
Neural, Parallel, and Scientific Computations 18 (2010) 47 – 58

FastCrypto: Parallel AES Pipelines Extension for

General-Purpose Processors

Mostafa I. Soliman and Ghada Y. Abozaid

Computer & System Section, Electrical Engineering Department, Faculty of Engineering,

South Valley University, Aswan, Egypt

Abstract
In cryptography, the advanced encryption standard (AES) is an encryption standard
issued as FIPS by NIST as a successor to data encryption standard (DES) algorithm. The
applications of the AES are wide including any sensitive data that requires cryptographic
protection before communication or storage. This paper proposes extending general-
purpose processors with crypto coprocessor based on decoupled architectures. The
extended coprocessor splits an encryption/decryption instruction into memory
(load/store) and computation (encryption/decryption) portions (pseudo instructions).
Loading/storing and encrypting/decrypting data are performed in parallel and
communicated through architectural queues. The computational unit includes parallel
AES pipelines for fast encrypting/decrypting data. On four parallel AES pipelines, our
results show a performance of 222 Giga bits per second.
Keywords - Parallel processing, AES pipeline, cryptography, decoupled architectures,

FPGA implementation.

1. INTRODUCTION

The basis of many technological solutions to computer and communication security

problems is cryptography. Cryptography (secret (crypto) writing (graphy) that needs to be

decoded) is an essential tool underlying virtually all computers and networking

protection. It has long been used for espionage and military. However, it is now

commonly used in protecting information within many kinds of civilian systems.

Cryptographic processing has been brought to the forefront of system design due to the

need for secure communication and storage data.

The Data Encryption Standard (DES) [1] had served as an important cryptographic

algorithm for over two decades. However, the growth of computing power during that

time had compromised the security of that algorithm. There was considerable evidence

that it was time to replace DES with a new standard. In October 2000, the National

Institute of Standards and Technology (NIST) selected the Rijndael algorithm [2] as the

new encryption standard to replace the current DES algorithm. The Advanced Encryption

Received January 11, 2010 1061-5369 $15.00 © Dynamic Publishers, Inc

48 Soliman and Abozaid

Standard (AES) specifies the Rijndael algorithm. The AES algorithm is a symmetric

block cipher that can process (encrypt/decrypt) data blocks of 128-bit, using keys with

lengths of 128, 192, and 256 bits. However, Rijndael was designed to handle additional

block sizes and key lengths, which are not adopted in the AES.

According to NIST, AES is efficient, elegant, and secure. AES has the potential to

maintain security well beyond twenty years due to the significantly larger key sizes than

DES had [3]. Thus, AES was accepted as a FIPS (Federal Information Processing

Standards) in November 2001 to protect electronic data [4]. The applications of the AES

are wide; this standard can be used by agencies when an agency determines that sensitive

information requires cryptographic protection. The AES algorithm may be implemented

in software, firmware, hardware, or any combination thereof. The specific

implementation may depend on several factors such as the application, environment,

technology used, etc.

Since AES was accepted as a FIPS standard, there have been many different hardware

implementations for ASIC (application specific integrated circuits) and FPGA (field-

programmable gate array) to improve its performance. Some ASIC implementations are

found in references [5-7]. These references mainly focus on area efficient implementation

of the AES algorithm using Sbox (byte substitution) optimizations. Reference [7] (the

first ASIC implementation of the Rijndael on silicon) presented an AES encryption chip

architecture and discussed the design optimizations. References [8-10] presented different

pipelined implementations of the AES algorithm as well as the design decisions and the

area optimizations that lead to a low area and high throughput AES encryption processor.

Some FPGA implementations of the AES algorithm are found in references [11-13].

References [14-15] presented another approach to improve the performance of AES on

32-bit processors using instruction set extensions.

This paper proposes another approach which is different from the above ones. It

extends a general-purpose processor with an AES crypto coprocessor based on decoupled

architectures, as shown in Figure 1. General-purpose processors can be simple in-order

scalar or complex out-of-order superscalar processors. For simplicity, the well known 5-

stage pipeline [16] is used as a scalar processor. Each instruction (scalar/crypto) is

fetched from instruction cache and sent in-order to the decode stage. If the fetched

instruction is scalar, it completes the remaining cycle of execution on the scalar pipeline

stages (read operands, execute, memory access, and write-back result). However, crypto

instructions are fetched from instruction cache and sent in-order to the extended crypto

coprocessor during the decode stage for execution on the AES pipelines.

The extended coprocessor is based on decoupled architectures [17] to hid memory

latency by letting the load/store and encryption/decryption operatrions to work in parallel.

Note that crypto instructions do not block the issue stage of the scalar processor

FastCrypto: Parallel AES Pipelines Extension 49

eventhough the crypto coprocessor is busy. Crypto instructions are sent to the instruction

queue freeing the issue stage to run ahead to execute scalar instructions latter in the

instruction stream. In the proposed FastCrypto, latency is tolerated because the address

unit is able to slip ahead of the computation unit and loads data that will be needed soon

by the computation unit early in time. As Figure 1 shows, address generation unit and

encyption/decryption piplines are communicated through architectural queues which are

used to temporary keep the loaded/stored data from/to memory.

This paper is organized as follows. The specification of the AES algorithm is

presented in Section 2. Section 3 describes microarchitecture of FastCrypto, which is

based on decoupled architectures. Parallel pipelined implementation for accelerating AES

is presented in Section 4. Finally, Section 5 concludes this paper.

2. THE SPECIFICATION OF THE AES ALGORITHM

The AES algorithm is a symmetric block cipher that can convert data to an

unintelligible form (encryption) and convert the data back into its original form

(decryption). The input and output for the AES algorithm each consist of sequences of

128-bit. Each 128-bit is called a block, which can be represented as 16-byte; in0 through

in15 for input and out0 through out15 for output. Moreover, the cipher key for the AES

algorithm is a sequence of 128, 192 or 256 bits. Internally, the AES algorithm’s

operations are performed on a two-dimensional (2-D) array of bytes called the State

array. The State array consists of four rows of bytes, each containing Nb bytes, where Nb

Figure 1: Block diagram of FastCrypto

Fetch

Ins. Cache

Decode

Reg. File

Execute

Mem. Access

L1 Cache

Write Back

Address Generation Unit

Encryption/Decryption

Pipelines

Address Data

L2 Cache Memory

Control Unit

Key

Expansion

Key Register File
11××××128-bit

Crypto Coprocessor

Crypto

instruction
queue

Figure 2: Functions needed for AES algorithm (rolled version)

Cipher key

Nr

MUX

KeyRotWord

KeySubWord

KeyXOR

M
U

X

Key
Register

File

11×128-bit

LDQ

Data

Nr-1

KeyAddition

Sbox

ShiftRows

MixColumns

KeyAddition

Sbox

 ShiftRows

KeyAddition

Round
key

MUX

L
as

t
R

o
u

n
d

 k
ey

C

ip
h

er
 k

ey

SDQ

Key Expansion

Encryption

50 Soliman and Abozaid

is the block length divided by 32 (the word size). At the start of encrypting/decrypting a

bock of data, the input (the 1-D array of bytes; in0, in1, … in15) is copied into the State

array (2-D array of bytes) according to the following scheme:

Staterow, col = inrow + 4*col for 0 ≤ row < 4 and 0 ≤≤ col < Nb.

Then all encryption/decryption operations are performed on State array. The final value

of the State array is copied to the output (1-D array of bytes; out0, out1, … out15) as

follows:

outrow + 4*col = Staterow, col for 0 ≤ ≤row < 4 and 0 ≤ ≤col < Nb.

The four bytes in each column of the State array form 32-bit words, where the row

number (row) provides an index for the four bytes within each word.

The AES algorithm consists of three distinct phases, as shown in Figure 2. In the first

phase, an initial addition (XORing) is performed between the input data (plaintext) and

the given key (cipher key). A number of standard rounds (Nr-1) are performed in the

second phase, which represents the kernel of the algorithm and consumes most of the

execution time. The number of these standard rounds depends on the key size; nine for

128-bits, eleven for 192-bits, or thirteen for 256-bits. Each standard round includes four

fundamental algebraic function transformations on arrays of bytes.

1- byte substitution using a substitution table (Sbox),

2- shifting rows of the State array by different offsets (ShiftRows),

3- mixing the data within each column of the State array (MixColumns), and

4- adding a round key to the State array (KeyAddition).

The third phase of the AES algorithm represents the final round of the algorithm, which

is similar to the standard round, except that it does not have MixColumns operation. In

this paper, 128-bit key length AES algorithm is implemented, which has 10 rounds (nine

FastCrypto: Parallel AES Pipelines Extension 51

standard rounds plus a final round) executed on parallel AES pipelines (see Figure 1).

Moreover, the initial key is expanded on the key expantion unit of the crypto coprocessor

to generate the round keys, each of size equals 128-bit. Each of the ten rounds of the

algorithm receives a new round key from the key expantion unit. Decryption is performed

by applying of the inverse transformations of the round functions (see [4] for more

detail).

Sbox is a non-linear substitution table used in several byte substitution

transformations and in the key expansion routine to perform a one-to-one substitution of

a byte value. It is the primary source of nonlinearity in the AES algorithm. It takes each

byte in the 128-bit State and computes its multiplicative inverse in GF(28), followed by a

single stage of systematic bit mixing. The multiplicative inverse in GF(28) is computed

using the extended Euclidean algorithm, which is essentially the Euclidean algorithm for

integers, applied to polynomials in GF(28). The computational complexity of the

Euclidean algorithm and the non-constant number of iterations required to compute the

multiplicative inverse leads to use a lookup table for computing the multiplicative

inverses. Thus, the lookup table technique is the optimum software/hardware approach

for implementing Sbox.

ShiftRows transformation function processes the State array by cyclically shifting the

last three rows over different numbers of offsets. In other words, for rows number one,

two, and three, the offsets used are one, two, and three bytes respectively, however, the

first row is not shifted.

MixColumns transformation function takes the columns of the State array and mixes

their data (independently of one another) to produce new columns. The MixColumns

transformation for column c can be written as follows:

State`0,c = (02H • State0,c) ⊕ (03H • State1,c) ⊕ (01H • State2,c) ⊕ (01H • State3,c)

State`1,c = (01H • State0,c) ⊕ (02H • State1,c) ⊕ (03H • State2,c) ⊕ (01H • State3,c)

State`2,c = (01H • State0,c) ⊕ (01H • State1,c) ⊕ (02H • State2,c) ⊕ (03H • State3,c)

State`3,c = (03H • State0,c) ⊕ (01H • State1,c) ⊕ (01H • State2,c) ⊕ (02H • State3,c)

The above polynomials include three types of multiplication (01H • State0,c, 02H •

State0,c, and 03H • State0,c). Obviously, any byte (binary polynomial b7b6b5b4b3b2b1b0)

times 01H results in the same value (b7b6b5b4b3b2b1b0). Multiplying a byte by 02H can be

implemented at the byte level as a left shift and a subsequent conditional bitwise XOR

with 1bH. After shifting by one bit, if b7 = 0, the result (b6b5b4b3b2b1b00) is already in

reduced form. Otherwise, the reduction is accomplished by XORing the shifted byte with

the polynomial 1bH. Multiply by 03H≤ can be performed by XORing the results from

multiplying by 01H≤ and 02H≤.

52 Soliman and Abozaid

The addition in the AES algorithm is performed with parallel XOR operations.

KeyAddition can be implemented by performing a bit-wise XORing between a column in

the State array and corresponding column of the round key.

The key expansion round starts with KeyRotWord function, which cyclically shifts

(rotates) the last four bytes of the round key by one byte (see Figure 2). After cyclic

shifting, KeySubWord function is performed by applying Sbox on this last four bytes of

the round key. The resulted column is XORed in KeyXOR stage with the round constant

(Rcon[round]), as shown in Table 1.

3. THE MICROARCHITECTURE OF FASTCRYPTO

 FastCrypto is a general-purpose processor extended with crypto coprocessor for fast

encrypting/decrypting data, as Figure 1 shows. The extended part is based on decoupled

architectures to execute encryption/decryption instructions with the following format,

which is similar to MIPS ISA [18].

6-bit 5-bit 5-bit 10-bit 6-bit

010010 rs rd length Enc/Dec

Any crypto instruction has a prefix of 010010 to tell the decode stage of the scalar part

that the execution of this instruction is on the crypto coprocessor. Crypto instructions are

fetched, decoded, and then dispatched in-order by the scalar core to a queue called crypto

instruction queue (CIQ), as shown in Figure 3. Note that rs and rd are scalar registers

holding the starting source and destination addresses for encryption and decryption and 1

≤ length < 1024 is the number of blocks (128-bit) needed to be encrypted/decrypted.

During the decode stage of the scalar unit, the contents of rs and rd are read from the

scalar register file and pushed into CIQ queue. Thus, 80-bit (6-bit Enc/Dec, 10-bit length,

32-bit the content of rs, and 32-bit the content of rd) are sent from scalar unit to the

extended crypto coprocessor though CIQ queue by the end of decode stage of the scalar

pipeline.

Table 1: The content of the Rcon[round]

Round 1 2 3 4 5 6 7 8 9 10

R
co

n
[]

 01 02 04 08 10 20 40 80 1b 36

00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00

FastCrypto: Parallel AES Pipelines Extension 53

The control unit of the crypto coprocessor fetches crypto instructions in-order from

the head of CIQ (see Figure 3). Then the control unit sends rs, rd, and length to the

address generation control unit for generating the addresses to load data from memory

and to store the encrypted/decrypted data back into the memory. As Figure 3 shows, the

address generation unit consists of two address generators and two queues working under

control of address generator control unit. Load address generator works in parallel with

store address generator, where the generated addresses are stored into LAQ (load address

queue) and SAQ (store address queue).

 For the key expansion process, the following instruction format is used for sending

128-bit key from the scalar processor to the crypto coprocessor through CIQ queue.

6-bit 5-bit 5-bit 10-bit 6-bit

010010 rs rd --- Key1/ Key2

The 128-bit key are sent to the crypto coprocessor in two steps because during the decode

stage only two register (2×32-bit) can be read from the scalar register file. Thus, the main

control unit of the crypto coprocessor stores 64-bit comes with Key1 until the other 64-bit

comes with Key2. After 128-bit key is sent from the scalar unit, the main control unit

passes it to the key expansion unit. As Figure 2 shows, the key expansion unit iterates the

functions KeyRotWord, KeySubWord, and KeyXOR ten times (Nr = 10) and stores the

generated keys (round keys) into key register file. Thus, the size of the key register file is

11×128-bit (the original cipher key plus 10 generated round keys).

L2 Cache Memory

Encryption/Decryption
Pipelines

LDQ SDQ

F D X M W

Scalar pipeline
In

st
ru

ct
io

n

L1 Cache

Address
Generator

for Load

LAQ SAQ

Address
Generator

for Store

Address Generator
Control Unit

C
o

n
tr

o
l

U
n

it

Key Register File

11×128-bit

Key Expansion Unit
128-bit Cipher key

10-bit length

32-bit Regs[rs]

32-bit Regs[rd]

128-bit input 128-bit output

11×128-bit round keys

CIQ

Figure 3: Organization of Decoupled FastCrypto

54 Soliman and Abozaid

4. PARALLEL IMPLEMENTATION OF AES PIPELINE

 Various architectures exist to realize the AES encryption/decryption algorithm.

Among them, rolling and unrolling are the two basic architectures. The rolled AES

pipeline uses a feedback structure (see Figure 2) where the data is iteratively transformed

by round functions. This approach occupies small area, but achieves low throughput.

Some existing rolled implementations are presented in [19-20]. In the unrolled AES

pipeline, the round functions are pipelined furthermore. Thus pipeline registers should be

inserted between rounds allowing simultaneous operations of all 11 round stages.

Pipelined implementation of AES achieves higher throughput, however, requires larger

area. Some Existing unrolling implementations are appeared in [21-24].

 To further improve the performance (throughput) of unrolling implementations, each

round would be pipelined. Thus pipelining technique can be applied both for inside

(inner) and around (outer) each round. Our implementation of the outer pipeline (one

pipeline stage per round) achieves a throughput of 45 Gbps at frequency 360 MHz on

Xilinx Virtex V FPGA and Xilinx ISE 10.1 synthesis tool. Since the look-up tables of

Sbox are the main critical path in the pipeline design, the implementation of inner

pipeline with two, three or four pipeline stages achieves 70 Gbps at maximum frequency

557 MHz. This results in two stages per round is the best choice for implementation. This

choice gives maximum throughput-area tread-off.

 This section proposes the use of parallel AES pipelines to further improve the

throughput of encryption/decryption pipelines unit shown in Figure 1 and 3. Figure 4

shows the proposed implementation, which is based on using parallel AES pipelines

architecture. Each round has two pipeline stages, which achieves a throughput of 70

Gbps. The first stage performs Sbox and ShiftRows transformations and the second stage

performs MixColumns and keyAddition transformations. Four parallel AES pipelines for

each encryption and decryption, key expansion unit, and key register file consume up to

15840 slices. In Xilinx terms, two logic cells are grouped to form a slice, where each

logic cell contains a four-input look-up table and a D flip-flop. The maximum frequency

for this architecture on Xilinx Virtex V FPGA is 444 MHz, which provides a throughput

of 222 Gbps. As Figure 4 shows, the input data for these parallel pipelines is loaded from

four 128-bit queues called LDQ. Each queue is implemented as four words of 128-bit

wide, which consumes 144 slices. A single data bus feeds the four queues of LDQ in

round-robin fashion. In addition, four 128-bit output ciphertext/deciphertext are stored

into four 128-bit queues called SDQ. The implementation of SDQ is the same as LDQ.

The ICQ is implemented as four 80-bit word with area consumption equals to 72 slices.

 To keep a balance between data encryption paths and key expansion unit, the key
expansion round implemented as two stages per round. The unrolled key expansion,

FastCrypto: Parallel AES Pipelines Extension 55

which consumes 864 slices calculates the round keys at first 20 cycles and remains

constant during the execution of encryption/decryption instructions. Thus, the total area

would be minimized using the offline technique and rolled key expansion unit. The round

keys in FastCrypto are generated using rolled key expansion unit, which consumes 144

slices. The key expansion unit calculates the round keys offline and stores them in the

key register file. As Figure 4 shows, each data encryption path needs eleven 128-bit

round keys. Instead of adding key expansion unit for each data encryption path, our

implementation is based on the use of a common key register file for all parallel

pipelines. By broadcasting the round keys, the key register file feeds parallel AES

pipelines at once.

5. CONCLUSION

 Encryption has long been used by militaries and governments to facilitate secret

communication. However, encryption is now commonly used in protecting information

within many kinds of civilian systems. This paper proposes extending general-purpose

processors with crypto coprocessor for fast encrypting/decrypting data. The extended unit

is based on decoupled architectures, which splits each crypto instruction into memory

(load/store) and computation (encryption/decryption) portions (pseudo instructions).

Figure 4: Parallel pipeline implementation of AES algorithm

128

128

128

128

128

128 128

L
2
 C

ac
h

e
M

em
o
ry

Address Generation Unit

LDQ

k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

M
ix

C
o

lu
m

n

 k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

 k
ey

A
d
d

it
io

n

128

k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

M
ix

C
o

lu
m

n

 k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

 k
ey

A
d
d

it
io

n

k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

M
ix

C
o

lu
m

n

 k
ey

A
d
d

it
io

n

S
b

o
x

S

h
if

tR
o

w

 k
ey

A
d
d

it
io

n

L
2
 C

ac
h

e
M

em
o
ry

Plaintext N

Plaintext 2

Plaintext 1 Ciphertext 1

Ciphertext 2

Ciphertext N

11×128-bit Key Register File
128

128

Data Encryption Path

Data Encryption Path

Data Encryption Path

SDQ

From Key

Expansion Unit

56 Soliman and Abozaid

Loading/storing and encrypting/decrypting data are performed in parallel and

communicated through architectural queues. The computational unit includes parallel

AES pipelines for fast encrypting/decrypting data. Each pipeline is based on unrolling

architectures. In addition, each round has two pipeline stages. On four parallel AES

pipelines, our results show a performance of 222 Gbps.

REFERENCES

[1] Data Encryption Standard (DES), Available at http://csrc.nist.gov/publications/fips

/fips46-3/fips46-3.pdf, October 1999.

[2] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” Available at http://csrc.nist.

gov/archive/aes/index.html, September 1999.

[3] http://www.nist.gov/public_affairs/releases/aesq&a.htm.

[4] Advanced Encryption Standard (AES), US National Institute of Standards and

Technology, FIPS 197, Available at, http://csrc.nist.gov/publications

/fips/fips197/fips-197.pdf, 2001.

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael Hardware

Architecture with S-Box Optimization,” Proc. 7
th

 International Conference on the

Theory and Application of Cryptology and Information Security: Advances in

Cryptology (ASIACRYPT2001), Australia, LNCS2248, ISBN 3-540-42987-5, pp.

239-254, 2001.

[6] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC Implementation of the

AES Sboxes,” Proc. The Cryptographer's Track at the RSA Conference on Topics

in Cryptology (CT-RSA2002), San Jose, CA, USA, LNCS2271, pp. 29-52, 2002.

[7] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and Performance Testing of a

2.29 Gb/s Rijndael Processor,” IEEE Journal of Solid-State Circuits, Vol. 38, No.3,

pp. 569-572, 2003.

[8] A. Hodjat and I. Verbauwhede, “Speed-Area Trade-off for 10 to 100 Gbits/s

Throughput AES Processor,” Proc. 37
th

 Asilomar Conference on Signals, Systems

& Computers, Monterey, USA, Vol. 2 , pp. 2147-2150, 2003.

[9] A. Hodjat and I. verbauwhede, “A 21.54 Gbits/s Fully Pipelined AES Processor on

FPGA,” Proc. 12
th

 Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM 2004), ISBN 0-7695-2230-0, pp. 308-309, 2004.

[10] A. Hodjat and I. Verbauwhede, “Area-Throughput Trade-offs for Fully Pipelined 30

to 70 Gbits/s AES Processors,” IEEE Transactions on Computers, Vol. 55, No. 4,

pp. 366-372, 2006.

FastCrypto: Parallel AES Pipelines Extension 57

[11] M. McLoone and J. McCanny, “High Performance Single Chip FPGA Rijndael

Algorithm Implementations,” Proc. 3
rd

 International Workshop on Cryptographic

Hardware and Embedded Systems, Paris, France, LNCS2162, ISBN 3-540-42521-

7, pp. 65-76, 2001.

[12] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Based Performance

Evaluation of the AES Block Cipher Candidate Algorithm Finalists,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, No. 4, pp.

545-557, 2001.

[13] K. Gaj and P. Chodowiec, “Fast Implementation and Fair Comparison of the Final

Candidates for Advanced Encryption Standard Using Field Programmable Gate

Arrays,” Proc. 2001 Conference on Topics in Cryptology: The Cryptographer's

Track at RSA (CT-RSA2001), San Francisco, CA, USA, LNCS2020, ISBN 3-540-

41898-9, pp. 84-99, 2001.

[14] S. Tillich and J. Großschädl, “Instruction Set Extensions for Efficient AES

Implementation on 32-bit Processors,” Proc. 8
th

 International Workshop in

Cryptographic Hardware and Embedded Systems, Yokohama, Japan, LNCS4249,

ISBN 978-3-540-46559-1, pp. 270-284, 2006.

[15] S. Tillich and J. Großschädl, “Accelerating AES Using Instruction Set Extensions

for Elliptic Curve Cryptography. Proc. International Conference on Computational

Science and Its Applications (ICCSA 2005), LNCS3483, ISBN: 978-3-540-25863-6,

Singapore, pp. 665-675, 2005.

[16] D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 4th Edition, Elsevier Publisher, 2009.

[17] J. Smith, “Decoupled Access/Execute Computer Architectures,” ACM Transactions

on Computer Systems, Vol. 2, No. 4, pp. 289-308, 1984.

[18] MIPS32 Architecture For Programmers, Volume I: Introduction to the MIPS32

Architecture, Available at http://www.mips.com/products/product-

materials/processor/mips-architecture/, 2008.

[19] J. Zambreno, D. Nguyen, and A. Choudhary, “Exploring Area/Delay Tradeoffs in

an AES FPGA Implementation,” Proc. 14
th

 International Conference on Field

Programmable Logic and Application, Leuven, Belgium, LNCS3203, ISBN 3-540-

22989-2, pp. 575-585, 2004.

[20] HELION Technology Limited, High Performance AES (Rijndael) Cores for Altera

FPGA, Available at http://www.heliontech.com/core2.htm .

[21] G. Saggese, A. Mazzeo, N. Mazzocca, and A. Strollo, “An FPGA-Based

Performance Analysis of the Unrolling, Tiling, And Pipelining of the AES

Algorithm,” Proc. 13
th

 International Conference on Field-Programmable Logic

58 Soliman and Abozaid

And Applications (FPL2003), Lisbon, Portugal, LNCS 2778, ISBN 3-540-40822-3,

pp. 292-302, 2003.

[22] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, “Efficient Implementation of

Rijndael Encryption in Reconfigurable Hardware: Improvements and Design

Tradeoffs,” Proc. Cryptographic Hardware and Embedded Systems (CHES2003),

Cologne, Germany, LNCS2779, ISBN 3-540-40833-9, pp. 334-350, 2003.

[23] F. Charot, E. Yahya, and C. Wagner, “Efficient Modular-Pipelined AES

Implementation in Counter Mode on ALTERA FPGA,” Proc. 13
th

 International

Conference on Field-Programmable Logic And Applications (FPL2003), Lisbon,

Portugal, LNCS2778, ISBN 3-540-40822-3, pp. 282-291, 2003.

[24] N. Pramstaller and J. Wolkerstorfer, “A Universal and Efficient AES Co-Processor

for Field Programmable Logic Arrays,” Proc. 14
th

 International Conference on

Field-Programmable Logic And Applications (FPL2004), Leuven, Belgium,

LNCS3203, ISBN 3-540-22989-2, pp. 565-574, 2004.

