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ABSTRACT. In this paper we observe the behavior of real roots of the Frobenius-Euler poly-

nomials Hn(u) for u < −1. By means of numerical experiments, we demonstrate a remarkably

regular structure of the complex roots of the Hn(u) for u < −1. We investigate the zeros of the

Frobenius-Euler polynomials Hn(u) for u < −1. Finally, we give a table for the solutions of the

Frobenius-Euler polynomials Hn(u) for u < −1.
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1. INTRODUCTION

In the 21st century, the computing environment would make more and more rapid

progress. The importance of numerical simulation and analysis in mathematics is

steadily increasing. Several mathematicians have studied the Bernoulli numbers and

polynomials, the Euler numbers and polynomials, and the Frobenius-Euler numbers

and polynomials (see [1, 2, 3, 4, 5, 6, 8]). These numbers and polynomials posses many

interesting properties and arising in many areas of mathematics and physics. Using

computer, a realistic study for these numbers and polynomials is very interesting.

It is the aim of this paper to observe an interesting phenomenon of ‘scattering’ of

the zeros of the Frobenius-Euler polynomials Hn(u, x) for u < −1 in complex plane.

The outline of this paper is as follows. We introduce the Frobenius-Euler numbers

Hn(u) and polynomials Hn(u, x). In Section 2, using a numerical investigation, we

observe the beautiful zeros of the Frobenius-Euler polynomials Hn(u, x). Finally, we

investigate the structure of the roots of the Frobenius-Euler polynomials Hn(u, x). In

Section 3, we shall discuss the more general open problems and observations. First,

we introduce the Euler numbers En and polynomials En(x). The Euler numbers En

are usually defined by means of the following generating function: The usual Euler
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numbers En are defined by the generating function:

2

et + 1
=

∞
∑

n=0

En

tn

n!
, (|t| < 2π), (1)

where the symbol Ek is interpreted to mean that Ek must be replaced by Ek when

we expand the one on the left. The Euler polynomials En(x) are defined by the

generating function:
2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
. (2)

Frobenius extended such numbers as En to the so-called Frobenius-Euler numbers

Hn(u) belonging to an algebraic number u with |u| > 1. Let u be algebraic number.

For u ∈ C with |u| > 1, the Frobenius-Euler numbers Hn(u) belonging to u are

defined by the generating function

F (u, t) =
1 − u

et − u
=

∞
∑

n=0

Hn(u)
tn

n!
, (|t| < 2π), (3)

with the usual convention of symbolically replacing Hn by Hn. This relation can be

written as

H0(u) = 1, (H(u) + 1)k − uHk(u) = 0 (k ≥ 1).

Therefore we have

uHk(u) =
k
∑

i=0

(

k

i

)

Hi(u), Hk(u) =
1

u − 1

k−1
∑

i=0

(

k

i

)

Hi(u), for u 6= 1.

We observe that Hn(−1) = En.

For an algebraic number u ∈ C with |u| > 1, the Frobenius-Euler polynomials

Hn(u, x) are defined by

F (u, x, t) =
1 − u

et − u
ext =

∞
∑

n=0

Hn(u, x)
tn

n!
, cf. [1, 3, 6] (4)

usual convention of symbolically replacing Hn by Hn as before. By the above defini-

tion, we obtain
∞
∑

l=0

Hl(u, x)
tl

l!
=

1 − u

et − u
ext =

∞
∑

n=0

Hn(u)
tn

n!

∞
∑

m=0

xm tm

m!

=

∞
∑

l=0

(

l
∑

n=0

Hn(u)
tn

n!
xl−n tl−n

(l − n)!

)

=

∞
∑

l=0

(

l
∑

n=0

(

l

n

)

Hn(u)xl−n

)

tl

l!
.

By using comparing coefficients
tl

l!
, we have

Hn(u, x) =
n
∑

k=0

(

n

k

)

Hk(u)xn−k.
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In the special case x = 0, we define Hn(u, 0) = Hn(u). We also observe that

Hn(−1, x) = En(x).

Since
∞
∑

l=0

Hl(u, x + y)
tl

l!
=

1 − u

et − u
e(x+y)t =

∞
∑

n=0

Hn(u, x)
tn

n!

∞
∑

m=0

ym tm

m!

=

∞
∑

l=0

(

l
∑

n=0

Hn(u, x)
tn

n!
yl−n tl−n

(l − n)!

)

=

∞
∑

l=0

(

l
∑

n=0

(

l

n

)

Hn(u, x)yl−n

)

tl

l!
,

we have the following theorem.

Theorem 1. The Frobenius-Euler polynomials Hn(u, x) satisfies the following

relation:

Hl(u, x + y) =

l
∑

n=0

(

l

n

)

Hn(u, x)yl−n.

Because
∂

∂x
F (u, x, t) = tF (u, x, t) =

∞
∑

n=0

d

dx
Hn(u, x)

tn

n!
,

it follows the important relation

d

dx
Hn(u, x) = nHn−1(u, x).

We have the integral formula as follows:
∫ b

a

Hn−1(u, x)dx =
1

n
(Hn(u, b) − En(u, a)).

By using computer, the Frobenius-Euler polynomials Hn(u, x) can be determined

explicitly. A few of them are

H0(u, x) = 1, H1(u, x) =
1 − x + ux

−1 + u
,

H2(u, x) =
1 + u − 2x + 2ux + x2 − 2ux2 + u2x2

(−1 + u)2
,

H3(u, x) =
1 + 4u + u2 − 3x + 3u2x + 3x2 − 6ux2 + 3u2x2 − x3 + 3ux3 − 3u2x3 + u3x3

(−1 + u)3
,

· · ·



354 C. S. RYOO AND R. P. AGARWAL

For example, setting u = −2, we get

H0(2, x) = 1, H1(2, x) = 1/3(−1 + 3x),

H2(2, x) = 1/9(−1 − 6x + 9x2),

H3(2, x) = 1/9(1 − 3x − 9x2 + 9x3),

H4(2, x) = 1/27(5 + 12x − 18x2 − 36x3 + 27x4),

H5(2, x) = 1/81(−7 + 75x + 90x2 − 90x3 − 135x4 + 81x5),

H6(2, x) = 1/81(−49 − 42x + 225x2 + 180x3 − 135x4 − 162x5 + 81x6),

H7(2, x) = 1/243(−53 − 1029x − 441x2 + 1575x3 + 945x4 − 567x5 − 567x6 + 243x7).

2. ZEROS OF THE FROBENIUS-EULER POLYNOMIALS Hn(u, x)

In this section, we display the shapes of the Frobenius-Euler polynomials Hn(u, x)

and we investigate the zeros of the Frobenius-Euler polynomials Hn(u, x) for u < −1.

For n = 1, . . . , 10, we can draw a plot of the Frobenius-Euler polynomials Hn(u, x),

respectively. This shows the ten plots combined into one. We display the shape of

Hn(−2, x), −3 ≤ x ≤ 3 (Figure 1). We investigate the beautiful zeros of the Hn(u, x)
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Figure 1. Curve of Hn(−2, x)

by using a computer. We plot the zeros of the Frobenius-Euler polynomials Hn(−2, x)

for n = 10, 15, 25, 30 and x ∈ C (Figure 2).

Our numerical results for approximate solutions of real zeros of Hn(u, x) are

displayed (Tables 1, 2).
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Figure 2. Zeros of Hn(−2, x) for n = 10, 15, 25, 30

Table 1. Numbers of real and complex zeros of Hn(u, x)

u = −1 u = −2

degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0

2 2 0 2 0

3 3 0 3 0

4 4 0 2 2

5 5 0 3 2

6 2 4 4 2

7 3 4 3 4

8 4 4 4 4

9 5 4 3 6

10 6 4 4 6

11 3 8 5 6

We plot the zeros of the Frobenius-Euler polynomials Hn(u, x) for n = 30, u =

−5,−10,−20,−30 and x ∈ C (Figure 3). We also plot the zeros of the Frobenius-
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Figure 3. Zeros of H30(u, x) for u = −5,−10,−20,−30

Euler polynomials Hn(u, x) for n = 25, u = −1.5,−1.2,−1.01,−1.001 and x ∈ C

(Figure 4).
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Figure 4. Zeros of H25(u, x) for u = −1.5,−1.2,−1.01,−1.001
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Figure 5. Zeros of H25(−1, x) = En(x)

Stacks of zeros of Hn(−2, x) for 1 ≤ n ≤ 30 from a 3-D structure are presented

(Figure 6). We observe a remarkably regular structure of the complex roots of the

Frobenius-Euler polynomials Hn(u, x). We hope to verify a remarkably regular struc-

ture of the complex roots of the Frobenius-Euler polynomials Hn(u, x) (Table 1).
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Figure 6. Stacks of zeros of Hn(−2, x), 1 ≤ n ≤ 30

This numerical investigation is especially exciting because we can obtain an in-

teresting phenomenon of scattering of the zeros of Hn(u, x). These results are used

not only in pure mathematics and applied mathematics, but also used in mathemat-

ical physics and other areas. Next, we calculated an approximate solution satisfying

Hn(u, x), x ∈ R. The results are given in Table 2.

Table 2. Approximate solutions of Hn(−2, x) = 0, x ∈ R

degree n x

1 0.33333

2 -0.13807, 0.8047

3 -0.42060, 0.22004, 1.2006

4 0.6547, 1.5273

5 0.08542, 1.0854, 1.7866

6 -0.4719, 0.5160, 1.528, 1.958

7 -0.8424, -0.05293, 0.9471
...

...

Figures 7 and 8 show the distribution of real zeros of Hn(u, x) for 1 ≤ n ≤ 30.

Figure 9 presents the distribution of real zeros of Hn(−1, x) = En(x) for 1 ≤ n ≤

30.

3. DIRECTIONS FOR FURTHER RESEARCH

Finally, we shall consider the more general problems. In [5], we observed the

behavior of complex roots of the Euler polynomials En(x), using numerical investiga-

tion. Prove that En(x), x ∈ C, has Re(x) = 1/2 reflection symmetry in addition to

the usual Im(x) = 0 reflection symmetry analytic complex functions. The obvious
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Figure 7. Plot of real zeros of Hn(−10, x), 1 ≤ n ≤ 30
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Figure 8. Plot of real zeros of Hn(−2, x), 1 ≤ n ≤ 30
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Figure 9. Plot of real zeros of Hn(−1, x) = En(x), 1 ≤ n ≤ 30
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corollary is that the zeros of En(x) will also inherit these symmetries.

If En(x0) = 0, then En(1 − x0) = 0 = En(x∗

0) = En(1 − x∗

0) (5)

∗ denotes complex conjugation (see [5], Figures 5, 9). Prove that En(x) = 0 has n

distinct solutions. If E2n+1(x) has Re(x) = 1/2 and Im(x) = 0 reflection symmetries,

and 2n + 1 non-degenerate zeros, then 2n of the distinct zeros will satisfy (5). If the

remaining one zero is to satisfy (5) too, it must reflect into itself, and therefore it

must lie at 1/2 (see Figure 9), the center of the structure of the zeros, ie.,

En(1/2) = 0 ∀ odd n.

Prove that Hn(u, x) = 0 has n distinct solutions, ie., all the zeros are non-

degenerate. Find the numbers of complex zeros CHn(u,x) of Hn(u, x), Im(x) 6= 0.

Since n is the degree of the polynomial Hn(u, x), the number of real zeros RHn(u,x)

lying on the real plane Im(x) = 0 is then RHn(u,x) = n − CHn(u,x), where CHn(u,x) de-

notes complex zeros. See Table 1 for tabulated values of RHn(u,x) and CHn(u,x). Find

the equation of envelope curves bounding the real zeros lying on the plane. We prove

that Hn(u, x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex functions.

If Hn(u, x) = 0, then Hn(u, x∗) = 0, where ∗ denotes complex conjugate (see Figures

2, 3, 4). Observe that the structure of the zeros of the Euler polynomials En(x)

resembles the structure of the zeros of the Frobenius-Euler polynomials Hn(u, x) as

u → −1 (see Figures 4, 5, 7, 8, 9). In order to study the Frobenius-Euler polynomi-

als Hn(u, x), we must understand the structure of the Frobenius-Euler polynomials

Hn(u, x). Therefore, using computer, a realistic study for the Frobenius-Euler poly-

nomials Hn(u, x) is very interesting. The author has no doubt that investigation

along this line will lead to a new approach employing numerical method in the field

of research of the Frobenius-Euler polynomials Hn(u, x) to appear in mathematics

and physics. For related topics the interested reader is referred to [4, 5, 6, 7].
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