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Abstract. In the present paper, we proposed a new efficient rank updating methodol-
ogy for evaluating the rank (or equivalently the nullity) of a sequence of block diago-
nal Toeplitz matrices. The results are applied to a variation of the partial realization 
problem. Characteristically, this sequence of block matrices is a basis for the compu-
tation of the Weierstrass canonical form of a matrix pencil that appeared in many 
practical numerical applications in control theory.     
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1. Introduction-Preliminary Results  

In several fields of applied mathematics, for instance in matrix pencil and control 

theory, in numerical linear algebra, even in Markov Chains, in financial and actuarial 

models (see, for instance the Bonus-Malus pricing policy model), a sequence of block 

of Toeplitz matrices are often appeared.  

Consider the sequence of block Toeplitz matrices, see [1] (known in the literature 

also as “Matrices of the Weyr characteristics”), [9] and [2], as follows       
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J  

where ,  m n
A B

×∈ F  (   or= � �F= ) and ( ) ( )1 1i m i n

i

+ × +
∈J F  for i ∈� . In this paper, for no-

tion’s simplicity, we denote 
i

J , for i ∈� , to be the ( ),A B -sequence of matrices. In 

what it follows, we suppose that m n≥ .  

It is not meaningless to say that the computation of rank of the ( ),A B  -sequence 

of matrices is a very important and a computationally challenging aspect, as well. 

However, it should be clarified that the efficient formulation of the algebraic to an 

equivalent numerical problem is more than essential. Consequently, in the present pa-

per, we specify an appropriate numerical transformation of the theoretical notion of 

the rank (or equivalently of the nullity) of a matrix to an equivalent computational 

framework (see next section). This approach will form a basis of the proposed numer-

ical procedure which computes the required rank (nullity) of a given sequence of 

block bidiagonal Toeplitz matrix. Due to the nature of this sequence, we try to exploit 

firstly its structure and afterwards to propose a Rank Updating Technique (RUT) that 

attains the required computation of rank achieving the lowest complexity compared 

with other well-established methods.   

Finally, the new results may also be compared, see the results of [4], where a me-

thod of computing the ε -rank and ε -nullity of a matrix through the Singular Value 

Decomposition (SVD) method is proposed. This methodology is very standard, nu-

merically stable and it is being adopted by many Computer packages, although it has 

a remarkable computational complexity. Precisely, for m nA ×∈F , m n≥ , it requires 

2 32
2

3
mn n−  flops; see [3].  

The following interesting results are appeared on [4] and [5]. 

Definition 1.1 The numerical ε -rank of a m n× -matrix A  is defined by 

( ) ( ){ }min :  
B

r A rank B A Bε ε= − ≤    (1.1) 
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and the numerical ε -nullity is defined by 

( ) ( ){ }max :  n A nullity B A Bε ε= − ≤ .        (1.2) 

Considering to the authors’ knowledge, the following theorem describes the sim-

plest condition for the computational determination of the ε -rank ( ( )r Aε ) and the ε -

nullity ( ( )n Aε ) of a given matrix m nA ×∈F . 

Theorem 1.1 [5] For m nA ×∈F  and a given accuracy ε , it holds 

a) ( ) :r Aε  Number of singular values of A  that is greater to ε . 

b) ( ) :n Aε  Number of singular values of A  that is less or equal to ε . 

c) ( ) ( )r A n n Aε ε= − , when m n≥ . 

 

2. The main results  

In order to present the new algorithm, see session 3, the following theoretical re-

sults are required.  For the ( ),A B -sequence of matrices, we define the sequence of 

ranks, 
k

r  for k ∈�  

( )0 0r rank= J , 

( ) ( )1 1 0r rank rank= −J J , 

. . . 

( ) ( )1k k kr rank rank −= −J J . 

In what it follows, the next two lemmas are important. 

Lemma 2.1 { }k k
r

∈�
 is an increasing sequence.  

Proof. Remind that ( )0 0r rank= J .  

Now, the row space of 
0

t n m×∈�J  (i.e. the transpose matrix of
0 A≡J ) is produced,  

( ) ( )
0

0 0 0

0 1 2, , ,t

rspan γ γ γ= KR J  
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where j

iγ  are independent row vectors, for i = 01, 2, , rK  and the k ∈�  step.  

Due to the construction of ( ),A B -sequence of matrices, the rows of 
1

tJ  are linear in-

dependent and 

( ) ( )
0 1

0 0 0 1 1 1 1

1 1 2 1 2, , , , , , , , ,
o

t

r r rspan γ γ γ γ γ γ γ= K K KR J . 

Thus, it is derived that 
1 0
r r≥ . Analogously,  

( ) ( )
0 1 2

0 0 0 1 1 1 1 2

2 1 2 1 2, , , , , , , , , , ,
o

t

r r r rspan γ γ γ γ γ γ γ γ= K K K KR J , 

and 
2 1

r r≥ . Working analogously, we finally obtain that 
1k k

r r+ ≥  for every step 

k ∈� .�  

In the next lemma, without lost of generality, we assume that the first k -row vec-

tors are linear dependent. 

Lemma 2.2 , m nA B ×∈ F  and 1, , n

o kv v
×∈K F  are dependent and 1

1, , n

k sv v
×

+ ∈K F  are 

independent row-vectors, respectively, such as 

1

t t

i iv A v B−= , for 1,2, ,i s= K .                 (2.1) 

Then, for an arbitrary 0N > , a sequence of vectors 1

1 1, , , , n

o N Nu u u u
×

− ∈K F  with 

N su λ≡  is always constructed satisfying the following recursive formula  

1

t t

j ju A u B−= , for every , 1, ,2,1j N N= − K ,     (2.2)  

Proof. When 0 t

sv = , we merely set 0t

ku =  for every 1 k s≤ ≤ . Profoundly, this case 

is not interesting. Consequently, we examine the case where 0t

sv ≠ .   

Since 1

1, , n

kv v
×∈K F  are dependent and 1

1, , n

k sv v
×

+ ∈K F  are independent row -

vectors, respectively, then    

1

s

k i ii k
v a v

= +
=∑  for 1, 2, ,k s= K  and 

i
a ∈ F . 

Afterwards, we denote V  which is a sub-space of 1 n×F  spanned from the independent 

row vectors 1,kv + 2 , ,k sv v+ K . Note that 0V ≠ , since 0t

sv ≠ . 

Then, we prove that for every v V∈ , there exists u V∈ , such as t tvA uB= . 
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Analytically, since v V∈ , then 1 1 2 21

s

i i k k k k s si k
v a v a v a v a v+ + + += +

= = + + +∑ K . 

By considering also expressions (2.1), it is derived 

( )
1 1 2 2 1 2 1 1

1 1 1 2 2 2 1 1    

t t t t t t t

k k k k s s k k k k s s

t

k k k k k s s k k s s

vA a v A a v A a v A a v B a v B a v B

a a v a v a v a v a v B

+ + + + + + + −

+ + + + + + + −

= + + + = + + +

= + + + + + +  

K K

% % %K K
 

( ) ( ) ( )1 1 2 1 1 2 3 2 1 1 1 1    

    

t

k k k k k k k k k s s s k s s

t

a a a v a a a v a a a v a a v B

uB

+ + + + + + + + + − − += + + + + + + +  

=

% % % %K
 

where 
1

s

i ii k
u b v

= +
=∑ , 

( )1 1i k i ib a a a+ += +% , for 1, 2, , 1i k k s= + + −K , 

and     
1i k s

b a a+= % , for i s= .  

Now, we are ready to construct the sequence of vectors 1 n

ju
×∈ F , as follows. 

Firstly, we denote 

N su v V∈� , 

then 

1Nu V− ∈ , such as 
1

t t

N Nu A u B−= . 

Successively, since 
1N

u V− ∈ , we can find all the other vectors satisfying (2.2).�  

Now, we have all the necessary supplementary tools to introduce the follo-wing 

theorem. It can be proven that whenever the rank of the ( ),A B -sequence of  

matrices at 1k +  step is equal to the k -th step, i.e. 1r + =k k , afterwards the sequence 

of ranks stays constant and it is equal to k .    

Theorem 2.1 If 1kr k+ = , for 0k ≥  then k jr k+ =  for every 2j ≥ . 

Proof. Since 1kr k+ =  for 0k ≥ , then the rows  

( )0 0 0 1 1 1 1 1 1

1 2 1 2 1 2
, , , , , , , , , , , ,k k k

k k k
γ γ γ γ γ γ γ γ γ+ + +K K K K  

span the row space of 
1

t

k +J .  

We will prove that for every 2j ≥ , the   
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( )0 0 0 1 1 1

1 2 1 2 1 2
, , , , , , , , , , ,k j k j k j

k k k
γ γ γ γ γ γ γ γ γ+ + +K K K K  

span the row space of t

k j+J , so 1k j kr r+ +≤ . Consequently, considering Lemma 2.1, it is 

proven that 
1k j kr r k+ += =  for every 2j ≥  which concludes the proof. 

Analytically, in order to go further it is sufficient to write the row vector 1

1

k

kγ +

+ , as a 

linear combination of the independent rows 
1 2, , , ,i i i

kγ γ γK , for every 0 1i k≤ ≤ + .  

Moreover, using the coefficients and the results of Lemma 2.2, an expression for the 

row vector of t

k j+J , i.e. 
1

k j

kγ +

+ , for 2j ≥  is determined as a linear combination of the 

independent row vectors, 

( )0 0 0 1 1 1

1 2 1 2 1 2
, , , , , , , , , , , ,k j k j k j

k k k
γ γ γ γ γ γ γ γ γ+ + +K K K K . 

In order to simplify the presentation of the proof, we introduce the following notation.  

We take   

1

2

t n m

k

n

a

a

A
a

a

×

 
 
 
 

= ∈ 
 
 
 
  

M
�

M

, where m

i
a ∈� , 1, 2, ,i n= K   

and    

1

2

t n m

k

n

b

b

B
b

b

×

 
 
 
 

= ∈ 
 
 
 
  

M
�

M

, where m

ib ∈� , 1, 2, ,i n= K . 

Moreover, we take  

 

1

2

k

a

a

a

 
 
 =
 
 
 

a
M

, i.e. the independent k -row vectors of matrix t
A , and 

1

2

k

b

b

b

 
 
 =
 
 
 

b
M

, i.e. the in-

dependent k -row vectors of matrix tB  

(Without lost of generality, we may assume that the first k - rows vectors are in-

dependent). 
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It is also important to denote the sub-matrices of t

i
J  as follows 

[ ]

0

1

0
0

; m

k

ρ

γ

γ

×

 
 

= ∈ 
 
 

a b M � , [ ]

1

1

1
1

;

k

γ

γ

 
 

=  
 
 

a b M , . . ., [ ]
1

;

i

i

i

k

γ

γ

 
 

=  
 
 

a b M , for i ∈� . 

Since the 
1kr k+ = , the row vector is written as 

[ ] [ ] [ ]1

1 0 1 10 1 1
; ; ;k

k k k
v v vγ +

+ + +
= + + +a b a b a bK .         (2.3) 

Now, the following expressions are derived by considering (2.3) and making so-me 

algebraic calculations.  

1 1k ka v+ += a , and 1 1k k kb v v+ +− =b a .   (2.4) 

Furthermore, the following sequence are also obtained,  

1k k
v v −=b a , 

1 2k k
v v− −=b a , . . . , 

1 0
v v=b a .      (2.5) 

Note that the 1k + -row vectors, 
0 1
, , ,

k
v v vK  in 1 m×� , are linear dependent. Thus, if we 

apply the results of Lemma 2.2 by considering the sub-matrices ,  a b , we construct 

the sequence of row vectors 
1k k j

v u + −≡ ,
2 3 1 0
, , , ,

k j k j
u u u u+ − + − K , such as 

1i i
u u −=b a  for 

every 1, 2,i k j k j= + − + −  , 2,1K . 

Consequently, the expressions (2.4) also hold and it is obtained the following se-

quence, 

 1 2k j k ju u+ − + −=b a , 2 3k j k ju u+ − + −=b a , . . . , 1 0u u=b a .  (2.6) 

Due to the structure of matrix t

k j+J , we observe that 
1k j ku u+ +=  and 

1k j kv v+ +=  for 

every 2j ≥ .  Moreover, combing the expression (2.3), (2.4) and (2.6), an analytical 

formula for the vectors 1

k j

kγ +

+  is constructed 

[ ] [ ] [ ] [ ] [ ]1 0 1 2 1 10 1 2 1
; ; ; ; ;k j

k k j k j kk j k j k j
v v v v vγ +

+ + − + − ++ − + − +
= + + + + +a b a b a b a b a bK . (2.7) 

Thus, it has been proved that 1

k j

kγ +

+ , for 2j ≥ , is a linear combination of the rows 

( )0 0 0 1 1 1

1 2 1 2 1 2
, , , , , , , , , , , ,k j k j k j

k k k
γ γ γ γ γ γ γ γ γ+ + +K K K K . 

The theorem is fully completed. �  
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Remark 2.1 Since, in the next session, an algorithm is being constructed for matrices 

,  A B , it should be noted that the results of Theorem 2.1 also holds for m n= . This is 

a straightforward result, given that 
1

1
n

r n n+ ≤ < + .  

The next examples clarify the importance of Theorem 2.1. Thus, in Example 2.1, 

it should be stressed out that even if two sequential ranks are equal, i.e. 
0 1

2r r= = , not 

earlier than the 4th step, i.e. r3+1
, we can assume that the final rank is being deter-

mined. In Example 2.2, a case where 
2 3 8r r≠ =  is provided. However, we can not de-

termine the rank of the sequence until the 9th step.      

 

Example 2.1 Let 

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

A

 
 
 =
 
 
 

 and 

1 0 0 0

0 0 1 0

1 1 0 0

0 0 0 0

B

 
 
 =
 
 
 

. 

 

 

We construct the sequence of matrices as follows.   

0
A=J  and ( )0 0 2r rank= =J . 

 
1

1 0 0 0 | 1 0 0 0 |

0 1 0 0 | 0 1 0 0 |

0 0 0 0 | 0 0 0 0 |

0 0 0 0 | 0 0 0 0 |

,| |

1 0 0 0 | 1 0 0 0 0 0 0 0 | 1 0 0 0

0 0 1 0 | 0 1 0 0 0 0 1 0 | 0 1 0 0

1 1 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0

0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0

   
   
   
   
   
   
   = − − − − − − − − − − − − − − − −
   
   
   
   
   
   
   

�J   

with ( )1 4rank =J  and 
1

2r = . 
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2

1 0 0 0 | 1 0 0 0 |

0 1 0 0 | 0 1 0 0 |

0 0 0 0 | 0 0 0 0 |

0 0 0 0 | 0 0 0 0 |

| |

0 0 0 0 | 1 0 0 0 | 0 0

0 0 1 0 | 0 1 0 0 |

0 0 0 0 | 0 0 0 0 |

0 0 0 0 | 0 0 0 0 |

| |

| 1 0 0 0 | 1 0 0 0

| 0 0 1 0 | 0 1 0 0

| 1 1 0 0 | 0 0 0 0

| 0 0 0 0 | 0 0 0 0

 
 
 
 
 
 
 − − − − − − − − − − − − − − − − − −
 
 
 
 =
 
 
 
 − − − − − − − −
 
 
 
 
 
 
 

�J

0 0 | 1 0 0 0 |

0 0 1 0 | 0 1 0 0 |
,

0 0 0 0 | 0 0 0 0 |

0 0 0 0 | 0 0 0 0 |

| |

| 0 0 0 0 | 1 0 0 0

| 0 0 1 0 | 0 1 0 0

| 0 1 0 0 | 0 0 0 0

| 0 0 0 0 | 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − − − − − − −
 
 
 
 
 
 
 

 

with ( )2 7rank =J  and 
2

3r = . 

Following the same procedure, we obtain  

( )3 10rank =J  and 
3 3r = ,  

( )4 13rank =J  and 
1

r =
3+

3 , 

( )5 16rank =J  and 
3 2

3r + = , etc. 

Example 2.2 Let     

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  

 

and        

1 1 0 0 0 0 0 1 / 2 0

0 0 1 0 0 0 0 0 0

3 3 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 0

1 1 1 1 1 0 0 0 0

2 1 2 1 1 0 0 0 0

0 0 1 3 0 0 0 0 0

B

− 
 
 
 
 
 
 =
 
 
 − −
 

− − 
 − 

. 
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We construct the sequence of matrices as follows.   

( )0 0 5r rank= =J ; ( )1 11rank =J  and 
1 6r = ; ( )2 19rank =J  and 

2 8r = , 

( )3 27rank =J  and 
3 8r = ; ( )4 35rank =J  and 

4 8r = ,  

( )5 43rank =J  and 
5

8r = ; ( )6 51rank =J  and 
6

8r = ,  

( )7 59rank =J  and 
7

8r = ; ( )8 67rank =J  and 
8

8r = ,  

and since ( )9 75rank =J  and r =8+1 8 . 

Unfortunately, only after the 9th step, we are sure about the rank of the sequence, i.e. 

9 8r = .   

Remark 2.2 (Tree Diagram) The whole procedure is presented densely through the 

following diagram. 

 

 

 

  

 

 

figure: Tree Diagram of the entire cases. 

In more details, for the ( ),A B -sequence of matrices, we suppose that ,A B
n n×∈�  and 

the ( )rank A 1 nρ= < , ( ) 2rank B nρ= < , respectively.  

Furthermore, the row vectors 
11 2, , ,e e eρK  and 

21 2, , , ρη η ηK span matrix A  and B , 

respectively. Then, the following cases are only appeared: 

1) If the row vectors 
11 2, , ,e e eρK  are independent with 

21 2, , , ρη η ηK , then 
1r =  

2 3r r= =K  and [ ]( )n
r rank B A=  for every 1n ≥ .  

2) If some of the row vectors 
11 2

, , ,e e eρK  are dependent with some of the row vec-

tors of  
21 2, , , ρη η ηK , then the following two cases should be consider: 

1

2

a

b

a1 

a2 

b1 

b2 

b1.I 

b2.I
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a) If the row vectors of 
11 2, , ,e e eρK (span the A ) are in different positions with 

the rows vectors of 
21 2

, , , ρη η ηK (span the B ), then, after some algebraic 

transformations, we obtain the equivalent matrix 

A A

B A B A

   
   
   

�
%%

. 

Afterwards, two sub-cases should be considered. These sub-cases are related to 

matrix A% .  

a1)  If the row vectors that span matrix A%  are in different positions with the rows 

vectors that span matrix B% , then 1 2 3r r r= = =K  and [ ]( )n
r rank B A=  for every 

1n ≥ . 

a2) Else, we obtain that [ ]( )n
r rank B A≠  for every 1n ≥ . 

b) Now, if some of the row vectors 
11 2, , ,e e eρK (span the A ) are in the same po-

sition with some of the row vectors 
21 2, , , ρη η ηK (span the B ), then two more 

sub-cases should be considered. 

b1) If the row vectors that span matrix B  are linear dependent with the rows 

vectors that span matrix A , then two sub-cases should be considered. 

b1.I)  If the row vectors that span matrix A%  are in different position with 

the row vectors that span matrix B% , then 
nr =  [ ]( )rank B A  for every 

1n ≥ . 

b1.II) Else, we obtain that [ ]( )n
r rank B A≠  for every 1n ≥ . 

b2)  Finally, if the row vectors that span matrix B  are linear dependent and 

are in different position, as well, with the row vectors that span matrix A , then 

[ ]( )n
r rank B A≠  for every 1n ≥ . 

Consequently, in some cases due to Remark 2.2, the number of steps that needed ac-

cording to equality, 
1

r + =
k

k , is already known from the very beginning. This remark 

can affect positively the speed of the algorithm.    
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3. Rank computation of the (A, B) sequence 

In this section, the algorithm for computing the ( ),A B -sequence of matrices is 

presented. However, to avoid transposing matrices ,A B , it is supposed that 

, n n
A B

×∈�  and ( )rank A 1 nρ= < , ( ) 2rank B nρ= < , respectively. Note that the re-

sults for rectangular matrices can easily derive. For the sequence above of matrices, 

two things are required to be computed: 

a) the rank of matrices 
iJ , for i ∈� , and 

b) the quantities ( ) ( )1i i ir rank rank −= −J J . 

In the vast literature of Numerical linear Algebra, the well known proposed me-

thods, see [3], [4], and the references within, for the computations above are 

• Gaussian Elimination Operations (LU or Gauss-Jordan) 

• Rank Revealing QR 

• Singular Value Decomposition (SVD). 

Adopting the SVD approach for each matrix 
i

J  and for a given accuracy ε , the 

ε -rank is computed by the relation (c); see Theorem 1.1. Although the special struc-

ture of ( ),A B -sequence of matrices, i.e. 
i

J , can be exploited by SVD, the rank com-

putation of each matrix iJ  does not positively effected by the already known rank of 

matrix 
1i−J . Thus, for each matrix 

iJ , its SVD is computed from the beginning and 

this approach requires much time and enough memory (cost) as the sequential steps 

are being increased.  

More specifically, for the rank computation of a matrix n n
A

×∈�  through SVD are 

required 34

3
n  flops, see [3]. Thus, for the rank calculation of each matrix 

i
J  of order 

in in×  are required ( )
34

3
in  flops. Consequently, if we compute the ranks of the 

( ),A B  sequence of matrices till the k -th step we obtain 

( )3 3 3 3 3 3 3 34 4
2 2 1 2

3 3
n n k n n k + + + = + + + K K  flops, 

thus 4 3k n  flops, totally. 
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An algorithm based on rank revealing QR decomposition (RRQR) has a better 

performance, since it exploits the structure of each matrix 
i

J , see [10]. The RRQR 

algorithm is applied each time to matrices having order size ( )nO  and it needs 3n  

flops for the calculation of rank for each 
i

J . Consequently, in the k -th step of the 

computation of rank for the ( ),A B -sequence, 3kn  flops are required. Obviously, the 

RRQR approach is theoretically 3k  times faster than SVD.  

In the next lines, a more efficient way for the rank computation based on the theo-

retical results of section 2 and the Gauss-Jordan transformation is presented. Before 

we go further, the next classical theorem is presented.  

Theorem 3.1 (Gauss-Jordan reduction) [3] Let n nA ×∈� , by applying the sequence of  

Gauss-Jordan transformations 
i

G , A  is transformed to the following diagonal matrix 

1 2 1

A

A n n

G

G A G G G G A−� L
1442443

       (3.1) 

where           

1

2

1 0 0

0 1 0

0 0 1

i

n n

ii

n

i

a

a

a

aG

a

a

×

 
− 

 
 

− 
= ∈ 
 
 
 −
  

L L

L L
�

M M L M L M

L L

 . 

Now, the algorithm is presented analytically, see also [8]. 

 

Rank Updating Technique (RUT) 

Alg. Step 1: Transform A  to diagonal form 
A

G A  using Gauss-Jordan transformations 

Gauss Jordan

Atransformations
A G A−→ , 

and ( )1 rank Aρ = (the none zero diagonal entries of  
AG A ). 

Alg. Step 2: Transform also B  to diagonal form, 

Gauss Jordan

Btransformations
B G B−→ , 

and ( )2 rank Bρ = (the none zero diagonal entries of  
A

G B ). 
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Alg. Step 3: Apply the above transformation to matrix 1

A

B A

 
=  
 

J
O

, it derives 

2 2A A n n

B B

G G AA

G G B AB A

×    
= ∈    

    
�

%

O OO

O
,  

and 

1

* | 0 0

* | 0 0

|

* | 0 0

* | * *

* | * *

|

* | * *

Μ

 
 
 
 
 
 
 = − − − − − − − −
 
 
 
 
 
 
 

L

L

O M O M

L

L

L

O M O M

L

J . 

Making the Gauss-Jordan reduction, we can proceed by applying the next step. 

Alg. Step 4:  

If in matrix BG B  exists rows proportional to the AG A  rows, we can zero them. Then, 

in sub-matrix BG B A  
%  the nonzero rows are gathered in the beginning. Thus, 

( )

( ) ( ) ( )

1

11 1

                                              

* | * *

|

* | * *

|

0 0 | * *

|

0 0 | * *

                                                                    

UL

B

LR

M

M G B A

M

 
 
 
 
  = = − − − − − −   
 
 
 
 
 

L

O M M

L
%

L L

M M M M

L L

( )1

 

Compute the rank of the matrix 
1J , using the relations  

( ) ( ) ( ) ( )( )1

1 1

M

Arank rank rank G A rank M= = +J J , 

Where 
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( )( ) ( )( ) ( )( )1 1 1

  
 

UL LR

number of
diagonal entries

rank M rank M rank M= +
14243

, 

and ( ) 11 p n

LRM
×∈� , 

1
p n≤ .  

Moreover, since ( ) ( )0 0 Ar rank rank G A= =J , then ( )( )1

1r rank M= . 

Else   

( )1

BM G B A =  
% . 

Then, the ( )( ) ( )1

1 Br rank M rank G B A = =  
% . 

Remark 3.1 From Alg. Step 4, the rank computation of matrix 
1J  requires the rank 

computation of a lower dimension matrix.  

This remark will be further enriched in the discussion of the computational algo-

rithm. Consequently, each time we will add a block of type ( )1

BM G B A =  
%  we will 

check its dependence with the nonzero upper part of the matrix. This idea leads to the 

following step.   

Alg. Step 5: Set 1k =  (1st step) 

While 1kr k≠ −  

If 
BG B  has rows that are linear combinations of rows of ( ) 11 p n

LRM
×∈�  perform 

Alg. Step. 6. 

Else perform Alg. Step 7. 

end if.  

Alg. Step 6: Zero the rows and reorder B
G B A  

% , such as the zero rows are appeared in 

the end. Construct the sub-matrix 

( )
( ) ( )

( ) ( )

1

1 1

k k

k B

k k

B

G B A
M

G B A

+

+ +

 
=  
  

%

%
, 

then  

( ) ( ) ( ) ( )( )1 1

1

k k

k k Brank rank rank G B A
+ +

+
 = +  

%J J , 
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and  

( )( ) ( ) ( )( )1 1 1

1

k k k

k Br rank M rank G B A
+ + +

+
 = =  

% , 

where  

( )

( ) ( ) ( )

1

11 1

                                              

* | * *

|

* | * *

|

0 0 | * *

|

0 0 | * *

                                                               

k

UL

kk k

B

M

M G B A

+

++ +

 
 
 
 
  = = − − − − − −   
 
 
 
 
 

L

O M M

L

%

L L

M M M M

L L

( )1
     

k

LR
M

+

. 

Compute ( )( )1k

ULrank M
+

, ( ) 11
k

k p n

LRM ++ ×∈� , 
1k

p n+ ≤ . 

( )( ) ( ) ( )( )1 1 1

1

k k k

k Br rank M rank G B A
+ + +

+
 = =  

% , 

                            : 1k k= + . 

Alg. Step 7: The part of matrix  

( )
( ) ( )

( ) ( )

1

1 1

k k

k B

k k

B

G B A
M

G B A

+

+ +

 
=  
  

%

%
 

remains unchanged in the form 

( )
( ) ( )

1
k k

k B

B

G B A
M

G B A

+  
=  
 

%

%
, 

then  

( ) ( ) ( )1k k Brank rank rank G B A+
 = +  

%J J , 

and  

( )1k Br rank G B A+
 =  

% . 

end while. 

end Algorithm.  
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However, in order to understand better that the algorithm is finally ended, the fol-

lowing lemma is required.  

First of all, note that the 
1n kr r +=  for every 1n k≥ + and     

( ) ( ) ( ) ( )n k Brank rank n k rank G B A = + −  
%J J , 

or equivalently    

( ) ( ) ( ) 1n k krank rank n k r += + −J J . 

Then, Lemma 2.3 is derived. 

Lemma 2.3 It holds that  

( )n Br rank G B A =  
% , for 1n k≥ + . 

Proof. Consider that  

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

1

A

B

B
k

k k

B

B

G A

G B A

G B A

G B A

G B A

+

 
 
 
 
 =
 
 
 
 
 

%

%

O O

%

%

J  

and that the rows of BG B  can not be written as a linear combination of rows of 

( ) 11
k

k p n

LRM ++ ×∈� . Thus, its nonzero rows are those that gave the nonzero rows of 

( )k

BG B  and so on. Let us examine the matrix 

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

2

A

B

B

k

k k

B

B

B

G A

G B A

G B A

G B A

G B A

G B A

+

 
 
 
 
 

=  
 
 
 
 
  

%

%

O O

%

%

%

J , 

and particularly, the lower 2 2× - block sub-matrix 



  

30                                           Kalogeropoulos, et al 

B

B

G B A

G B A

 
 
 

%

%
. 

We can not also find rows of matrix 
B

G B  that can be expressed as linear combina-

tions of those of A%  which correspond to zero rows of 
B

G B . If such rows exist, then 

same things should appear to the 2 2× - block sub-matrix  

( ) ( )k k

B

B

G B A

G B A

 
 
 

%

%
 

of matrix 
1k +J . However, the non zero rows of ( )k

BG B  are fewer than those of 
BG B , 

since the matrix ( )k
A%  has been produced by A% , see for more details Alg. Step 7.  

Remark 2.2 The following relation does also hold  

( ) ( )( ) ( )( ) ( )( )k k k k

B UL LRrank G B A rank M rank M  = + 
% . 

Remark 2.3 (Computational Complexity) The transformation of A  and B  to 
AG A  

and 
B

G B  require 
3

2

n
 flops each, respectively. Each computation of ( )( )i

LRrank M , for 

matrix ( ) i
i p n

LRM
×∈�  requires 

3

3
ip

, for 
i

p n≤ , 1,2,...i = .  

Consequently, the total flops are 
3

3

3

p
n k+ , where { }max ip p n= ≤ .   

In the end of this section, the following table collects the number of flops required 

from the above methods.    

TABLE 

Matrix 
Rank Updating Technique 

(RUT) 
SVD RRQR 

k
J  

3
3

3

p
n k+ , p n<<  ( )4 34

3
k n  3kn  

nJ  

3
3

3

p
n n+ , p n<<  

(efficient) 

( )4 34

3
n n  

(NOT efficient) 

4n  

(NOT efficient) 
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4. Conclusions  

We have presented an updating algorithm for the computation of rank for a se-

quence of block bidiagonal Toeplitz matrices, 
iJ  for 1,2,...i = . It should be stressed 

that the computational complexity of the proposed algorithm has indicated that per-

forms better when it is compared with the SVD and RRQR techniques. Moreover, due 

to the nature of the method, RUT can also be applied symbolically.  

Finally, the main direction of our future work is the embedding of the pro-posed 

algorithm to other related problems that are also under consideration. For instance, in 

Control theory, the computation of the Weierstrass and Kronecker canonical form for 

regular and singular matrices, respectively; see [7-9], is more than important. 

Acknowledgment: The authors wish to thank Dr Stavros Papadakis for his valuable 

help to the proof of Theorem 2.1.  
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