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ABSTRACT. In [2], we defined the q-Euler numbers En,q and q-Euler polynomials En,q(x). By

using q-Euler numbers En,q and q-Euler polynomials En,q(x), q-Euler zeta function ζq(s)and Hurwitz

q-Euler zeta functions ζq(s, x) are defined. It is the aim of this paper to observe an interesting

phenomenon of ’scattering’ of the zeros of ζq(s, x)) in complex plane. Finally, we investigate the

roots of Hurwitz q-Euler zeta functions ζq(s, x).
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1. INTRODUCTION

Many mathematicians have studied Euler numbers, Euler polynomials, q-Euler

numbers, and q-Euler polynomials (see [1,2,3,4]). Euler numbers, Euler polynomials,

q-Euler numbers, and q-Euler polynomials numbers posses many interesting prop-

erties and arising in many areas of mathematics and physics. In [2], we observed

the behavior of complex roots of the q-Euler polynomials En,q(x), using numerical

investigation. By means of numerical experiments, we demonstrated a remarkably

regular structure of the complex roots of the q-Euler polynomials En,q(x). In this

paper, we introduce q-Euler zeta function ζq(s) and Hurwitz q-Euler zeta functions

ζq(s, x). In order to study the q-Euler zeta function ζq(s) and Hurwitz q-Euler zeta

functions ζq(s, x), we must understand the structure of the q-Euler zeta function ζq(s)

and Hurwitz q-Euler zeta functions ζq(s, x). Therefore, using computer, a realistic

study for the q-Euler zeta function ζq(s) and Hurwitz q-Euler zeta functions ζq(s, x)

is very interesting. It is the aim of this paper to observe an interesting phenomenon

of ‘scattering’ of the zeros of q-Euler zeta function ζq(s) and Hurwitz q-Euler zeta

functions ζq(s, x) in complex plane.

The outline of this paper is as follows. We introduce the q-Euler polynomials

En,q(x) and q-Euler numbers En,q. We investigate some interesting results which are

related to the q-Euler numbers En,q and q-Euler polynomials En,q(x). In Section

2, we define q-Euler zeta function ζq(s) and Hurwitz q-Euler zeta functions ζq(s, x).
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We derive the existence of a specific interpolation function which interpolate the q-

Euler numbers En,q and q-Euler polynomials En,q(x) at negative integer. In section

3, we describe the beautiful zeros of Hurwitz q-Euler zeta functions ζq(s, x) using a

numerical investigation. Finally, we investigate the roots of the Hurwitz q-Euler zeta

functions ζq(s, x).

Throughout this paper, we always make use of the following notations: N =

{1, 2, 3, . . .} denotes the set of natural numbers, R denotes the set of real numbers,

and C denotes the set of complex numbers

First, we introduce the classical Euler numbers En and Euler polynomials En(x).

The Euler numbers En are defined by the generating function:

(1.1) F (t) =
2

et + 1
=

∞
∑

n=0

Gn
tn

n!
, cf. [1,4,5]

where we use the technique method notation by replacing En by En(n ≥ 0) symboli-

cally. For x ∈ R, we consider the Euler polynomials En(x) as follows:

(1.2) F (x, t) =
2

et + 1
ext =

∞
∑

n=0

En(x)
tn

n!
.

Note that En(x) =
∑n

k=0

(

n
k

)

Ekx
n−k. In the special case x = 0, we define En(0) = En.

Let q be a complex number with |q| < 1. By the meaning of (1.1) and (1.2), we

defined the q-Euler numbers En,q and polynomials En,q(x) as follows (see [2]):

(1.3) Fq(t) =
2

qet + 1
=

∞
∑

n=0

En,q
tn

n!
,

(1.4) Fq(t, x) =
2

qet + 1
ext =

∞
∑

n=0

En,q(x)
tn

n!
.

The following elementary properties of the q-Euler numbers En,q and polynomials

En,q(x) are readily derived form (1.3) and (1.4)( see, for details, [2]). We, therefore,

choose to omit details involved.

Proposition 1.1. For any positive integer n, the formula of q-polynomials

En,q(x) =

n
∑

k=0

(

n

k

)

Ek,qx
n−k.

Proposition 1.2 (Integral formula).
∫ b

a

En−1,q(x)dx =
1

n
(En,q(b) − En,q(a)).

Proposition 1.3 (Addition theorem).

En,q(x + y) =
n
∑

k=0

(

n

k

)

Ek,q(x)yn−k.
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Proposition 1.4 (Difference equation).

qEn,q(x + 1) + En,q(x) = 2xn.

2. THE ANALOGUE OF THE EULER ZETA FUNCTION

By using q-Euler numbers and polynomials, q-Euler zeta function and Hurwitz

q-Euler zeta functions are defined. These functions interpolate the q-Euler numbers

and q-Euler polynomials, respectively. In this section we assume that q ∈ C with

|q| < 1. From (1.3), we note that

dk

dtk
Fq(t)

∣

∣

∣

∣

t=0

= 2

∞
∑

n=0

(−1)nqnnk, (k ∈ N).

By using the above equation, we are now ready to define q-Euler zeta functions.

Definition 2.1. Let s ∈ C.

(2.1) ζq(s) = 2
∞
∑

n=1

(−1)nqn

ns
.

Note that ζq(s) is a meromorphic function on C. Relation between ζq(s) and Ek,q is

given by the following theorem.

Theorem 2.2. For k ∈ N, we have

ζq(−k) = Ek,q.

Observe that ζq,(s) function interpolates Ek,q numbers at non-negative integers. By

using (1.4), we note that

(2.2)
dk

dtk
Fq(t, x)

∣

∣

∣

∣

t=0

= 2
∞
∑

n=0

(−1)nqn(n + x)k, (k ∈ N),

and

(2.3)

(

d

dt

)k
(

∞
∑

n=0

En,q(x)
tn

n!

)
∣

∣

∣

∣

∣

t=0

= Ek,q(x), for k ∈ N.

By (2.2) and (2.3), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 2.3. Let s ∈ C.

(2.4) ζq(s, x) = 2
∞
∑

n=0

(−1)nqn

(n + x)s
.

Note that ζq(s, x) is a meromorphic function on C. Relation between ζq(s, x) and

E
(h)
k,q (x) is given by the following theorem.

Theorem 2.4. For k ∈ N, we have

ζq(−k, x) = Ek,q(x).

Observe that ζq(−k, x) function interpolates Ek,q(x) numbers at non-negative integers.
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3. ZEROS OF THE HURWITZ q-EULER ZETA FUNCTIONS

In this section, we show a plot of ζq(s, x), q = 1/2, −2 ≤ s ≤ 2, −1/2 ≤ x ≤ 1/2

(Figs. 1-2). For k = 1, . . . , 10, we can draw a plot of the ζq(−k, x), respectively. This

shows the ten plots combined into one. We display the shape of ζq(−k, x), q = 1/2,

−2 ≤ x ≤ 2 for any positive integer k (Fig. 3).
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Figure 1. Plot of ζq(s, x)
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Figure 2. Contour plot
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Figure 3. Curve of ζ1/2(−k, x)

Next, we investigate the zeros of ζq(−k, x), q = 1/2, k = 5, 10, 15, 20, x ∈ C (Fig.

4). We display the zeros of ζq(−k, x), q = 1/10, 1/20, 1/30, 1/40, k = 20, x ∈ C (Fig.

5) and ζq(−k, x), q = −1/10,−1/20,−1/30,−1/40, k = 20, x ∈ C (Fig. 6).

Stacks of zeros of ζ1/2(−k, x) for 1 ≤ k ≤ 25 from a 3-D structure are presented.

(Fig. 7). Our numerical results for numbers of real and complex zeros of ζq(−k, x),

x ∈ C are displayed (Table 1).
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Figure 4. Zeros of ζ1/2(−k, x), k = 5, 10, 15, 20

Table 1. Numbers of real and complex zeros of ζq(−k, x)

q = 1/2 q = −1/2

degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0

2 2 0 0 2

3 3 0 1 2

4 2 2 0 4

5 3 2 1 4

6 4 2 0 6

7 3 4 1 5

8 4 4 0 8

9 3 6 1 8

10 4 6 0 10

11 5 6 1 10

12 6 6 0 12

13 5 8 1 12

14 4 10 0 14
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Figure 5. Zeros of ζq(−k, x), q = 1/10, 1/20, 1/30, 1/40

Table 2. Approximate solutions of ζq(−k, x) = 0, q = 1/2, x ∈ R

degree n x

1 0.33333

2 −0.13807, 0.8047

3 −0.42060, 0.22004, 1.2006

4 0.6547, 1.5273

5 0.08542, 1.0854, 1.7866

6 −0.4719, 0.5160, 1.528, 1.958

7 −0.8424, −0.05293, 0.9471

8 −1.0017, −0.6275, 0.3779, 1.378

9 0.19123, 0.8088, 1.805

10 −0.7586, 0.23965, 1.2396, 2.1965.085502

We observe a remarkably regular structure of the complex roots of the ζq(−k, x).

We hope to verify a remarkably regular structure of the complex roots of the ζq(−k, x)
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Figure 6. Zeros of ζq(−k, x), q = −1/10,−1/20,−1/30,−1/40
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Figure 7. Stacks of zeros of ζ1/2(−k, x)

(Table 1). Next, we calculated an approximate solution satisfying ζq(−k, x) = 0, x ∈

C. The results are given in Table 2, Table 3, and Table 4. Finally, we shall consider

the more general problems. Prove that ζq(−k, x)) = 0 has n distinct solutions. Find

the numbers of complex zeros Cζq(−k,x) of ζq(−k, x), Im(x) 6= 0. The number of real
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zeros Rζq(−k,x) lying on the real plane Im(x) = 0 is then Rζq(−k,x) = n − Cζq(−k,x),

where Cζq(−k,x) denotes complex zeros. See Table 1 for tabulated values of Rζq(−k,x)

and Cζq(−k,x). We prove that ζq(−k, x), x ∈ C, has Im(x) = 0 reflection symmetry.

(Figs. 4–6). For related topics the interested reader is referred to [2,3,4,5,6,7,8,9].

Table 3. Approximate solutions of ζq(−k, x) = 0, q = 1/5, x ∈ R

degree n x

1 0.16667

2 −0.20601, 0.53934

3 −0.3009, −0.10220, 0.9031

4 0.24627, 1.2384

5 −0.3717, 0.5951, 1.5439

6 −0.6447, , −0.05472, 0.9453, 1.8195

7 0.29446, 1.2945, 2.0634

8 −0.3562, 0.6437, 1.6473, 2.2696

9 −0.863,−0.007003, 0.9930, 2.025, 2.416

10 −1.019, −0.660, 0.34230, 1.3423

Table 4. Approximate solutions of ζq(−k, x) = 0, q = −1/2, x ∈ C

degree n x

1 −1.0000

2 −1.0000 − 1.4142i, −1.0000 + 1.4142i

3 −1.8846, −0.5577 − 2.5665i, −0.5577 + 2.5665i

4 −2.076 − 1.256i, −2.076 + 1.256i, 0.0756 − 3.5686i,

0.0756 + 3.5686i

5 −2.739, 1.951 − 2.402i, −1.951 + 2.402i, 0.820− 4.468i,

0.820 + 4.468i

6 −2.999 − 1.188i, −2.999 + 1.188i, −1.640 − 3.461i,

−1.640 + 3.461i, 1.640 − 5.290i, 1.640 + 5.290

7 −3.58, −3.019 − 2.313i, −3.019 + 2.313i, −1.206 − 4.451i,

−1.206 + 4.451i, 2.514 − 6.052i, 2.514 + 6.052i

8 −3.88 − 1.15i, −3.88 + 1.15i, −2.876 − 3.382i, −2.876 + 3.382i

−0.680 − 5.384i, −0.680 + 5.384i, 3.431 − 6.766i, 3.431 + 6.766i
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