A NUMERICAL COMPUTATION OF THE ROOTS OF HURWITZ q-EULER ZETA FUNCTIONS

C. S. RYOO¹ AND R. P. AGARWAL²

¹Department of Mathematics, Hannam University, Daejeon 306-791, Korea ²Department of Mathematical Sciences, Florida Institute of Technology Melbourne, Florida 32901-6975, USA

ABSTRACT. In [2], we defined the q-Euler numbers $E_{n,q}$ and q-Euler polynomials $E_{n,q}(x)$. By using q-Euler numbers $E_{n,q}$ and q-Euler polynomials $E_{n,q}(x)$, q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions $\zeta_q(s, x)$ are defined. It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of $\zeta_q(s, x)$) in complex plane. Finally, we investigate the roots of Hurwitz q-Euler zeta functions $\zeta_q(s, x)$.

Key words. q-Euler polynomials, q-Euler zeta function, Hurwitz q-Euler zeta functions

1. INTRODUCTION

Many mathematicians have studied Euler numbers, Euler polynomials, q-Euler numbers, and q-Euler polynomials (see [1,2,3,4]). Euler numbers, Euler polynomials, q-Euler numbers, and q-Euler polynomials numbers posses many interesting properties and arising in many areas of mathematics and physics. In [2], we observed the behavior of complex roots of the q-Euler polynomials $E_{n,q}(x)$, using numerical investigation. By means of numerical experiments, we demonstrated a remarkably regular structure of the complex roots of the q-Euler polynomials $E_{n,q}(x)$. In this paper, we introduce q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions $\zeta_q(s,x)$. In order to study the q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions $\zeta_q(s,x)$, we must understand the structure of the q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta function study for the q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions is very interesting. It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions $\zeta_q(s, x)$ in complex plane.

The outline of this paper is as follows. We introduce the q-Euler polynomials $E_{n,q}(x)$ and q-Euler numbers $E_{n,q}$. We investigate some interesting results which are related to the q-Euler numbers $E_{n,q}$ and q-Euler polynomials $E_{n,q}(x)$. In Section 2, we define q-Euler zeta function $\zeta_q(s)$ and Hurwitz q-Euler zeta functions $\zeta_q(s, x)$.

We derive the existence of a specific interpolation function which interpolate the q-Euler numbers $E_{n,q}$ and q-Euler polynomials $E_{n,q}(x)$ at negative integer. In section 3, we describe the beautiful zeros of Hurwitz q-Euler zeta functions $\zeta_q(s, x)$ using a numerical investigation. Finally, we investigate the roots of the Hurwitz q-Euler zeta functions $\zeta_q(s, x)$.

Throughout this paper, we always make use of the following notations: $\mathbb{N} = \{1, 2, 3, ...\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers

First, we introduce the classical Euler numbers E_n and Euler polynomials $E_n(x)$. The Euler numbers E_n are defined by the generating function:

(1.1)
$$F(t) = \frac{2}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}, \text{ cf. } [1,4,5]$$

where we use the technique method notation by replacing E^n by $E_n (n \ge 0)$ symbolically. For $x \in \mathbb{R}$, we consider the Euler polynomials $E_n(x)$ as follows:

(1.2)
$$F(x,t) = \frac{2}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x)\frac{t^n}{n!}.$$

Note that $E_n(x) = \sum_{k=0}^n {n \choose k} E_k x^{n-k}$. In the special case x = 0, we define $E_n(0) = E_n$.

Let q be a complex number with |q| < 1. By the meaning of (1.1) and (1.2), we defined the q-Euler numbers $E_{n,q}$ and polynomials $E_{n,q}(x)$ as follows (see [2]):

(1.3)
$$F_q(t) = \frac{2}{qe^t + 1} = \sum_{n=0}^{\infty} E_{n,q} \frac{t^n}{n!},$$

(1.4)
$$F_q(t,x) = \frac{2}{qe^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_{n,q}(x)\frac{t^n}{n!}.$$

The following elementary properties of the q-Euler numbers $E_{n,q}$ and polynomials $E_{n,q}(x)$ are readily derived form (1.3) and (1.4)(see, for details, [2]). We, therefore, choose to omit details involved.

Proposition 1.1. For any positive integer n, the formula of q-polynomials

$$E_{n,q}(x) = \sum_{k=0}^{n} \binom{n}{k} E_{k,q} x^{n-k}.$$

Proposition 1.2 (Integral formula).

$$\int_{a}^{b} E_{n-1,q}(x) dx = \frac{1}{n} (E_{n,q}(b) - E_{n,q}(a)).$$

Proposition 1.3 (Addition theorem).

$$E_{n,q}(x+y) = \sum_{k=0}^{n} \binom{n}{k} E_{k,q}(x)y^{n-k}.$$

Proposition 1.4 (Difference equation).

$$qE_{n,q}(x+1) + E_{n,q}(x) = 2x^n$$
.

2. THE ANALOGUE OF THE EULER ZETA FUNCTION

By using q-Euler numbers and polynomials, q-Euler zeta function and Hurwitz q-Euler zeta functions are defined. These functions interpolate the q-Euler numbers and q-Euler polynomials, respectively. In this section we assume that $q \in \mathbb{C}$ with |q| < 1. From (1.3), we note that

$$\left. \frac{d^k}{dt^k} F_q(t) \right|_{t=0} = 2 \sum_{n=0}^{\infty} (-1)^n q^n n^k, (k \in \mathbb{N}).$$

By using the above equation, we are now ready to define q-Euler zeta functions.

Definition 2.1. Let $s \in \mathbb{C}$.

(2.1)
$$\zeta_q(s) = 2\sum_{n=1}^{\infty} \frac{(-1)^n q^n}{n^s}$$

Note that $\zeta_q(s)$ is a meromorphic function on \mathbb{C} . Relation between $\zeta_q(s)$ and $E_{k,q}$ is given by the following theorem.

Theorem 2.2. For $k \in \mathbb{N}$, we have

$$\zeta_q(-k) = E_{k,q}.$$

Observe that $\zeta_{q,(s)}$ function interpolates $E_{k,q}$ numbers at non-negative integers. By using (1.4), we note that

(2.2)
$$\frac{d^k}{dt^k} F_q(t,x) \bigg|_{t=0} = 2 \sum_{n=0}^{\infty} (-1)^n q^n (n+x)^k, (k \in \mathbb{N}),$$

and

(2.3)
$$\left(\frac{d}{dt}\right)^k \left(\sum_{n=0}^{\infty} E_{n,q}(x) \frac{t^n}{n!}\right)\Big|_{t=0} = E_{k,q}(x), \text{ for } k \in \mathbb{N}$$

By (2.2) and (2.3), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 2.3. Let $s \in \mathbb{C}$.

(2.4)
$$\zeta_q(s,x) = 2\sum_{n=0}^{\infty} \frac{(-1)^n q^n}{(n+x)^s}$$

Note that $\zeta_q(s, x)$ is a meromorphic function on \mathbb{C} . Relation between $\zeta_q(s, x)$ and $E_{k,q}^{(h)}(x)$ is given by the following theorem.

Theorem 2.4. For $k \in \mathbb{N}$, we have

$$\zeta_q(-k,x) = E_{k,q}(x).$$

Observe that $\zeta_q(-k, x)$ function interpolates $E_{k,q}(x)$ numbers at non-negative integers.

3. ZEROS OF THE HURWITZ q-EULER ZETA FUNCTIONS

In this section, we show a plot of $\zeta_q(s, x)$, q = 1/2, $-2 \leq s \leq 2$, $-1/2 \leq x \leq 1/2$ (Figs. 1-2). For k = 1, ..., 10, we can draw a plot of the $\zeta_q(-k, x)$, respectively. This shows the ten plots combined into one. We display the shape of $\zeta_q(-k, x)$, q = 1/2, $-2 \leq x \leq 2$ for any positive integer k (Fig. 3).

FIGURE 1. Plot of $\zeta_q(s, x)$

FIGURE 2. Contour plot

FIGURE 3. Curve of $\zeta_{1/2}(-k, x)$

Next, we investigate the zeros of $\zeta_q(-k, x)$, q = 1/2, $k = 5, 10, 15, 20, x \in \mathbb{C}$ (Fig. 4). We display the zeros of $\zeta_q(-k, x)$, q = 1/10, 1/20, 1/30, 1/40, k = 20, $x \in \mathbb{C}$ (Fig. 5) and $\zeta_q(-k, x)$, q = -1/10, -1/20, -1/30, -1/40, k = 20, $x \in \mathbb{C}$ (Fig. 6).

Stacks of zeros of $\zeta_{1/2}(-k, x)$ for $1 \le k \le 25$ from a 3-D structure are presented. (Fig. 7). Our numerical results for numbers of real and complex zeros of $\zeta_q(-k, x)$, $x \in \mathbb{C}$ are displayed (Table 1).

FIGURE 4. Zeros of $\zeta_{1/2}(-k, x), k = 5, 10, 15, 20$

	q = 1/2		q = -1/2	
degree n	real zeros	complex zeros	real zeros	complex zeros
1	1	0	1	0
2	2	0	0	2
3	3	0	1	2
4	2	2	0	4
5	3	2	1	4
6	4	2	0	6
7	3	4	1	5
8	4	4	0	8
9	3	6	1	8
10	4	6	0	10
11	5	6	1	10
12	6	6	0	12
13	5	8	1	12
14	4	10	0	14

Table 1. Numbers of real and complex zeros of $\zeta_q(-k,x)$

FIGURE 5. Zeros of $\zeta_q(-k, x), q = 1/10, 1/20, 1/30, 1/40$

degree n	x
1	0.33333
2	-0.13807, 0.8047
3	-0.42060, 0.22004, 1.2006
4	0.6547, 1.5273
5	0.08542, 1.0854, 1.7866
6	-0.4719, 0.5160, 1.528, 1.958
7	-0.8424, -0.05293, 0.9471
8	-1.0017, -0.6275, 0.3779, 1.378
9	0.19123, 0.8088, 1.805
10	-0.7586, 0.23965, 1.2396, 2.1965.085502

Table 2. Approximate solutions of $\zeta_q(-k, x) = 0, q = 1/2, x \in \mathbb{R}$

We observe a remarkably regular structure of the complex roots of the $\zeta_q(-k, x)$. We hope to verify a remarkably regular structure of the complex roots of the $\zeta_q(-k, x)$

FIGURE 6. Zeros of $\zeta_q(-k, x), q = -1/10, -1/20, -1/30, -1/40$

FIGURE 7. Stacks of zeros of $\zeta_{1/2}(-k, x)$

(Table 1). Next, we calculated an approximate solution satisfying $\zeta_q(-k, x) = 0, x \in \mathbb{C}$. The results are given in Table 2, Table 3, and Table 4. Finally, we shall consider the more general problems. Prove that $\zeta_q(-k, x) = 0$ has *n* distinct solutions. Find the numbers of complex zeros $C_{\zeta_q(-k,x)}$ of $\zeta_q(-k, x), Im(x) \neq 0$. The number of real

zeros $R_{\zeta_q(-k,x)}$ lying on the real plane Im(x) = 0 is then $R_{\zeta_q(-k,x)} = n - C_{\zeta_q(-k,x)}$, where $C_{\zeta_q(-k,x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{\zeta_q(-k,x)}$ and $C_{\zeta_q(-k,x)}$. We prove that $\zeta_q(-k,x)$, $x \in \mathbb{C}$, has Im(x) = 0 reflection symmetry. (Figs. 4–6). For related topics the interested reader is referred to [2,3,4,5,6,7,8,9].

degree n	x
1	0.16667
2	-0.20601, 0.53934
3	-0.3009, -0.10220, 0.9031
4	0.24627, 1.2384
5	-0.3717, 0.5951, 1.5439
6	-0.6447, -0.05472, 0.9453, 1.8195
7	0.29446, 1.2945, 2.0634
8	-0.3562, 0.6437, 1.6473, 2.2696
9	-0.863, -0.007003, 0.9930, 2.025, 2.416
10	-1.019, -0.660, 0.34230, 1.3423

Table 3. Approximate solutions of $\zeta_q(-k, x) = 0, q = 1/5, x \in \mathbb{R}$

Table 4. Approximate solutions of $\zeta_q(-k, x) = 0, q = -1/2, x \in \mathbb{C}$

degree n	x			
1	-1.0000			
2	-1.0000 - 1.4142i, -1.0000 + 1.4142i			
3	-1.8846, -0.5577 - 2.5665i, -0.5577 + 2.5665i			
4	-2.076 - 1.256i, -2.076 + 1.256i, 0.0756 - 3.5686i,			
	0.0756 + 3.5686i			
5	$-2.739, 1.951 - 2.402i, -1.951 + 2.402i, \\ 0.820 - 4.468i,$			
	0.820 + 4.468i			
6	-2.999 - 1.188i, -2.999 + 1.188i, -1.640 - 3.461i,			
	-1.640 + 3.461i, 1.640 - 5.290i, 1.640 + 5.290i			
7	-3.58, -3.019 - 2.313i, -3.019 + 2.313i, -1.206 - 4.451i,			
	-1.206 + 4.451i, 2.514 - 6.052i, 2.514 + 6.052i			
8	-3.88 - 1.15i, -3.88 + 1.15i, -2.876 - 3.382i, -2.876 + 3.382i			
	-0.680 - 5.384i, -0.680 + 5.384i, 3.431 - 6.766i, 3.431 + 6.766i			

Acknowledgment

This paper has been supported by the 2009 Hannam University Research Fund.

REFERENCES

- Kim, T., Jang, L. C., Park, H. K.(2001). A note on q-Euler and Genocchi numbers, Proc. Japan Acad., v. 77 A, pp. 139–141.
- 2. Ryoo, C.S. A numerical computation of the roots of q-Euler polynomials, Journal of Computational Analysis and Applications, to appear.
- Ryoo, C.S. (2008). A numerical computation on the structure of the roots of q-extension of Genocchi polynomials, Applied Mathematics Letters, v. 21, pp. 348–354.
- Ryoo, C.S. (2008). Calculating zeros of the twisted Genocchi polynomials, Advan. Stud. Contemp. Math., v. 17, pp. 147–159.
- Ryoo, C.S., Kim, T. (2004). Beautiful zeros of q-Euler polynomials of order k, Proceeding of the Jangjeon Mathematical Society, v. 7, pp. 63–79.
- Ryoo, C.S., Kim, T. (2008). On the real roots of the q-Hurwitz zeta-function, Proceeding of the Jangjeon Mathematical Society, v. 11, pp. 205–214.
- Ryoo, C.S., Kim, T., Agarwal, R. P. (2006). A numerical investigation of the roots of q-polynomials, Inter. J. Comput. Math., v. 83, pp. 223–234.
- Ryoo, C.S., Song, H., Argawal, R.P. (2004). On the real roots of the Changhee-Barnes' q-Bernoulli polynomials, Advan. Stud. Contemp. Math., v. 9, pp. 153–163.
- Ryoo, C.S., Kim, T., Agarwal, R.P. (2005). The structure of the zeros of the generalized Bernoulli polynomials, Neural, Parallel & Scientific Computations, v. 13, pp. 371–380.