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Abstract: In this article, we derive a new fourth order finite difference approximation for 
the solution of two dimensional non-linear biharmonic partial differential equations on a 
9-point compact stencil using  coupled approach. The solutions of unknown variable and 
its Laplacian are obtained at each internal grid points. This discretization allows us to use 
the Dirichlet boundary conditions only and there is no need to discretize the derivative 
boundary conditions. We require only system of two equations to obtain the solution and 
its Laplacian. The main advantage of this work is that the proposed method is directly 
applicable to solve singular problems without any modifications. We compare the 
advantages and implementation of the proposed method with the standard central 
difference approximations in the context of basic iterative methods. Numerical examples 
are given to verify the fourth-order convergence rate of the method.  
 
Keywords - finite differences; arithmetic average discretization; two dimensional non-

linear biharmonic equations; Laplacian; high accuracy; compact 
approximation;  maximum absolute errors. 

 

 

1. INTRODUCTION 
 
 We are concerned with the numerical solution of two dimensional non-linear biharmonic 
partial differential equation of the form 
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∂
 represents the two dimensional Laplacian of the function u(x,y). We assume 

that the solution u(x,y) is smooth enough to maintain the order and accuracy of the 
scheme as high as possible under consideration. 
 

      Dirichlet boundary conditions of second kind are given by 
 

                   10 20( ,0) ( ), ( ,0) ( )
yy

u x a x u x a x= = , 0 1x≤ ≤                                               (2a) 

                   11 21( ,1) ( ), ( ,1) ( )
yy

u x a x u x a x= = , 0 1x≤ ≤                                                 (2b) 

                   01 02(0, ) ( ), (0, ) ( )
xx

u y b y u y b y= = , 0 1y≤ ≤                                               (2c) 

                   11 12(1, ) ( ), (1, ) ( )
xx

u y b y u y b y= = , 0 1y≤ ≤                                                 (2d)  
 

 
       The biharmonic equation is a fourth order elliptic partial differential equation which 
plays a very important role in areas of continuum mechanics, including linear elasticity 
theory and the solution of stokes flow. Different techniques for the numerical solution of 
the 2D  biharmonic equations  have been considered in the literature. (Smith, 1970; 
Ehrlich, 1971 & 1974) have solved 2D biharmonic equations using coupled second order 
accurate finite difference equations. (Bauer and Riess, 1972) have used block iterative 
method to solve the equation. Later, (Kwon et al, 1982; Stephenson, 1984;  Mohanty and 
Pandey, 1996; Evans and Mohanty, 1998) have developed certain second- and fourth-
order finite difference approximations for the second biharmonic problems using 9-point 
compact cell. Fourth order compact finite difference schemes have become quite popular 
as against the other lower order accurate schemes which require high mesh refinement 
and hence are computationally inefficient. On the other hand, the higher order accuracy 
of the fourth order compact methods combined with the compactness of the difference 
stencil yields highly accurate numerical solutions on relatively coarser grids with greater 
computational efficiency. A conventional approach for solving the 2D biharmonic 
equation is to discretize the differential equation (1) on a uniform grid using 25-point 

approximations with truncation error of order  2h . This approximation connect the values 
of central point in terms of 24 neighbouring values of  u  in 5 5×  grid. We note that the 
central value of  u  is connected to grid points two grids away in each direction from the 
central point and the difference approximations needs to be modified at grid points near 
the boundaries. There are serious computational difficulties with solution of the linear 
and non-linear systems obtained through 25-point discretization of the 2D biharmonic 
equation. Approximations using compact cells avoid these difficulties. The compact 
approach involves discretizing the biharmonic equations using not just the grid values of 

the unknown solution  u  but also the values of the derivatives 
xx

u  and 
yy

u  at selected 

grid points ( Mohanty and Pandey, 1996). Recently, (Mohanty, 2010) has proposed a new 
algorithm in coupled manner for the solution of two dimensional non-linear biharmonic 
problems of second kind, in which, a special technique is required to solve singular 
problems. Further,  recently  (Khattar et al, 2010)   have  also  developed  a  new  method  
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based on arithmetic average discretization to solve three dimensional non-linear 
biharmonic problems of second kind using coupled approach, in which, no special 
technique is required to solve singular problems. 
 

 In this article, we split the differential equation into two coupled elliptic 
differential equations and introduce new ideas to handle boundary conditions without 
discretizing them in the coupled system of elliptic equations. We use only 9-point 
compact cell (see fig.1) for fourth order approximation of differential equation (1). The 
given Dirichlet boundary conditions are exactly satisfied and no approximations for 
derivatives need to be carried out at the boundaries. In next section, we discuss the finite 
difference approximation based on arithmetic average discretization for the differential 
equations (1). In section 3, we give the complete derivation of the method. In section 4, 
we discuss block iterative methods. In section 5, we have given the stability analysis, and 
illustrated the method and its fourth order convergence by solving four problems. 
Concluding remarks are given in section 6.   
    
 
  
 
 

 
 
 
 
 
 
 
 
 
 
  Fig.1: 9-point 2D single computational cell 

 
 

2.  DESCRIPTION OF THE DISCRETIZATION 

 

 Consider a two-dimensional uniform grid centered at the point (xl, ym ) , where  h > 0 is 
the constant mesh length in x-, and y-  directions  and xl= lh,  ym= mh;  l, m = 0,1,2,…,N 

with  (N+1) h=1. Let ,l m
U and ,l m

u be the exact and approximate solution values of u(x,y) 

at the grid point (xl, ym ) , respectively. 
  
 

      Note that, the Dirichlet boundary conditions are given by (2a)-(2d). Since the grid 
lines are parallel to coordinate axes and the values of u are exactly known on the 
boundary, this implies, the successive tangential partial derivatives of u are known 

exactly on the boundary. For example, on the line y=0, the values of u(x, 0) and ( ,0)
yy

u x  

are known, i.e., the values of  ( ,0)
x

u x , ( ,0)
xx

u x ,… etc are known on the line y=0. This 

implies the values of  u(x, 0) and 2 ( ,0)u x∇ ≡  ( ,0) ( ,0)
xx yy

u x u x+  are known on the line 

y=0. Similarly the values of  u  and 2u∇ are known on all sides  of the square region  Ω . 

(xl, y m-1) 

(xl-1, y m) 
 

(xl+1, y m-1) (xl-1, y m-1) 

(xl-1, y m+1) 

(xl+1, y m) 
(xl, y m) 

h 

(xl, y m+1) 
 

(xl+1, y m+1) 

h 
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      Let us denote 2u v∇ = . Then we can re-write the boundary value problem (1) in a 
coupled manner as 
 

           
2 2

2

2 2
( , ) ( , ), ( , )

u u
u x y v x y x y

x y

∂ ∂
∇ ≡ + = ∈ ∂Ω

∂ ∂
,                                                    (3a) 

           
2 2

2

2 2
( , ) ( , , , , , , , ), ( , )x x y y

v v
v x y f x y u v u v u v x y

x y
ε ε

 ∂ ∂
∇ ≡ + = ∈ ∂Ω 

∂ ∂ 
.               (3b) 

 
and the Dirichlet boundary conditions  (2a)-(2d) may be replaced by 
 

                   2

10 30( ,0) ( ), ( ,0) ( ,0) ( )u x a x v x u x a x= = ∇ = , 0 1x≤ ≤                                (4a)                                            

                   2

11 31( ,1) ( ), ( ,1) ( ,1) ( )u x a x v x u x a x= = ∇ = ,    0 1x≤ ≤                              (4b)            

                  2

01 03(0, ) ( ), (0, ) (0, ) ( )u y b y v y u y b y= = ∇ = , 0 1y≤ ≤                                (4c)              

                  2

11 13(1, ) ( ), (1, ) (1, ) ( )u y b y v y u y b y= = ∇ = , 0 1y≤ ≤                                  (4d) 
 
              
          Let at the grid points (xl, ym), the exact and approximate solution values of v(x,y) be 

denoted as ,l m
V  and ,l m

v , respectively.  

 

     For fourth order approximation of the non-linear differential equation (1) on the 9-
point compact cell, we need the following approximations: 
 

( )
mlml

ml
UUU ,,1

,
2

1
2

1
+= +

+
                 (5a) 

( )1 1, ,
,

2

1

2
l m l m

l m
V V V+

+
= +                   (5b) 

( )
mlml

ml
UUU ,,1

,
2

1
2

1
+= −

−
                   (6a) 

( )1 1, ,
,

2

1

2
l m l m

l m
V V V−

−
= +                    (6b) 

( )
mlml

ml
UUU ,1,

2

1
, 2

1
+= +

+
             (7a) 

( )1 , 1 ,
,

2

1

2
l m l m

l m
V V V+

+
= +                    (7b) 

( )
mlml

ml
UUU ,1,

2

1
, 2

1
+= −

−
                   (8a) 

( )1 , 1 ,
,

2

1

2
l m l m

l m
V V V−

−
= +                    (8b) 

( )
mlmlmxl

UU
h

U ,1,1,
2

1
−+ −=             (9a) 

( ), 1, 1,

1

2
xl m l m l m

V V V
h

+ −= −                    (9b) 
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( )
mlml

mxl
UU

h
U ,,1

,
2

1

1
−= +

+
                      (10a) 

( )1 1, ,
,

2

1
l m l m

xl m
V V V

h
+

+
= −                  (10b) 

( )
mlml

mxl
UU

h
U ,1,

,
2

1

1
−

−
−=                       (11a) 

( )1 , 1,
,

2

1
l m l m

xl m
V V V

h
−

−
= −                 (11b) 

( )
mlmlmlml

mxl
UUUU

h
U ,1,11,11,1

2

1
, 4

1
−++−++

+
−+−=              (12a) 

( )1 1, 1 1, 1 1, 1,
,

2

1

4
l m l m l m l m

xl m
V V V V V

h
+ + − + + −

+
= − + −              (12b) 

( )
mlmlmlml

mxl
UUUU

h
U ,1,11,11,1

2

1
, 4

1
−+−−−+

−
−+−=         (13a) 

( )1 1, 1 1, 1 1, 1,
,

2

1

4
l m l m l m l m

xl m
V V V V V

h
+ − − − + −

−
= − + −              (13b) 

( )1,1,,
2

1
−+ −=

mlmlmyl
UU

h
U                (14a) 

( ), , 1 , 1

1

2
yl m l m l m

V V V
h

+ −= −                 (14b) 

( )1,1,1,11,1
,

2

1
4

1
−+−+++

+
−+−=

mlmlmlml
myl

UUUU
h

U              (15a) 

( )1 1, 1 1, 1 , 1 , 1
,

2

1

4
l m l m l m l m

yl m
V V V V V

h
+ + + − + −

+
= − + −              (15b) 

( )1,1,1,11,1
,

2

1
4

1
−+−−+−

−
−+−=

mlmlmlml
myl

UUUU
h

U         (16a) 

( )1 1, 1 1, 1 , 1 , 1
,

2

1

4
l m l m l m l m

yl m
V V V V V

h
− + − − + −

−
= − + −               (l6b) 

( )
mlml

myl
UU

h
U ,1,

2

1
,

1
−= +

+
                      (17a) 

( )1 , 1 ,
,

2

1
l m l m

yl m
V V V

h
+

+
= −                (17b) 

( )1,,

2

1
,

1
−

−
−=

mlml
myl

UU
h

U                       (18a) 

( )1 , , 1
,

2

1
l m l m

yl m
V V V

h
−

−
= −                 (18b) 

 

    Then we evaluate 
  

         , , , , ,, ,( , , , , , , , )l m x x y yl m l m l m l ml m l m l mF f x y U V U V U V=                                     (19) 
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         1 1 1 1 1
, , , , ,1 1 12 2 2 2 2, ,

2 2 2

( , , , , , , , )l m xl m xl m yl m yl mm
l l m l m

F f x y U V U V U V± ± ± ± ±
± ± ±

=                        (20) 

         1 1 1 1 1
, , , , ,1 1 12 2 2 2 2, ,

2 2 2

( , , , , , , , )l m xl m xl m yl m yl ml
m l m l m

F f x y U V U V U V± ± ± ± ±
± ± ±

=                       (21) 

 

    Further, we define 
 

            
2

, , ,
ˆ

4
l m l m l m

h
U U V= +                                                 (22a)  

2

, , ,
ˆ

4
l m l m l m

h
V V F

ε
= +                                                 (22b) 

, , 1, 1,
ˆ ( )

8
xl m xl m l m l m

h
U U V V+ −= + −          (23a) 

, , 1 1
, ,

2 2

ˆ ( )
4

xl m xl m
l m l m

h
V V F F

ε + −
= + −          (23b) 

, , , 1 , 1
ˆ ( )

8
yl m yl m l m l m

h
U U V V+ −= + −          (24a)

 , , 1 1
, ,

2 2

ˆ ( )
4

yl m yl m
l m l m

h
V V F F

ε + −
= + −          (24b) 

             
  Finally, let    
 

           , , , , , , ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , )
l m l m l m l m xl m xl m yl m yl m

F f x y U V U V U V=                                                    (25) 

 
      Then at each internal grid point (xl, ym) of the solution region Ω , the given system of 
differential equations (3) are discretized by 
         
      

[ ]L U ≡ 1, 1 , 1 1, 1 1, , 1, 1, 1 , 1 1, 14 4 20 4 4
l m l m l m l m l m l m l m l m l m

U U U U U U U U U− − − + − − + − + + + ++ + + − + + + +  

                   
2

6

1, 1, , 1 , 1 ,[ 8 ] ( )
2

l m l m l m l m l m

h
V V V V V O h+ − + −= + + + + + ,    l,m=1(1)N                 (26a) 

      

[ ]L V ≡ 1, 1 , 1 1, 1 1, , 1, 1, 1 , 1 1, 1[ 4 4 20 4 4 ]
l m l m l m l m l m l m l m l m l m

V V V V V V V V Vε − − − + − − + − + + + ++ + + − + + + +  

                   2 1 1 1
, , , , ,,2 2 2

ˆ2 [ ]l m l m l m l m v l ml mh F F F F F T+ − + −= + + + − + ,    l,m=1(1)N.             (26b) 

 

where 6
, ( )l mT O h= .  

 
 

3. DERIVATION PROCEDURE 

 

 For the derivation of the method, we simply follow the ideas given by (Mohanty and 

Singh, 2006). At the grid point ( , )
l m

x y , let us denote 
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(1) (2) (1)

, , ,

, , ,

(2) (1) (2)

, , ,

, , ,

, , , , ,

, ,

i j i j

ij ij l m l m l mi j i j

l m l m xl ml m l m

l m l m l m

xl m yl m yl m

U V f f f
U V

U V Ux y x y

f f f

V U V

α α β

β γ γ

+ +∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂∂ ∂ ∂ ∂

∂ ∂ ∂
= = =

∂ ∂ ∂

      (27)             

 

    Further, at the grid point ( , )
l m

x y , we define 

 

                   , , , , , , ,( , , , , , , , )
l m l m l m l m xl m xl m yl m yl m

F f x y U V U V U V=                                            (28) 

 
   Then by the help of the notation (27), simplifying (5a)- (18b),we obtain 
 

                      
2

31
, 1 20

2 ,
2

( )
8

l m
l m

h
U U O h±

±
= + +U                                                              (29a) 

                      
2

31
, 1 20

2 ,
2

( )
8

l m
l m

h
V V O h±

±
= + +V                                                               (29b) 

                      
2

31
, 1 022 ,

2

( )
8

l m
l m

h
U U O h±

±
= + +U                                                               (30a) 

2
31

, 1 022 ,
2

( )
8

l m
l m

h
V V O h±

+
= + +V         (30b) 

2
4

, , 30 ( )
6

xl m xl m

h
U U O h= + +U          (31a) 

2
4

, , 30 ( )
6

xl m xl m

h
V V O h= + +V          (31b) 

2
41

, 1 302 ,
2

( )
24

xl m
xl m

h
U U O h±

±
= + +U         (32a) 

2
41

, 1 302 ,
2

( )
24

xl m
xl m

h
V V O h±

±
= + +V         (32b) 

  ( )
2

31
, 1 30 122 ,

2

3 ( )
24

xl m
xl m

h
U U O h±

±
= + + +4U U        (33a) 

( )
2

31
, 1 30 122 ,

2

3 ( )
24

xl m
xl m

h
V V O h±

±
= + + +4V V        (33b) 

2
4

, , 03 ( )
6

yl m yl m

h
U U O h= + +U          (34a) 

2
4

, , 03 ( )
6

yl m yl m

h
V V O h= + +V          (34b) 

( )
2

31
, 1 21 032 ,

2

4 ( )
24

yl m
yl m

h
U U O h±

±
= + + +3U U          (35a) 
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( )
2

31
, 1 21 032 ,

2

4 ( )
24

yl m
yl m

h
V V O h±

±
= + + +3V V        (35b) 

2
31

, 1 032 ,
2

( )
24

yl m
yl m

h
U U O h±

±
= + +U         (36a) 

2
31

, 1 032 ,
2

( )
24

yl m
yl m

h
V V O h±

±
= + +V         (36b) 

 

At the grid point ( , )
l m

x y , we may write the difference equation (3b) as 

 
2 2

, ,

, , , , , , ,2 2
( , , , , , , , )

l m l m

l m l m xl m xl m yl m yl m l m

V V
f x y U V U V U V F

x y
ε
 ∂ ∂

+ = ≡  ∂ ∂ 
      (37) 

 
   By the help of Taylor expansion, we first obtain 

 

2 2 2 2

,

1

6
x y x y l mVε δ δ δ δ

 
+ +  

= ( )
2

6

1 1 1 1 ,
, , , ,

2 2 2 2
3

l m
l m l m l m l m

h
F F F F F O h

+ − + −

 
+ + + − + 

 
           (38) 

 
   With the help of the approximation (29a)-(36b), from (19)-(21), we obtain 
 

  ,l mF ( )2

,l mF O h= +            (39a) 

1
,

2
l mF ± ( )

2
3

1 1
,

2
24l m

h
F T O h

±
= + ±           (39b) 

1
,

2
l mF ± ( )

2
3

1 2
,

2
24l m

h
F T O h

±
= + ±           (39c) 

where  

( ) ( )(1) (2) (1) (2) (1) (2)

1 20 , 20 , 30 , 30 , 21 03 , 21 03 ,3 3 3 4 3 4
l m l m l m l m l m l m

T U V U V U U V Vα α β β γ γ= + + + + + + +  

 
   ( ) ( )(1) (2) (1) (2) (1) (2)

2 02 , 02 , 12 30 , 12 30 , 03 , 03 ,3 3 3 4 3 4
l m l m l m l m l m l m

T U V U U V V U Vα α β β γ γ= + + + + + + +  

Let 
2

, , ,
ˆ

l m l m l m
U U ah V= +            (40a) 

2

, , ,
ˆ '
l m l m l m

V V a h F= +            (40b) 

( ),, 1, 1,
ˆ

xl mxl m l m l m
U U bh V V+ −= + −          (41a) 

( )1 1
, ,,, 2 2

ˆ ' l m l mxl mxl mV V b h F F+ −= + −          (41b) 

( ),, , 1 , 1
ˆ

yl myl m l m l m
U U ch V V+ −= + −          (42a) 

( )1 1
, ,,, 2 2

ˆ ' l m l myl myl mV V c h F F+ −= + −          (42b) 

 
where , ', , ', , 'a a b b c c  are parameters to be determined. 

 
With the help of the approximations (39a)-(39c) and simplifying (40a)-(42b), we get 
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,
ˆ

l m
U =  ( )

2
4

, 3
6

l m

h
U T O h+ +           (43a) 

( )
2

4

, , 3
ˆ '

6
l m l m

h
V V T O h= + +           (43b) 

( )
2

4

, , 4
ˆ

6
xl m xl m

h
U U T O h= + +           (44a) 

( )
2

4

, , 4
ˆ '

6
xl m xl m

h
V V T O h= + +           (44b) 

( )
2

4

, , 5
ˆ

6
yl m yl m

h
U U T O h= + +          (45a) 

( )
2

4

, , 5
ˆ '

6
yl m yl m

h
V V T O h= + +           (45b) 

where    

( )3 20 026T a U U= +  

( )3 20 02' 6 'T a V Vε= +              

 ( ) ( )4 30 30 12 30 1212 1 12 12T U b U U b U bU= + + = + +  

 ( ) ( )4 30 30 12 30 12' 6 ' 1 6 6 'T V b V V b V b Vε ε ε′= + + = + +  

 ( ) ( )5 03 03 21 03 216 1 12 12T U c U U c U cU= + + = + +  

 ( ) ( )5 03 03 21 03 21' 6 ' 1 6 ' 6 'T V c V V c V c Vε ε ε= + + = + +  

Now, 
2

4

, , 6
ˆ ( )

6
l m l m

h
F F T O h= + +            (46) 

where 
 

(1) (2) (1) (2) (1) (2)
6 3 , 3 , 4 , 4 , 5 , 5 ,l m l m l m l m l m l mT T T T T T Tα α β β γ γ′ ′ ′= + + + + +  

 
Substituting the approximations (39a)-(39c) and (46) into (25b) and by the help of (38), 
we obtain the local truncation error 
 

[ ]
4

6

, 1 2 62 ( )
6

l m

h
T T T T O h= − + − +            (47) 

 The proposed difference method to be of fourth order, the coefficient of 4h in (47) 
must be zero and we obtain 
 

  1 2 62 0T T T+ − =             (48) 

 

   Substituting the values of 1T , 2T and 6T in (47), we obtain the values of parameters 

 

                               
1 1 1 1 1 1

, , , , ,
4 4 8 4 8 4

a a b b c c
ε ε ε

′ ′ ′= = = = = = , 

 

and the local truncation error (47) reduces to  6
, ( )l mT O h= . 
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4.  BLOCK ITERATIVE METHODS 
 

 By combining the difference equations at each internal grid points, we obtain a large 
sparse system of matrix to solve. At each interior mesh point, we have two unknowns u  

and  2u v∇ ≡ , that is, the number of bands with non-zero entries is increased, and so is 
the size of the final matrix for the same mesh size. However, by this new method, the 
value of the Laplacian, which is often of interest, is also computed. 
 

      Whenever ( , , , , , , , )
x x y y

f x y u v u v u v  is linear in , , , ,
x x y

u v u v u and
y

v , the difference 

equations (26a) and (26b) form a linear block system. To solve such a system or indeed 
to demonstrate the existence of a solution, one can use block successive over relaxation 
(BSOR) iterative method (Hageman and Young, 2004; Kelly, 1995; Meurant, 1999; 
Parter, 1981; Saad, 1996; Varga, 2000). 
 
      To define BSOR method, we first write (26a) and (26b) in the form 
 

                                           1 1+ =A u B v 0                                                                      (49a) 

                                          2 2+ =A u B v d                                                                      (49b) 

 
where A1L = [1, 4, 1],  A1D = [4, -20, 4],  A1U =[1, 4, 1] represent lower, main and upper 
diagonal tri-diagonal matrices of the tri-block diagonal matrix  A1 = [A1L, A1D , A1U ]  and     
B1L = [0, 1, 0],  B1D = [1, 8, 1],  B1U =[0, 1, 0] are tri-diagonal matrices of tri-block 

diagonal matrix B1 =
2

2

h−
 [B1L, B1D , B1U ]. The structure of block tri-diagonal matrices 

A2 and B2 depends upon the linear form of the function ( , , , , , , , )
x x y y

f x y u v u v u v  and u, v 

are solution vectors, and d is the vector consisting of right hand side functions and 
associated boundary conditions.   
 
        Let  B2 = [B2L, B2D , B2U ] be the block tri-diagonal matrix associated with (49b). 
Relative to the partitioning (49a) and (49b), the BSOR method is defined by  
 

                   A1D ( 1)k+u = ω [-( A1L+A1U ) ( )ku - B1
( )kv ] +(1-ω ) A1D

( )ku                        (50a) 

                   B2D ( 1)k +v = ω [-( B2L+B2U ) ( )kv - A2
( 1)k+u +d] +(1-ω ) B2D

( )kv                  (50b)  
 
where 0<ω <2 is a relaxation parameter. The above system of equations can be solved by 
using a line solver. For ω =1, the BSOR method reduces to block-Gauss Seidel iterative 
method.   
 

       Whenever ( , , , , , , , )
x x y y

f x y u v u v u v  is non-linear in , , , ,
x x y

u v u v u and 
y

v , the 

difference equations (26a) and (26b) form a non-linear block system. To solve such a 
system, one can apply Newton’s non-linear block successive over relaxation (NBSOR) 
iterative method (Hageman and Young, 2004; Kelly, 1995; Meurant, 1999; Parter, 1981; 
Saad, 1996; Varga, 2000).  
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     To define NBSOR method, we first write (26a) and (26b) in the form 
 
                          Au + Bv = 0                                                                                         (51a)   

                          H(u, v) = 0                                                                                         (51b)   
 

where A = [AL, AD , AU ]  and   B = [BL, BD , BU ] are tri-block diagonal matrices already 
defined earlier, and u, v are solution vectors of the linear system (51a) and non-linear 
system (51b).    
 
      Now we compute the value of u from (51a) using linear iterative method and value of 
v from (51b) using non-linear iterative method.    
 
     The Jacobian J of H is easily found to be the block tri-diagonal matrix  J = [JL, JD , JU 
], where 

              JL =  
1, 1 , 1 1, 1

, ,
l m l m l m

H H H

v v v− − − + −

 ∂ ∂ ∂
 
∂ ∂ ∂  

 ,      

             JD =  
1, , 1,

, ,
l m l m l m

H H H

v v v− +

 ∂ ∂ ∂
 
∂ ∂ ∂  

 ,   

and   

             JU =  
1, 1 , 1 1, 1

, ,
l m l m l m

H H H

v v v− + + + +

 ∂ ∂ ∂
 
∂ ∂ ∂  

   

 

     are  thN  order tri-diagonal matrices. 
 
   Now matrix equation for Newton NBSOR method is given by 
 

                          J ( ) ( 1) ( )( , )k k kH +∆ = −v u v                                                                       (52) 

 

where (0) (0)( , )u v is the initial approximation of  ( , )u v and ( )k∆v is any intermediate vector 

and the values of ( 1)k+u are known from the previous step. We define 
 

                         ( 1) ( ) ( ) ,k k k+ = + ∆v v v  k = 0,1,2,…                                                            (53) 
 

    We can solve (51a) and (51b) by using BSOR and Newton NBSOR method as follows: 
 

   AD ( 1)k+u = ω [-( AL+AU ) ( )ku - B ( )kv ] +(1-ω ) AD
( )ku , k = 0,1,2,…                      (54a) 

   JD ( 1)k +∆v = ω [ ( 1) ( )( , )k kH +− u v − ( JL+JU ) ( )k∆v ] +(1-ω ) JD
( )k∆v , k = 0,1,2,…      (54b) 

 
where 0<ω <2 is a relaxation parameter. For ω =1, the above system reduces to Newton 
block-Gauss Seidel iterative method. Above system can be solved by using a tri-diagonal 

solver. Then by using the outer iterative method (53), we can evaluate ( 1)k +v , k = 0,1,2,… .  
 

In order for this method to converge it is sufficient that the initial iterate  (0) (0)( , )u v  be 

close to the solution. 
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         The second order approximations for the coupled system of differential equations 
(3a) and (3b) are straightforward and can be written in a coupled manner 
 

           2 4

, 1 1, , 1, , 1 ,4 ( )
l m l m l m l m l m l m

U U U U U h V O h− − + ++ − + + = + ,  l,m = 1(1)N                 (55a) 

           , 1 1, , 1, , 14
l m l m l m l m l m

V V V V V− − + ++ − + +   

                           2
, , , ,, ,( , , , , , , , )xl m xl m yl m yl ml m l m l m

h f x y U V U V U V= + 4( )O h ,l,m=1(1)N   (55b)   

 
     Note that, the second order approximations (55a) and (55b) require only 5-grid points 
on a single computational cell (see Fig.1) applicable to linear biharmonic problems with 
singular coefficients. In a similar manner, we can discuss the block iterative methods for 
the systems (55a) and (55b).   
 

 

5.  STABILITY ANALYSIS AND EXPERIMENTAL RESULTS  
 

 

Let us consider the test equation  
 

4 ( , )u g x y∇ = , 0<x,y<1                        (56) 

 
     Applying the proposed method (26a)-(26b) to the above equation, we obtain 
 

1,11,1,1,1,,11,11,1,1 442044 ++++−+−−+−−− ++++−+++ mlmlmlmlmlmlmlmlml UUUUUUUUU        

  NmlVVVVV
h

mlmlmlmlml )1(1,],8[
2

,1,1,,1,1

2

=++++= −+−+        (57a) 

 

1,11,1,1,1,,11,11,1,1 442044 ++++−+−−+−−− ++++−+++ mlmlmlmlmlmlmlmlml VVVVVVVVV        

  2

1 1 1 1 ,
, , , ,

2 2 2 2

2 [ ], , 1(1)l m
l m l m l m l m

h g g g g g l m N
+ − + −

= + + + − =        (57b) 

 

 

where ),
2

1
(),,(

,
2

1, ml
ml

mlml yxggyxgg ±==
±

etc. 

 

        An iterative method for (57a)-(57b) can be written as 
 

        
2

(k+1) (k) (k)20 = 
2

h
− +Iu Au Bv RHU                                (58a) 

       (k+1) (k) (k)20 = +Iv 0u + Av RHV                                                (58b) 
       

where ( ) ( ),k ku v  are solution vectors and RHU, RHV are right hand side vectors consists 

of boundary and homogenous function values.  
 
 
Above system in matrix form can be written as 
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(k+1) (k)

(k+1) (1)

   
= +   

   

U U
G RH

V V
                       (59) 

 

where 
2

1
2

20

h −
 
 
  

A B
G =

0 A

,  RH = 
 
 
 

RHU

RHV
, 

 
        A =  [P, Q, P] , B=[T,  S,  T] , P = [1, 4, 1], Q = [4, 0, 4], T=[0, 1, 0], S=[1, 8, 1] 

    
where we denote 

 

                                      [a, b, c] = 

N N

b c

a b c

a b c

a b
×

 
 
 
 
 
 
 
  

O

0

0

 

 

as Nth order tri-diagonal matrix and its eigen values are given by  

  

                                 2 cos , 1, 2,..... .
1

j

j
b ac j N

N

π
λ

 
= + = 

+ 
                          (60) 

 Above iterative method is stable as long as ( ) 1ρ ≤G , where ( )ρ G is spectral radius of G. 
 

Now eigenvalues of Q are given by  

                  8cos 8cos( ), 1(1)
1

k

k
k h k N

N

π
λ π= ≡ =

+
                                                        (61) 

  and eigenvalues of P are given by  

               4 2cos 4 2cos( ), 1(1)
1

k

k
k h k N

N

π
µ π= + ≡ + =

+
.                                              (62) 

and hence, the eigenvalues of A are given by 
 

             2 cos( ) 8[cos( ) cos( )] 4cos( ) cos( ),jk k k j h k h j h k h j hν λ µ π π π π π= + ≡ + +      

                                                                                                                                                     1(1) , 1(1)j N k N= =      (63)                                                                                                            

Thus the eigenvalues of G  are given by 

 

             
1 1

[8(cos( )
20 20

jk jk k hξ ν π= = cos( )) 4cos( ) cos( )]j h k h j hπ π π+ + , 

                                                                                                1(1) , 1(1)j N k N= =         (64)                                                                                                                                

The maximum eigenvalue of G occurs at 1j k= = .  
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Hence (  )ρ G = max. 
cos( )

[4 cos( )] 1
5

jk

h
h

π
ξ π= + ≤ ,                                                   (65) 

which is satisfied for all variable angles  hπ . Hence the iterative method (58a)-(58b) is 

stable. 

 
         In order to validate the proposed fourth order method and test its robustness, we 
solve the following four test problems in the region 0<x,y<1, whose exact solutions are 
known. The Dirichlet boundary conditions and right hand side homogeneous functions 
are obtained by using the exact solutions. We have solved the linear systems by using 
block Gauss-Seidel iterative method, and the non-linear system of equations by using 
Newton block Gauss-Seidel iterative method. We have also compared the numerical 
results obtained by proposed fourth order approximations (26a) and (26b) with the 
numerical results obtained by corresponding second order approximations (55a) and 

(55b). In all cases, we have considered (0) =u 0  as the initial approximation and the 

iterations were stopped when the absolute error tolerance ( 1) ( ) 1210k k+ −− ≤u u  was 

achieved. In all cases, we have calculated maximum absolute errors ( l∞ -norm) for 

different grid sizes. All computations were performed using double precision arithmetic. 
 
 

Example 1: (Variable coefficient problems) 
 

               (a)    4 2 2(1 )( ) (1 )( )
xxx xyy xxy yyy

u x u u y u u∇ = + + + + +   

                              2 2(1 sin ) (1 sin ) ( , )
x y

x u y u G x y+ + + + + , 0<x,y<1                           (66a)  

                The exact solution is  u(x,y) = sin( ).sin( )x yπ π . 

 

              (b)   4 2 2(1 cos )( ) (1 cos )( )
xxx xyy xxy yyy

u x u u y u u∇ = + + + + +   

                              4 4(1 ) (1 ) ( , )
x y

x u y u G x y+ + + + + , 0<x,y<1                                     (66b) 

                The exact solution is  u(x,y) = x ye + . 
 
   The maximum absolute errors (MAEs) are tabulated in Table 1. 
 
 

Example 2: (Singular problem) 
 

4 ( ) ( , ), 0
xxx xyy

u u u G x y
x

α
α∇ + + = ≠  , 0<x,y<1                                                     (67)                 

                The exact solution is  u(x,y) = 4 sinhx y . 

 
   The MAEs are tabulated in Table 2 for α =1 and 2. 
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Example 3: ( Navier-Stokes model equation in terms of stream function ψ ), (Spotz and 

Carey, 1995). 
 

                    41
( ) ( ) ( , )

y xxx xyy x xxy yyy

e

G x y
R

ψ ψ ψ ψ ψ ψ ψ∇ = + − + + , 0<x,y<1                   (68)  

               The exact solution is ( , ) sin( )xx y e yψ π= . 

 

   The MAEs are tabulated in Table 3 for various values of Reynolds number 
e

R . 

      
 

 

 

 

 

 

Table 1: The MAE errors 

 
  h 

 

Example 1(a) 
 

Example 1(b) 
 

4( )O h − Method 2( )O h − Method 4( )O h − Method 2( )O h − Meth

od 
         

u 

1/8   
2u∇  

 
      0.3717(-03) 
 
      0.6260(-02) 

 

    0.2579(-01) 
 
    0.2539(+00) 

 

    0.1348(-06) 
 
    0.7649(-05) 

 

   0.7276(-03) 
 
   0.3746(-02) 

         

u 

1/16   
2u∇  

 

      0.2306(-04) 
 
      0.4032(-03) 

 
    0.6380(-02) 
  
    0.6333(-01) 

 
    0.8309(-08) 
 
    0.4873(-06) 

 

   0.1886(-03) 
 
   0.9415(-03) 

         
u 

1/32   
2u∇  

 
      0.1449(-05) 
 
      0.2513(-04) 

 
   0.1590(-02) 
 
   0.1594(-01) 

 
    0.5243(-09) 
 
    0.3041(-07) 

 
   0.4725(-04) 
 
   0.2357(-03) 

         
u 

1/64   
2u∇  

 
     0.9055(-07) 
 
     0.1569(-05) 

 
   0.3433(-03) 
 
   0.3773(-02) 

 
   0.3262(-10) 
 
   0.1900(-08) 

 
   0.1181(-04) 
 
   0.5896(-04) 
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Table 2: The MAE errors 

 
  h 

 

1α =  
 

2α =  
 

4( )O h − Method 2( )O h − Method 4( )O h − Method 2( )O h − Method 
         

u 

1/8   
2u∇  

 
      0.1119(-05) 
 
      0.1755(-04) 

 
    0.1073(-02) 
 
    0.4461(-02) 

 
    0.8111(-06) 
 
    0.2925(-04) 

 
   0.9318(-03) 
 
   0.7921(-02) 

         
u 

1/16   
2u∇  

 
      0.7073(-07) 
 
      0.1113(-05) 

 
    0.2704(-03) 
  
    0.1151(-02) 

 
    0.5099(-07) 
 
    0.1840(-05) 

 
   0.2375(-03) 
 
   0.2011(-02) 

         
u 

1/32   
2u∇  

 
      0.4397(-08) 
 
      0.7049(-07) 

 
   0.6780(-04) 
 
   0.2934(-03) 

 
    0.3189(-08) 
 
    0.1152(-06) 

 
   0.5983(-04) 
 
   0.5047(-03) 

         

u 

1/64   
2u∇  

 

     0.2741(-09) 
 
     0.4451(-08) 

 

   0.1693(-04) 
 
   0.7439(-04) 

 

    0.1995(-09) 
 
    0.7210(-08) 

 

   0.1514(-04) 
 
   0.1169(-03) 

  
 

Table 3: The MAE errors 

 
  h 

 

                  
4( )O h − Method 

 
2( )O h − Method 

      210
e

R =  4 6 810 ,10 ,10
e

R =     2 4 6 810 , 10 , 10 , 10
e

R =  

         
ψ  

1/4   
2ψ∇            

 

   0.3455(-02) 
 
   0.3033(-01)  

 

        0.3496(-02) 
 
        0.3101(-01)  

 

Over  Flow 
 

         
ψ  

1/8   
2ψ∇            

 

   0.1923(-03) 
 
   0.1708(-02) 

 

       0.2154(-03) 
 
       0.1911(-02) 

 

Over Flow 
 

         
ψ  

1/16   
2ψ∇            

 
   0.8174(-05) 
 
   0.8992(-04) 

 
      0.1350(-04) 
 
      0.1198(-03) 

 
               Over Flow 

         
ψ  

1/32   
2ψ∇            

   0.3426(-06) 
    
   0.7437(-05) 
    

      0.8437(-06) 
       
      0.7483(-05) 
       

 
Over Flow 
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6. CONCLUSIONS 

 
In this article, we presented a new fourth order compact finite difference discretization 
using coupled approach based on arithmetic average discretization for the solution of 2D 
non-linear biharmonic  partial differential equations. The proposed methods are directly 
applicable to singular problems without any modification.The method is derived on a 9-
point compact stencil using the values of  u  and its Laplacian as the unknowns. We have 
obtained the numerical solution of Laplacian of u as a by-product, which is quite often of 
interest in many applied mathematics problems. Our method is used to solve several 
problems including Navier Stokes model equation and enables us to obtain high accuracy 
solutions with great efficiency. While solving Navier Stokes equations of motion, 
numerical experiments confirms that the proposed fourth order discretization method 
produces oscillation free solution for high Reynolds number, whereas the second order 
method is unstable.  We are currently working to extend this technique to solve multi-
dimensional non-linear time dependent biharmonic partial differential equations using 
coupled approach.   
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