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Abstract: Cleavage fracture has been an important subject for engineers primarily because of its 
catastrophic nature and consequences.  Experimental studies of cleavage fracture did reveal a 
considerable amount of scatter and provided evidence of noticeable constraint effects.  This did 
provide the motivation for the development of statistical-based and micromechanics-based 
methods in order to both study and analyze the problem. The Weibull stress model, which is 
based on the weakest link statistics, uses two parameters (m and σu) to effectively describe the 
inherent distribution of the micro-scale cracks once plastic deformation has occurred and to 
concurrently define the relationship between the macro-scale and micro-scale driving forces for 
cleavage fracture. In this paper, we present the results of a recent study at evaluating the 
constraint effects on cleavage fracture toughness.  This was done numerically using a constraint 
function (g(M)) derived from the Weibull stress model.  The non-dimensional function (g(M)) 
describes the evolution of constraint loss effects on fracture toughness relative to the reference 
plane-strain, small scale yielding (SSY) condition (T-stress = 0).  We performed detailed finite 
element analyses of single-edge notched bending specimens  and computed the non-dimensional 
g(M) functions for them. The g(M) function varies with (i) the Weibull modulus, (ii) material 
flow properties, and (iii) specimen geometry, but not with absolute size of the test specimen.  
Knowing the g-function, the fracture driving force curve can be constructed for each absolute size 
of interest. 
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1.  INTRODUCTION 

 
Failure from fracture can occur for many reasons, to include uncertainties arising 

from the following: (a) loading and/or the environment, (b) defects in the material, (c) 
inadequacies in design, and (d) deficiencies in construction or maintenance, to name a 
few. Failure of load-bearing components can be catastrophic, so fracture is a desirable 
and important consideration for engineers in attempting to design large-scale structures, 
such as, automobiles, airplanes, power plants and bridges.  

 
In ferritic steels, a large amount of scatter was consistently revealed by the 

macroscopic values of fracture toughness (Jc, KJc), when measured experimentally over 
the lower end of the ductile-to-brittle transition (DBT) range (Wallin, 1984; Sorem, 
1991).  In the presence of significant plastic deformation along the crack front and in this 
temperature range,  the transgranular  cleavage is  conducive  for the  promotion of brittle  
______________ 
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fracture.  To convincingly describe the observed scatter while being consistent with 
common observations of single carbide that initiates cleavage along the crack front, 
models generally adopt the weakest link approach (Beremin, 1983; Wallin, 1984; Lin, 
1986). The fracture process is driven by the volume of highly stressed material ahead the 
crack front. Specimen/component geometry, size, loading mode (e.g. tension versus 
bending) and material flow properties do exert a profound influence on the elastic-plastic 
stress fields at the crack front. The interaction of the plastic regions ahead of the crack 
front with nearby traction free boundaries breaks down the single parameter 
characterization of the crack front stresses, in terms of the J-integral (Rice, 1968).  

 
A complex (nonlinear) relationship between the three-dimensional crack front 

stresses, the applied J-value, which varies along the crack front, and the corresponding 
stressed volume of material at the crack front drives the weakest link mechanism 
(Moinereau, 1996; Weisner, 1996; Ruggieri, 1998; Gao, 1998).  In an attempt to mitigate 
these complexities, testing standards for the measurement of cleavage fracture toughness 
in the DBT range (ASTM E1921, 1998) require selection of the specimen type, size, and 
loading mode to ensure that essentially plane strain, small-scale yielding (SSY) 
conditions exist along the crack front at the time of fracture. The commonly used 
specimens include: (a) the single-edge notched bending specimens (SE(B)), and (b) the 
compact tension specimens (C(T)) with crack length (or depth) (a) to specimen width (W) 
ratios, a/W ≥ 0.5.  However, even these deep-notch geometries eventually lose the small-
scale yielding (SSY) condition at large J-values (Mudry, 1989). Therefore, the 

deformation limits of the form itc MJbM lim0 / >= σ  were imposed on the testing 

standards.  In this expression, b denotes the length of the remaining ligament, σ0 
represents the yield stress and Mlimit defines the non-dimensional deformation limit. 

 
The values specified for Mlimit are important for delineating the minimum 

allowable specimen size for material testing.  The test standard ASTM E1921, specifies 
Mlimit to be equal to 30.  The Charpy size specimens can be tested from this value in the 
lower transition region for common structural and pressure vessel steels.  The Mlimit = 30 
value was selected based on an experimental basis. Three-dimensional finite element 
analyses of the single-edge notch (SE(B)) and compact tension (C(T)) specimens by 
Nevalainen and co-workers (1995) suggest Mlimit ≈ 60–80 for the purpose of maintaining 
small-scale yielding (SSY) conditions on the center plane for moderately hardening 
materials.  

 
For testing small specimens having low M values at fracture, a suitable 

deformation limit becomes significant. For example, to assess the integrity of the pressure 
vessel of a nuclear power plant, one needs to test sub-size specimens because of limited 
availability of material (material extracted from surveillance capsules).  However, these 
sub-size specimens are difficult for the purpose of the following the ASTM standard 
E1921.  Hence, this calls for a toughness scaling model to be developed, such that the test 
results on a standard SE(B) specimen can be scaled to sub-sized specimens. 

 
In this paper, we focus on investigating the constraint loss effects using the 

constraint function, g(M), proposed by Gao and Dodds (2000) based on the Weibull 
stress model (Beremin, 1983).  We study the nonlinear response of a series of SE(B) 
specimens having crack length to specimen width ratios of  a/W = 0.1 and 0.5,  specimen 
 



Constraint Effects on Cleavage  Fracture  Toughness                                            447 
 
width to thickness ratios of W/B = 1 and 2, and with or without side grooves (20% side-
grooves: 10% each side) and compute the constraint function g(M) for each of them.  The 
parametric study considers three sets of material flow properties for (i) n = 5, 10 and 20, 
where n represents the strain hardening exponent, and (ii) E/σ0 = 800, 500 and 300, where   
E is the Young’s modulus.  This selection on n and E/σ0 represents a wide range of 
ferritic steels.  Effects of scatter in local toughness values were incorporated into the 
analysis by varying the Weibull modulus for m = 8, 12, 16 and 20.  We attempt to 
introduce the applied load by rollers, which are in contact with the specimen (realistically 
represents the actual experimental set-up), thereby the anticlastic bending effect can be 
captured. The results demonstrate the strong constraint effect on cleavage fracture 
toughness and how different parameters influence this effect. 

 
2.   WEIBULL STRESS MODEL 

 
In ductile-to-brittle transition (DBT) region, fracture specimens fail by 

transgranular cleavage in the presence of significant plasticity. Transgranular cleavage 
fracture develops from slip-induced cracking of carbides, generally located at and along 
the grain boundaries, followed by unstable propagation of the resultant cracks into the 
surrounding ferrite matrix (McMohan, 1965). Experimental studies have convincingly 
shown that the process becomes strongly driven by a single critical cleavage event at the 
metallurgical scale that triggers macroscopic brittle fracture (Hahn, 1984; Wang, 1991). 

 
Due to microstructural inhomogeneity of the material, such as, carbide particle 

distribution, carbide particle shape, and carbide particle orientation, volume sampling 
effects play an important role to quantify the large, observed scatter in fracture toughness 
data measured in the transition region. When constraint levels vary under increased 
loading (for example, due to the influence of nearby traction free boundaries on crack-
front plastic zones), single parameter characterization (using J) breaks down and there 
develops a complex, nonlinear interaction between the constraint levels and the 
probabilistic modeling. 

 
In the local approach to model cleavage fracture, the probability distribution (Pf) 

for  fracture stress of a cracked solid at a global load level KJ or J has been shown to 
follow a two-parameter Weibull distribution (Beremin, 1983; Mudry, 1987; Minami, 
1992) of the form 
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In this expression V denotes the volume of the cleavage fracture process zone, V0 defines 
a reference volume for dimensional correctness and σ1 is the maximum principal stress 
acting on material points inside the fracture process zone (i.e., the plastic zone). 
Parameters m and σu in Equation (1) define the Weibull modulus and the scale parameter 
of the Weibull distribution. The Weibull modulus is related to size distribution of the 
microscopic cracks and the scale parameter helps in characterizing the micro-scale 
fracture toughness. 
 

Equation (1) was derived by Beremin  (1983) based on the weakest link statistics, 
which introduces a local fracture parameter, the Weibull stress (σw) 
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The Weibull stress provides a local crack-front parameter that serves to couple remote 
loading with a micromechanics model that incorporates the statistics of microcracks. 
Under increased remote loading described by KJ or J, intrinsic differences in the 
evolution of Weibull stress (σw) reflect the strong variation in crack-front stress fields 
arising from the effects of constraint loss and volume sampling. The inherently three-
dimensional formulation for σw defined by Equation (2) readily accommodates variations 
in KJ or J along the crack front. 

 
Under the plane-strain, small-scale yielding (SSY) conditions, the volume of the 

cleavage process zone (i.e., plastic zone) scales with thickness 2)( JB × . The relationship 

between σw and J leads to a simpler form (Gao et. al., 1998) 
2JBm

w
ςσ =              (3) 

In this equation ς denotes a constant that depends only on the material flow properties 
(E/σ0, υ, and n) and the Weibull model parameters (m and V0).   B is the thickness of the 
test specimen. 
 

For three-dimensional fracture specimens, the stress and deformation fields vary 
over the thickness.  Generally, the mid-plane stresses have the largest values with sharp 
reductions at the traction-free outside surfaces. Thus, the contribution to Weibull stress 
(σw) from each material point in the thickness direction can vary significantly.  
Consequently, the simple effect of specimen thickness on cleavage probability suggested 
by Equation (3) no longer applies.  To quantify the non-uniformity of stress and 
deformation fields along the crack front direction (Z-direction), Gao and Dodds (2000) 

introduced a Weibull stress density function,
w
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Dimensional analysis suggests, and numerical experiments confirm, that 
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ςσ = , where s = Z/(B/2) denote the non-dimensional location of a point on 

the crack front, and the function f(M, s) remains the same for all geometrically similar 
specimens for a given material.  As a result, 
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Equation (4) defines a non-dimensional constraint function, g(M), that characterizes the 
amount of constraint loss once SSY conditions degenerate in specimens under increased 
plastic deformation.  The constraint function equals to 1.0 for all materials under plane-
strain, SSY conditions with T = 0. For a specific specimen configuration, 3D non-linear 
finite element analyses and Weibull stress computations produce the σw versus Javg 
(through-thickness average J) results. With the ς value determined from the SSY 
solution, the value of the g can be calculated from Equation (4) at each deformation level. 
 

3.  THE NUMERICAL MODEL 
 
3.1 Finite element model 
 

Non-linear finite element analyses were performed using MSC/Patran (2005) for 
meshing, loading and ABAQUS/Standard (2007) for solving.   Various configurations of  
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the single-edge notched bending specimens (SE(B)) were studied.  Each fracture model 
consisted of three-dimensional, 8-node hexahedral elements with full integration 

222 ×× gauss quadrature. Use of the hybrid formulation helps minimize the volumetric 

locking as the  deformation  progress into the fully plastic, incompressible mode. The J-
integrals were evaluated using a domain integral procedure with the domains defined 
outside of the material experiencing severe element distortion.  The computed J-values 
exhibit domain independence. ABAQUS computes the J-value at each crack front node 
location at each loading increment. The average J-value through the thickness provides a 
convenient parameter to characterize the average intensity of far-field loading on the 
crack front and therefore, the J-values obtained from ABAQUS are averaged along the 
crack front. 
 
3.2 Constitutive model 
 

The material model employed in the parametric studies follows a J2 flow theory 
with conventional Mises plasticity. The finite element computations were performed 
within the finite-strain framework. The uniaxial true stress-logarithmic strain curve obeys 
a simple power-law hardening model preceded by a purely linear response prior to plastic 
flow, 
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Where in this expression σ0 is the yield stress, ε0 is the yield strain, and n is the strain 
hardening exponent. A user defined subroutine (UHARD) was used to implement this 
material model into ABAQUS. Computational results are presented for the following 
three cases: (i) a strongly hardening material (E/σ0 = 800, n = 5) characteristic of civil and 
marine structural steels, (ii) a moderately hardening material (E/σ0 = 500, n = 10) 
characteristic of many pressure vessel and pipelines steels, and (iii) a very low hardening 
material (E/σ0 = 300, n = 20).  For all computations the Poisson’s ratio υ was taken to be 
equal to 0.3. 
 
3.3  Three-Dimensional (3-D) Finite Element Model for the SE(B) specimen 
 

Non-linear finite deformation analyses was performed on a series of geometries: 
(i) Plane-sided SE(B) specimens with a/W = 0.1 and 0.5, W/B = 1 and 2, and  
(ii) Side-grooved (10 percent each side) SE(B) specimens with a/W = 0.1 and 0.5, 

W/B = 1 and 2.  
Here a represents the crack length, W represents the specimen width and B represents the 
specimen thickness. A mesh configuration having 30 – 50 focused rings of elements in 
the radial direction surrounds the crack front (see Figure 1-2). The crack tip has a small, 
initial radius (see Figure 3) to facilitate enhancing convergence of the finite-strain 
solutions. Under increased loading, extensive distortion of the element at the notch root 
prevents convergence of the global Newton iterations. Therefore, several different 
meshes were employed for each specimen with increasingly larger initial root radius. A 
recent study by Gao and Dodds (2000) has revealed that there will be no effect of initial 
root radius on stress distribution ahead of the crack-tip once ρ/ρ0 > 2.5; where ρ0 is the 
initial root radius ρ is the deformed root radius. To limit the effect of the initial root 
radius (ρ0) on the Weibull stress calculations, the analyses use finite element models 
having three different root radii of 1.2 µm, 2.5 µm and 5 µm. The model with the smallest  
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root radius provides Weibull stress results early in the loading history at relatively low J-
values. At the larger J-values, element distortions along the crack front reach 
unacceptable levels using this model. The second model, having larger initial root radius 
permits loading to much higher J-values. At intermediate J-values, all the models 
essentially generate identical results, providing a verification of this strategy. For all 
specimen sizes, meshes in the crack front region have a fixed element density. This 
eliminates possible near-front meshing effects as size of the specimen increase. 
  

Due to symmetry, only a quarter of the specimen needs to be meshed. The mesh 
having 15 – 16 variable thickness layers defined over the half-thickness. The thickest 
layer lies at Z = 0 while the thinner layers were defined to be near the free surface (Z = 
B/2) to accommodate strong Z variations in the stress distribution.  The quarter-
symmetric 3-D SE(B) specimen having a deep-crack contains 32,200 elements to 26,000 
elements based on different initial crack-tip radius, whereas for a specimen having a 
shallow crack 24,600 elements to 20,000 elements based on different initial crack-tip 
radius. 

 
We apply displacement boundary condition to the finite element model by 

defining frictionless contact between the rigid rollers and the specimen; one being the 
loading roller while the other is the support roller (see Figure 1). The reference node of 
each of the roller has prescribed displacement, transverse displacement is given to the 
loading roller and all other directions set to zero and for the support roller all the direction 
are set to zero. At load levels well beyond the formation of plastic hinge, the outermost 
nodes develop a small uplift (tension) force showing presence of anticlastic bending (Gao 
and Dodds, 2000). 

 

 
Figure 1. Quarter-symmetric finite element model for a plane-sided SE(B) specimen 
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Figure 2. Quarter-symmetric finite element model for a side-grooved SE(B) specimen 

 
 

3.4 The Small Scale Yielding model (SSY) 

 
The plane-strain, SSY (T = 0) stress fields define a high constraint, reference 

crack-front condition for the purpose of assessing constraint loss for three-dimensional 
geometries. This study makes use of a boundary layer model (Larrson, 1973; Rice, 1974) 
where the plastic zone remains small compared to the outer boundary radius (see Figure 
3).  Under the plane-strain, SSY conditions, the local J as well as the stress and 
deformation fields remain identical at each crack front location over the thickness.  This 
idealized model defines a severe constraint level that is attainable in the real fracture 
specimens only at low loading levels. This reference condition is used to interpret the 
three-dimensional results.  

 
With the plastic region limited to a small fraction of the domain radius (R) 

included in the model (Rp < R/20), the general form of the asymptotic crack-tip stress 
fields in the region well outside of the plastic region is given by (Williams, 1957)  
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In this equation K is the stress intensity factor fij(θ) defines the angular variations of in-
plane stress components, and the non-singular term T represents a tension (or 
compression) stress parallel to the crack plane. Numerical solutions for T = 0 are 
generated by imposing displacements of the elastic, Mode I singular field on the outer 
circular boundary (r = R) that encloses the crack 
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The SSY model used for analysis (see figure 3) has one layer of 2,770 three-
dimensional elements with plane-strain constraints (w = 0 imposed at all nodes). Under 

the plane strain, SSY conditions EKJ /)1( 22 υ−= . 

 
By coupling the finite element results for the SSY model with Equation (3), 

accurate values of the Weibull stress can be obtained for any loading level (J) in SSY. 
The constant ς in Equation (3) can be calculated for a given m and applied J value 
obtained from ABAQUS. Finite element results are used once the deformed root radius 
exceeds ×5.2  the initial radius. This scheme minimizes the effects of initial notch root 

radius and near tip meshing.  Simple scaling of the SSY Weibull stress values to the 
thickness of a SE(B) specimen as provided by Equation (3) provides values for an 
assessment of the loss in constraint.  

 
 
 

 
Figure 3. (a) The small-scale yielding (SSY) model.  

(b) Near-tip mesh, where the initial root radius is 2.5 µm  

 
3.5 Numerical computation of the Weibull stress 
 

Numerical evaluation of the Weibull stress, defined by Equation (2), using the 
finite element results proceeds as follows. Let |J| denote the determinant of the standard 
coordinate Jacobian between the deformed Cartesian coordinates xi and the parametric 
coordinates ηi. Using standard procedures for integration over element volumes, the 
Weibull stress takes the form 
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where ne is the number of elements inside the fracture process zone. The process zone 
includes all material points that experience plastic deformation. This expression for the 
Weibull stress represents an integral form in parametric space of Beremin’s formulation 
(Beremin, 1983). A post-processing program is developed in FORTRAN to compute the 
Weibull stress using the finite element results of ABAQUS. 
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The reference volume (V0) is taken to be 1 mm3 for purpose of convenience in all 

calculations. As Equation (1) indicates, the Weibull stress scales with this reference 

volume. A change of the reference volume from V0 to 0V  requires scaling of σu to uσ  

such that m

u

m

u VV σσ ×=× 00  maintaining identical failure probabilities. 

 
4.   NUMERICAL RESULTS 

 
This section describes key results derived from detailed three-dimensional finite 

element analyses of the SE(B) specimens. The through-thickness average value of J 
quantifies the level of applied loading. The non-dimensional parameter M = bσ0 / Javg 
defines the loading level scaled to the specimen size (b denotes the remaining ligament 
length).  

 
The non-dimensional constraint function (g(M)) depends on the material flow 

properties and the Weibull modulus, but not on the absolute size of the specimen. Larger 
values of g(M) indicate higher levels of crack front constraint. For the plane strain, SSY 
configuration (T = 0), g(M) = 1.0 regardless of material properties. For the fracture 
specimens, g(M) decreases as deformation progresses as a result of constraint loss and the 
deformation level (M) at which g(M) falls below unity depends on both material flow 
properties and the Weibull modulus. 

  
Knowing the non-dimensional constraint function (g(M)) for a specimen 

geometry enables construction of the σw versus J curves (fracture driving force curve) for 
all geometrically similar specimens without additional finite element analyses. For 
example, by modeling a 1T SE(B) specimen (thickness = 25mm) with B = W, S = 4W and 
a/W = 0.5, the generated non-dimensional constraint function g(M) remains valid for all 
SE(B) specimens having sizes proportional to this 1T specimen. The parameter study 
described here considers three sets of material flow properties, n = 5, 10 and 20 having 
strengths E/σ0 = 800, 500 and 300 respectively, which represents a wide range of ferritic 
steels. Effects of scatter in the local toughness values enter the simulations by varying the 
Weibull modulus with m = 8, 12, 16 and 20.  

 
A single set of finite element analyses of a 1T specimen generates the constraint 

function g(M) for each different set of material flow properties. Each set of the analyses 
uses three models that differ in size of the initial root radius, namely: (a) 1.2 µm, (b) 2.5 
µm, and (c) 5 µm (refer to section 3.3). The smaller radius model provides the Weibull 
stress values early in the loading.  At the higher loading levels, the larger radius model 
becomes necessary to avoid excessive distortion of the mesh at the crack front. In both 
cases, the numerical results are considered valid only when the deformed root radius 
exceeds ×5.2  the initial radius. 

4.1 Effect of different material properties on constraint loss g(M) 

Here we consider a plane-sided SE(B) specimen with a/W = 0.5, W = B and S = 
4W.  In Figures 4-6 is shown the computed g(M) function for each of the three material 
property sets. The g-function describes the evolution of constraint loss over the loading 
history relative to the plane-strain SSY reference condition (zero T-stress).  When the 
small scale yielding condition no longer prevails in the specimens under increased plastic  
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deformation, the g-function values fall well below 1.0 capturing the complex relationship 
between Weibull stress, local crack-front stress and average value of J integral across the 
crack-front. At low load levels (M > 200), portions of the g-function curves generally lie 
above 1.0 for the larger m values. This behavior is due to the positive T-stress inherent in 
deep-notch SE(B) geometry. The positive T-stress raises the Weibull stress above the 
SSY (T = 0) value until constraint loss from an increase in plastic deformation eventually 
causes the crack-front stresses and the Weibull stress (σw), to fall below SSY levels, 
leading to g(M) < 1.0.  The smaller m values cause g(M) to drop below 1.0 even at the 
low load levels since they increase the relative contribution to σw from the lower stressed 
material situated at greater distance from the crack-front and near the free surface. 

The n = 10 and n = 20 material shows more constraint loss at higher deformation 
levels whereas n = 5 shows less loss of the constraint.  The n = 10 material with m = 20, 
shows positive T-stress (T > 0) effect. For n = 5 material with m = 20, we need a smaller 
crack tip radius mesh to capture the constraint loss in lower deformation level (i.e., higher 
values of M). When plastic deformation increases the constraint function (g(M)) 
decreases. For deformation M < 100, we see a severe loss of the constraint in each of the 
material sets.  
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Figure 4. The non-dimensional constraint function, g(M), for square cross-section 

SE(B) specimens. The material flow properties are n = 20, E/σ0 = 300 and υ = 

0.3 
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Figure 5. The non-dimensional constraint function, g(M), for square cross-section 

SE(B) specimens. The material flow properties are n = 10, E/σ0 = 500 and υ = 

0.3 
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Figure 6. The non-dimensional constraint function, g(M), for square cross-section 

SE(B) specimens. The material flow properties are n = 5, E/σ0 = 800 and υ = 

0.3 
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4.2 Effect of different crack-length on the constraint loss g(M) 

Here, we consider a plane-sided SE(B) specimen with a/W = 0.1, W = B and S = 
4W for the n = 10, E/σ0 = 500 and υ = 0.3 material.  In Figure 7 is shown the computed 
constraint function g(M).  The shallow cracked specimens show very low constraint 
levels and also the constraint curves for different Weibull modulus m are very close 
indicating a smaller effect of the parameter m.  Comparing Figure 5 and Figure 7, i.e., 
a/W = 0.5 (deep crack) and a/W = 0.1 (shallow crack), we observe the a/W ratio to 
strongly affect the constraint level (the shallow crack specimen shows very low constraint 
levels when compared to the deep crack specimen). 

4.3 Effect of different cross-sections on the constraint loss g(M) 

Here we consider a plane-sided SE(B) specimen with a/W = 0.5, W = 2B and S = 
4W for the n = 10, E/σ0 = 500 and υ = 0.3 material. Figure 8 shows the computed g(M) 
function. The constraint loss increases once the deformation level goes beyond M < 150. 
The smaller values of m show lower constraint level since they increase the relative 
contribution to Weibull stress from lower stressed material. Comparing Figure 5 and 
Figure 8, i.e., W = B (square cross-section) with W = 2B (rectangular cross-section), we 
do observe that the square cross-section shows higher constraint levels than the 
rectangular cross-section.  
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Figure 7. The non-dimensional constraint function, g(M), for square cross-section 

SE(B) specimens. The material flow properties are n = 10, E/σ0 = 500 and υ 
= 0.3 
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Figure 8. The non-dimensional constraint function, g(M), for rectangular cross-section 

SE(B) specimens. The material flow properties are n = 10, E/σ0 = 500 and υ = 

0.3 
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Figure 9. The non-dimensional constraint function, g(M), for side-grooved, square 

cross-section SE(B) specimens. The material flow properties are n = 10, E/σ0 

= 500 and υ = 0.3 
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4.4 Effect of side-grooved and no side-groove specimen on constraint loss g(M) 

In this study we consider a SE(B) specimen with a/W = 0.5, W = B, S = 4W  and having 
side-grooves (20% of thickness) for a material having n = 10, E/σ0 = 500 and υ = 0.3. .  In 
Figure 9 is shown the computed g(M).  Comparing Figure 5 and Figure 9, i.e., plane-
sided specimen and side-grooved specimen, we observe the side-grooves increase the 
constraint levels. 

4.5 Discussions 

The specimens are loaded using a rigid roller by defining frictionless contact 
instead of directly applying nodal displacements on specimen surface provided evidence 
of the anticlastic bending effect away from the center plane. The nodes away from the 
center plane experienced zero load, i.e., the specimen was no longer in contact with the 
roller due to the anticlastic bending. Let s = Z/(B/2) denote the non-dimensional location 
of a point on the crack front.  A plot of contact pressure (P) versus the non-dimensional 
location (s) is shown in Figure 10.  This figure reveals the contact pressure to be 
maximum at the mid-plane (Z = 0) and approaches zero at the surface. The contact 
pressure approaching zero at the surface indicates the presence of anticlastic bending 
effect locally near the surface. 
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Figure 10. Contact pressure distribution at the nodes in contact with loading roller at 

four deformation levels (M = 200, 100, 50, 30) for the a/W = 0.5, W = B, 

SE(B) specimen 

Figures 11-12 show the evolution of the Weibull stress density across the crack 
front under increased loading for a representative Weibull modulus of m = 8.  For the 
specimen loaded with rigid frictionless contact is shown in Figure 11, while  Figure 12 is 
for the specimen loaded directly by applying nodal displacement. These plots show the 
maximum densities to be at the center-plane for all loading levels.  Further, we can  

s = Z/(B/2) 

n = 10, E/σ0 = 500 

P (MPa) 
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observe that the Weibull stress density for the specimen loaded with roller and the 
specimen with direct load are not much different.  Consequently, the fracture driving 
force predicted by the two models should be almost the same. 
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Figure 11. Normalized Weibull stress density distribution for the a/W = 

0.5, W = B, SE(B) specimen loaded through roller at four deformation levels 

(M = 200, 100, 50, 30), where the Weibull modulus m = 8 
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Figure 12. Normalized Weibull stress density distribution for the a/W = 0.5, W = B, 

SE(B) specimen by direct displacement loading at four deformation levels 

(M = 200, 100, 50, 30), where the Weibull modulus m = 8 
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5.  CONCLUSIONS 

 
 For a given type of specimen and a specific material, the non-dimensional 
function, g(M), defines constraint evolution. Larger values of g(M) imply higher levels of 
constraint; g(M) = 1.0 for plane strain, SSY (with T-stress = 0), while for the SE(B) 
specimens, g(M) decreases as deformation level increases.  
 
 The g-function remains identical for all geometrically similar specimens 
regardless of their absolute sizes. Knowing the g-function for a specimen geometry 
enables construction of the fracture driving force curves (σw versus J) for all 
geometrically similar specimens of the same material without additional finite element 
analysis. 
 
 The n = 5 material shows less constraint loss than the materials having n = 10 and 
n = 20. The a/W ratio greatly affects the Weibull stress (σw) and hence the constraint 
function g(M). As a result, shallow cracked specimens have low Weibull stress (fracture 
driving force) compared to the deep cracked specimens for the same J-level. Comparing 
specimens with different W/B ratios, we observe that W/B = 1 (square cross-section) 
shows slightly more constraint than the W/B = 2 (rectangular cross-section) for the deep 
crack configuration. Comparing the side-grooved and plane-sided specimens, we observe 
higher constraint in the side-grooved specimens than the plane-sided specimens.  
 
 For the specimens considered in this study anticlastic bending occurs as 
deformation increases. However, it has negligible effect on the Weibull stress and hence 
the constraint function g(M). An absence of this effect is because almost all contributions 
to the Weibull stress are from layers near the mid-plane, whereas the layers near the free 
surface have little contribution to the Weibull stress (refer to Figure 11).  
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