of 

Standards and Technology (NIST) for just this purpose. 

The subset of the TIMIT corpus used for this evaluation consists of speech 

recordings of 12 speakers recorded in a realistic background noise typical of an office 

environment.  For a full description of the TIMIT speech corpus and information on 

ordering the CD-ROM, see the NIST report [25]. 

 

6.3  Explanation of Receiver Operating Curves 

The performance results from the prototype LMS recognizer presented in Section 5 were 

based on simply selecting the predicted speaker based on which parallel module had the 

largest output.  In practice, the decision threshold for each parallel module may be 

different.  The selection of these thresholds is based on the relative cost of having a false 

detection (false alarm) vs. the cost of a missed detection.  If the threshold is set very low, 

we never miss a detection but we have a high false alarm rate.  If the threshold is set too 

high, we don’t have any false alarms but we have a high rate of missed detections.  The 

Receiver Operating Curve (ROC) is a useful tool for presenting performance of a 

recognizer in these terms.  The ROC is simply a plot of Probability of  False Alarm vs.  
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Probability of Correct Detection as threshold is varied from 0 to infinity.  Obviously, the 

ideal recognizer is one which achieves 100% correct detection with 0% false alarms.  So, 

the figure of merit for our recognizers is the degree to which they approach this ideal 

performance. 

6.4  MLP  Recognizer Performance 

The MLP recognizer was implemented and tested using custom MATLAB code which 

supports a variable number of neurons in each of the two hidden layers.  The test results 

presented here are based on 15 neurons in the first hidden layer and 5 in the second 

hidden layer, each with a binary sigmoid activation function. 

The performance for the MLP recognizer (and the remaining recognizers) will be 

presented in terms of ROC curves representing recognizer performance against a selected 

set of speakers.  To facilitate comparison of performance, the same training and test data 

was used for the MLP recognizer and for the other two advanced recognizers to be 

presented in the following sections.  The training and test data consists of 80 speech 

samples (40 for training data and 40 for test data) from each of 12 speakers selected from 

the TIMIT speech corpus.  This provides a total of 480 test samples for each ROC plot.  

Performance will be presented and compared for each of the three recognizer algorithms 

(MLP, RBF, and PLSR), and for both of the feature extraction algorithms (cepstral and 

wavelet feature vectors).   The ROC plots for the MLP recognizer are presented in 

Figures 6-2 and 6-3. 
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Figure 6-2.  ROC Plot, MLP Binary Sigmoid, Speaker 2, Cepstral Features 
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Figure 6-3.  ROC Plot, MLP Binary Sigmoid, Speaker 6, Cepstral Features 

 

 

7.  RADIAL BASIS FUNCTION RECOGNIZER 

7.1  RBF Recognizer Description 

The next mapping network we will consider is the Radial Basis Function (RBF) 

recognizer.  The RBF recognizer block diagram is shown in Figure 7-1.  The RBF 

network consists of an input layer, a single hidden layer, and an output layer.  As always, 

the goal is to iteratively adjust the network parameters during the training phase so that 

the network will produce a large output when the input vector is from its associated 

speaker and a small output otherwise.  

 The network design involves selecting an RBF activation function, k , a set of  

initial “center vectors”, ck , and corresponding “spread parameters”, σk.  While a number 

of options are available for the functional form of )(k  [24], the form chosen for our 

implementation is the Gaussian function: 

 )exp(),(
2

2

k

k

k

cx
cx





  (21) 
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Figure 7-1   RBF Recognizer Block Diagram 

The center vectors, one for each neuron in the hidden layer, are intended to provide a 

representative sampling of the input vector space.  The most common approach to 

selecting the initial center vectors, and the approach used in our RBF implementation, is 

to select the centers at random from the set of training vectors.    Once the center vectors 

have been chosen, the initial values for the spread parameters for each center are 

calculated according to: 

 
K

dmax  (22) 

where d max is the maximum Euclidian distance between the selected center and all the 

other centers and K is the number of centers. 

The training algorithm begins by initializing the weights in the output layer to small 

random values, then iteratively calculates the network parameters according to the 

Stochastic Gradient method: 

Present an input (feature vector) and calculate the network output: 

 



N

k

kkk cnxwny
1

},),({)( 


 (23) 

Update network parameters according to: 

 )()()()1( nnenwnw w   (24) 
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where  

 T

N N
cnxcnxcnxn }],),({},,),({},,),({[)(

21 21    (27) 

 )()(ˆ)( nynyne d  (28) 

7.2  RBF  Recognizer Performance 

The RBF recognizer was implemented and tested using custom MATLAB code which 

supports a variable number of neurons in the hidden layer.  The test results presented here 

are based on 15 neurons in the hidden layer, each with a Gaussian Radial Basis function. 

The RBF recognizer was trained an tested using speech data from 12 speakers 

selected from the TIMIT speech corpus (the same data that was used for the MLP 

recognizer).  The ROC plots for the RBF recognizer are presented in Figures 7-2 and 7-3. 

 

 

 

Figure 7-2.  ROC Plot:  RBF Gaussian, Speaker 2, Cepstral Features 
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Figure 7-3.  ROC Plot:  RBF Gaussian, Speaker 6, Cepstral Features 

 

8.  PLSR RECOGNIZER 

8.1  PLSR Recognizer Description 

The Partial Least Squares Regression (PLSR) algorithm is one of a family of analysis 

methods known as “factor analysis” methods.  The goal of the PLSR algorithm is to find 

a “calibration model” which predicts certain physical quantities related to a set of 

empirical measurements.  In our case, the empirical measurements are the feature vectors 

extracted from training samples of speech data and the quantity to be predicted is the 

likelihood that the feature vector corresponds to a particular speaker.   

We begin by defining a data matrix A containing all the empirical measurements 

from the training data.  Each row of A contains a feature vector from one of the speakers, 

alternating through the speakers in the speaker set.  So if the total number of 

measurements (the number of speakers times the number of training samples per speaker) 

is m and the number of elements in the feature vector is n, we can write nmRA .  The 

same A matrix is used for all the parallel modules. 

Next, we define a “target vector” 1 mc R  so that each element of c corresponds to a 

row of A..  Each parallel module has a different target vector populated so that cm = 1, if 

the corresponding measurement in A is from the speaker associated with the module and 

cm = 0 otherwise.  Our goal is to find a calibration model 
1ˆ 

  n

PLSRfb R , which produces 

a reliable estimate of c when employed during the test phase: 

 PLSRftesttest bAc  ˆˆ  (29) 
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8.2  PLSR1 Calibration Algorithm 

An iterative approach, referred to as the PLSR1 calibration algorithm [24], is used to 

produce the calibration model for each of the parallel modules.  The following steps 

comprise the PSLR1 algorithm: 

Step 1:  Mean-Center and Variance-Scale the training data.  For each column of A, 

calculate the mean and standard deviation of the elements in the column.  Subtract the 

mean value of the column from each element in the column.  Then, divide each element 

by the standard deviation of the column.  Set parameter h to 1 (where h represents the 

number of PLS factors). 

Step 2:  Form the weight-loading vector: 

 
cc

c
T

T

h

A
w ˆ  (30) 

then, normalize the weight-loading vecor: 

 

2
ŵ

ŵ
ŵ

h

h
h   (31) 

Step 3:  Generate the “score” vector: 

 hh wAt ˆˆ   (32) 

Step 4:  Calculate the Regression Coefficient: 
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Step 5:  Calculate the Loading Vector: 
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  (34) 

Step 6:  Calculate the residuals in A and c. 

 T
hbt-AE hA

ˆˆ  (35) 

 hc t-ce ˆˆ
hv  (36) 

Step 7:  Increment h, repeat from Step 2, substituting EA for A and ec for c.  Continue 

until h reaches the optimal value – producing the minimum Standard Error of Prediction.  

This value is determined empirically be calculating SEP for each pass through the 

algorithm. 



Speaker Recognition Using Parallel Neural Network                               233 

8.3  PLSR  Recognizer Performance 

The RBF recognizer was implemented and tested using custom MATLAB code which is 

based on a PLSR1 calibration algorithm using 10 PLS factors.  

The PLSR recognizer was trained and tested using data from 12 speakers selected 

from the TIMIT speech corpus.  The ROC plots for the PLSR recognizer are presented in 

Figures 8-1 and  8-2. 

 

Figure 8-1.  ROC Plot:  PLSR, Speaker 2, Cepstral Features 

 
Figure 8-2.  ROC Plot:  PLSR, Speaker 6, Cepstral Features 

9.  CONCLUSIONS 

This paper presented a novel negative reinforcement training algorithm for neural 

network speaker recognition systems and demonstrated that the performance of this 

algorithm is significantly improved over a similarly configured recognizer that does not  
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employ negative reinforcement training.  The performance of the algorithm was 

presented in terms of Receiver Operating Curves for two separate feature extraction 

schemes (cepstral vector and wavelet transform) and four separate classifier algorithms 

(LMS, MLP, RBF, and PLSR).   

The prototype (LMS) implementation of the proposed recognizer enhancement 

significantly improved the performance over the baseline system in terms of probability 

of correct recognition.  The addition of the negative reinforcement algorithm to the 

baseline LMS system improved the overall correct recognition rate from 85.5% to 94.0%.   

All three of the advanced mapping algorithms – MLP, RBF, and PLSR – consistently 

provided over 90% correct recognition rate with less than 10% false alarm rate when 

operating on cepstral feature vectors.  Table 9-1 summarizes the performance of the three 

advanced mapping algorithms using each of the feature extraction methods in terms of 

Probability of Correct Detection (Pcd) vs. Probability of False Alarm (Pfa).  It is 

important to note that these numbers are based on the probability of mapping a single 

cepstral feature vector to the correct member of the speaker set using a standard NIST 

speaker corpus and realistic recording conditions.  Since a brief speech recording could 

easily produce thousands of samples of the feature vector, any of the three advanced 

recognizer algorithms could achieve near perfect recognition performance with this 

speaker set and recording conditions. 

All three of the mapping algorithms demonstrated significantly better performance 

when operating on cepstral feature vectors vs. wavelet feature vectors.  This result is 

consistent with results from other recent research [1, 3, 6, 16, 17], and underscores the 

power of the cepstral vector algorithm as a speaker recognition tool. 

Table 9-1  Recognizer Performance Summary 

 

Feature Vector Option 

Cepstral Wavelet 

Pcd Pfa Pcd Pfa 

Multi-Layer Perceptron  94% 8% 85% 10% 

Radial Basis Function  93% 6% 74% 18% 

Partial Least Squares Regression 95% 5% 82% 16% 

 

It is somewhat difficult to compare performance with existing speaker recognition 

systems due to the variability in training and test conditions used in the published work.   
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Variables affecting the performance include number of speakers in the speaker set, length 

of recording samples used, recording environment, etc.  We have attempted to quantify 

these variables in our results by using a standard (TIMIT) speech corpus and presenting 

the results in terms of ROC curves based on single feature vector tests.  The best 

performance benchmark we found is an overview paper published by MIT-LL [24] which 

shows typical performance for recognizers operating on “conversational speech” with 2 

minutes of training data and 30 seconds of test data to be in the range of 7% - 15% 

probability of missed detection with an equal false alarm rate.  Admittedly, this 

information is slightly dated (publication date is 2002), but we have found no 

documentation of major breakthroughs in performance since that date.  Since all three of 

our recognizers (MLP, RBF, and PLSR) matched the upper end of this range while 

operating on single cepstral feature vectors (representing a fraction of a second of test 

data), we believe there is good evidence of substantial performance improvement using 

the proposed negative reinforcement algorithm.  

There are several areas related to this topic that could benefit from additional 

research.  First, it would be interesting to determine the degree to which performance 

could be further improved through the use of more complex recognizer architectures 

(e.g., increasing the number of hidden layers and/or the number of neurons in each layer 

for the MLP recognizer).  Secondly, our RBF recognizer was implemented using the 

Gaussian basis function, but there are several others that could be implemented for 

comparison (e.g., cubic approximation function, thin-plate spline function, or 

multiquadratic function).  Finally, we have stated that our results were obtained using test 

samples consisting of a single feature vector.  Since a brief sample of speech could easily 

produce hundreds of feature vectors, further research should be conducted to determine 

the performance improvement achievable by implementing a decision scheme based on 

multiple feature vectors.   For example, a majority vote decision scheme might be 

implemented to minimize spurious false alarms. 
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