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ABSTRACT. In this paper, optimal control for stochastic linear singular Takagi-Sugeno (T-S)

fuzzy system with quadratic performance is obtained using ant colony programming (ACP). To

obtain the optimal control, the solution of matrix Riccati differential equation (MRDE) is computed

by solving differential algebraic equation (DAE) using ACP approach. The solution of this novel

method is compared with the traditional Runge Kutta (RK) method. An illustrative numerical

example is presented for the proposed method.
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1. INTRODUCTION

A fuzzy system consists of linguistic IF-THEN rules that have fuzzy antecedent

and consequent parts. It is a static nonlinear mapping from the input space to the

output space. The inputs and outputs are crisp real numbers and not fuzzy sets.

The fuzzification block converts the crisp inputs to fuzzy sets and then the inference

mechanism uses the fuzzy rules in the rule-base to produce fuzzy conclusions or fuzzy

aggregations and finally the defuzzification block converts these fuzzy conclusions into

the crisp outputs. The fuzzy system with singleton fuzzifier, product inference engine,

center average defuzzifier and Gaussian membership functions is called as standard

fuzzy system (Wang, 1998).

Two main advantages of fuzzy systems for the control and modeling applications

are (i) fuzzy systems are useful for uncertain or approximate reasoning, especially

for the system with a mathematical model that is difficult to derive and (ii) fuzzy

logic allows decision making with the estimated values under incomplete or uncertain

information (Zadeh, 1975). Fuzzy controllers are rule-based nonlinear controllers,
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therefore their main application should be the control of nonlinear systems. How-

ever, since linear systems are good approximations of nonlinear systems around the

operating points, it is of interest to study fuzzy control of linear systems. Addition-

ally, fuzzy controllers due to their nonlinear nature may be more robust than linear

controllers even if the plant is linear. Furthermore, fuzzy controllers designed for

linear systems may be used as initial controllers for nonlinear adaptive fuzzy control

systems where on-line turning is employed to improve the controller performance.

Therefore, a systematic fuzzy controllers for linear systems is of theoretical and prac-

tical interest. Stability and optimality are the most important requirements in any

control system. Stable fuzzy control of linear systems has been studied by a number

of researchers. It is well-known that nowadays that fuzzy controllers are universal

nonlinear controllers. All these studies are preliminary in nature and deeper studies

can be done. For optimality, it seems that the field of optimal fuzzy control is totally

open.

Ant colony programming is a metaheuristic approach that is inspired by the

behaviour of real ant colonies, to find a good solution to the given problems in a rea-

sonable amount of computation time. It allows the programmer to avoid the tedious

task of creating a program to solve a well-defined problem (Boryczka & Wiezorek,

2003). ACP is a stochastic search technique that is carried out on a space graph

where the nodes represent functions, variables and constants. Functions are usually

defined mathematically in terms of arithmetic operators, operands and boolean func-

tions. The set of functions defining a given problem is called a function set F and the

collection of variables and constants to be used are known as the terminal set T.

Ants are able to find their way efficiently from their nest to food sources. While

searching for food, ants initially explore the area surrounding their nest in a random

manner. As soon as an ant finds a food source, it evaluates the quantity and the

quality of the food and carries some of it back to the nest. During the return trip, the

ant deposits a chemical pheromone trail on the ground. The quantity of pheromone

deposited may depend on the quantity and quality of the food, will guide other ants to

the food source. If an ant has a choice of trails to follow, the preferred route is the trail

with the highest deposit of pheromone (Wilson & Hölldobler, 1990). This behaviour

helps the ants to find the optimal route without any need for direct communication

or central control. Therefore, the artificial ants used in the ACP have some features

taken from the behaviour of real ants. The features are

(a) Artificial ants move in a random fashion.

(b) Choice of a route of an artificial ant depends on the amount of pheromone.

(c) Artificial ants co-operate in order to achieve the best result.

The ant colony algorithm can be described at a very simplified level as given in

Figure 1.
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Figure 1. Shortest path of ants

Two ants A1 and A2 are travelling along route P and come to a junction. A1

takes path A and A2 takes path B. As they are travelling along the route, the ants

are depositing a pheromone trail. Both ants continue along their chosen paths, collect

the food and return to the nest. A1 will reach the nest first because it has travelled

the shortest route. The third ant A3 now leaves the nest, travels along path P and

reaches the junction. At this point, A2 has not yet returned through the junction and

is still travelling along path B so there is twice the amount of pheromone deposited

along path A at the junction as along path B. Therefore, A3 will opt for path A. Thus,

the thickness of the pheromone level is increasing on path A. In fact, experiments by

biologists have shown that ants probabilistically prefer paths with high pheromone

concentration. Dorigo et al. (1991 & 1996) used the ant colony algorithm for solving

the Travelling sales man problem. Roux and Fonlupt (2000) made the first attempt to

apply ant colony algorithm for solving symbolic regression and multiplexer problem.

Recently, researchers have been dealing with the relation of ant colony algorithm

to other methods for learning, approximations and optimization. They have applied

ACP in the field of optimal control and reinforcement learning (Birattari et al., 2002).

In this paper, the ant colony algorithm is used in ACP to compute optimal control

for stochastic linear quadratic singular fuzzy system.

In this paper, optimal control of stochastic linear quadratic singular T-S fuzzy

system is obtained using ant colony programming. The linear T-S fuzzy system is

the most popular fuzzy model due to its further intrinsic analysis: the linear matrix

inequality (LMI)-based fuzzy controller is to minimize the upper bound of the per-

formance index; structure oriented and switching fuzzy controllers are developed for

more complicated systems (Tanaka & Iwazaki, 2001); the optimal fuzzy control tech-

nique is used to minimize the performance index from local-concept or global-concept

approaches (Wu & Lin, 2000 & 2000).
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Stochastic linear quadratic regulator (LQR) problems have been studied by many

researchers (Athens, 1971; Bensoussan, 1983; Bucci & Pandolfi, 2000; Davis, 1997;

Wonham, 1968). Chen et al. (1998) have shown that the stochastic LQR problem is

well posed if there are solutions to the Riccati equation and then an optimal feedback

control can be obtained. For LQR problems, it is natural to study an associated Ric-

cati equation. However, the existence and uniqueness of the solution of the Riccati

equation in general, seem to be very difficult problems due to the presence of the

complicated nonlinear term. Zhu and Li (2003) used the iterative method for solving

stochastic Riccati equations for stochastic LQR problems. There are several numeri-

cal methods to solve conventional Riccati equation as a result of the nonlinear process,

essential error accumulations may occur. In order to minimize the error, recently, the

conventional Riccati equation has been analyzed using neural network approach and

genetic programming approach see (Balasubramaniam et al., 2006, 2007 & 2007; Vin-

cent Antony Kumar & Balasubramaniam, 2007). A variety of numerical algorithms

(Choi, 1990) have been developed for solving the algebraic Riccati equation.

Singular systems contain a mixture of algebraic and differential equations. In

that sense, the algebraic equations represent the constraints to the solution of the

differential part. These systems are also known as degenerate, differential algebraic,

descriptor or semi state and generalized state space systems. The complex nature of

singular system causes many difficulties in the analytical and numerical treatment of

such systems, particularly when there is a need for their control. The system arises

naturally as a linear approximation of system models or linear system models in many

applications such as electrical networks, aircraft dynamics, neutral delay systems,

chemical, thermal and diffusion processes, large scale systems, robotics, biology, etc.,

see (Campbell, 1980 & 1982; Lewis, 1986).

Although parallel algorithms can compute the solutions faster than sequential al-

gorithms, there have been no report on ant colony programming solutions for MRDE.

This paper focuses upon the implementation of ant colony programming approach for

solving MRDE in order to get the optimal solution. An example is given to illustrate

the advantage and accuracy of ACP solution by comparing RK solution.

This paper is organized as follows. In section 2, the statement of the problem

is given. In section 3, solution of the MRDE is presented. In section 4, numerical

example is discussed. The final conclusion section demonstrates the efficiency of the

method.

2. STATEMENT OF THE PROBLEM

Consider the stochastic linear dynamical singular T-S fuzzy system (Wu et al.,

2005) that can be expressed in the form: Ri: If xj is Tji(mji, σji), i = 1, . . . , r and
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j = 1, . . . , n, then

(1) Fidx(t) = [Aix(t) +Biu(t)]dt+Diu(t)dW (t), x(0) = x0, t ∈ [0, tf ],

where Ri denotes the ith rule of the fuzzy model, mji and σji are the mean and

standard deviation of the Gaussian membership function, the matrix Fi is singular,

x(t) ∈ Rn is a generalized state space vector, u(t) ∈ Rm is a control variable and

it takes value in some Euclidean space, W (t) is a Brownian motion and Ai ∈ R
n×n,

Bi ∈ R
n×m and Di ∈ R

n×m are known as coefficient matrices associated with x(t)

and u(t) respectively, x0 is given initial state vector, tf is the final time and m ≤ n.

In order to minimize both state and control signals of the feedback control system,

a quadratic performance index is usually minimized:

J = E
{1

2
xT (tf)F

T
i SFix(tf ) +

1

2

∫ tf

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt
}

,

where the superscript T denotes the transpose operator, S ∈ R
n×n and Q ∈ R

n×n

are symmetric and positive definite (or semidefinite) weighting matrices for x(t), R ∈

R
m×m is a singular weighting matrix for u(t). It will be assumed that |sFi − Ai| 6= 0

for some s. This assumption guarantees that any input u(t) will generate one and

only one state trajectory x(t).

If all state variables are measurable, then a linear state feedback control law

u(t) = −(R +DT
i Ki(t)Di)

−1BT
i λ(t)

can be obtained to the system described by equation (1), where

(2) λ(t) = Ki(t)Fix(t),

Ki(t) ∈ R
n×n is a symmetric matrix and the solution of MRDE.

The relative MRDE for the stochastic linear singular system (1) is

F T
i K̇i(t)Fi + F T

i Ki(t)Ai + AT
i Ki(t)Fi +Q(3)

− F T
i Ki(t)Bi(R+DT

i Ki(t)Di)
−1BT

i Ki(t)Fi = 0

with terminal condition(TC) Ki(tf ) = F T
i SFi and (R+DT

i Ki(t)Di) > 0.

Derivation of MRDE

It is well known that minimizing J is equivalent to minimize the Hamiltonian

equation

H(x(t), u(t), λ1(t), λ2(t), t) = 1
2
xT (t)Qx(t) + 1

2
uTRu(t)

+λT
1 (t)[Aix(t) +Biu(t)] + λT

2 (t)[Diu(t)],







where λ2(t) = Ki(t)Diu(t), along the optimal trajectory.
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Using the stochastic optimality conditions and stochastic maximum principle

(Bismut, 2000), we obtain

∂H

∂u(t)
(x(t), u(t), λ1(t), λ2(t), t) = 0

implies that

(R+DT
i Ki(t)Di)u(t) +BT

i λ1(t) = 0

(4) ⇒ u(t) = −(R +DT
i Ki(t)Di)

−1BT
i λ1(t)

and
∂H

∂x(t)
= F T

i dλ1(t)

(5) ⇒ F T
i dλ1(t) = [−Qx(t) − AT

i λ1(t)]dt+ λ2dW (t)

∂H

∂λ1(t)
= Fidx(t),

⇒ Fidx(t) = [Aix(t) +Biu(t)]dt+Diu(t)dW (t)

and from (4), we have

(6) Fidx(t) = [Aix(t) − Bi(R+DT
i Ki(t)Di)

−1BT
i λ1(t)]dt+Diu(t)dW (t).

From (2), we have

dλ1(t) = K̇i(t)Fix(t) +Ki(t)Fidx(t)

and also we have

F T
i dλ1(t) = F T

i K̇i(t)Fix(t) + F T
i Ki(t)Fidx(t).(7)

Using the equations (5) and (6) in (7), we obtain

[F T
i K̇i(t)Fi +F T

i Ki(t)Ai + AT
i Ki(t)Fi +Q

−F T
i Ki(t)Bi(R +DT

i Ki(t)Di)
−1BT

i Ki(t)Fi]x(t)dt+ dM = 0,







(8)

where dM = Diu(t) − λ2(t)dW (t) and M is the integrable Martingale.

Since equation (8) holds for all non-zero x(t) and M = 0, then the term pre-

multiplying x(t) must be zero. Therefore, we obtain the following (MRDE) for the

stochastic bilinear singular system (1).

F T
i K̇i(t)Fi + F T

i Ki(t)Ai +AT
i Ki(t)Fi +Q

−F T
i Ki(t)Bi(R +DT

i Ki(t)Di)
−1BT

i Ki(t)Fi = 0.







.

This equation is going to be solved for Ki(t) in the next section for the optimal

solution.

After substituting the appropriate matrices in the above equation, it becomes a

DAE of index one. Therefore, solving MRDE is equivalent to solving the DAE of

index one.
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3. SOLUTION OF MRDE

Consider the DAE for (3)for each rule of the fuzzy model

k̇ij(t) = φij(kij(t)), kij(tf ) = Aij (i, j = 1, 2, . . . , n− 1)(9)

k1n(t) = ψ(kij(t)), k1n(tf) = A1n.

3.1. RUNGE KUTTA METHOD. Numerical integration is one of the oldest

and most fascinating topics in numerical analysis. It is the process of producing a

numerical value for the integration of a function over a set. Numerical integration is

usually utilized when analytic techniques fail. Even if the indefinite integral of the

function is available in a closed form, it may involve some special functions, which

cannot be computed easily. In such cases too, we can use numerical integration. RK

algorithms have always been considered as the best tool for the numerical integration

of ordinary differential equations (ODEs). The DAE can be changed into system

of nonlinear differential equation by differentiating the algebraic equation once since

the DAE is of index one type. The system (3) contains n2 first order ODEs with

n2 variables. In particular n = 2, the system will contain four equations. Since the

matrix K(t) is symmetric and the system is singular, k12 = k21 and k22 is free (let

k22 = 0). Finally the system will have two equation in two variables. Hence RK

method is explained for a system of two first order ODEs with two variables.

k11(i+ 1) = k11(i) +
1

6

(

k1 + 2k2 + 2k3 + k4
)

k12(i+ 1) = k12(i) +
1

6

(

l1 + 2l2 + 2l3 + l4
)

where

k1 = h ∗ φ11

(

k11, k12

)

l1 = h ∗ φ12

(

k11, k12

)

k2 = h ∗ φ11

(

k11 +
k1

2
, k12 +

l1

2

)

l2 = h ∗ φ12

(

k11 +
k1

2
, k12 +

l1

2

)

k3 = h ∗ φ11

(

k11 +
k2

2
, k12 +

l2

2

)

l3 = h ∗ φ12

(

k11 +
k2

2
, k12 +

l2

2

)

k4 = h ∗ φ11

(

k11 + k3, k12 + l3
)

l4 = h ∗ φ12

(

k11 + k3, k12 + l3
)

.

In a similar way, the original system (3) can be solved for n2 first order ODE’s.
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3.2. ANT COLONY PROGRAMMING METHOD. In this approach, ACP

is used to obtain a set of expressions. If the required number expressions satisfy the

fitness function, it will be the optimal solution of (3). The scheme of computing

optimal solution is given in Figure 2.

START

CONSTRUCT A GRAPH WITH
FUNCTIONS AND TERMINALS

PASS k ANTS
FROM k NODES

UPDATE LOCAL
PHEROMONE RULE

CONSTRUCT PARSE TREES
FROM TOURS OF THE ANTS

EXTRACT EXPRESSIONS

IF
Er        0

EVALUATE FITNESS FUNCTION

OPTIMAL SOLUTION
YES

NO

UPDATE GLOBAL
PHEROMONE  RULE

STOP

PASS  k ANTS
THROUGH BEST TOUR

Figure 2. Flow Chart

According to Boryczka and Wiezorek (2003), the following four preparatory steps

are essential for a searching process.

• Choice of terminals and functions

• Construction of graph

• Defining fitness function

• Defining terminal criteria.

Choice of Terminals and Functions

A terminal symbol ti ∈ T can be a constant or a variable. Every function fi ∈ F

can be an arithmetic operator {+, −, ∗, /}, an arithmetic function (sin, cos, exp, log)

and an arbitrarily defined function appropriate to the problem under consideration.

The terminal symbols and functions have chosen such that they provide sufficient
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expressive power to express the solution to a problem. This means that the problem

must be solved by a composition of functions and terminals specified. For solving the

DAE (3), terminal set and function set are taken as T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t}

and F = {+,−, ∗, /, sin, cos, exp, log}.

Construction of Graph

In ant colony programming technique, the search space consists of a graph with

ℓ nodes where the nodes are the functions or terminals and edges are weighted by

pheromone. The examples of such a graph are given in Figures 3 and 4. Each node

in the graph holds either a function or a terminal. This graph is generated by a

randomized process.

t

+

*
e

1

0
-

3

2

/

Figure 3. Graph with functions and terminals

t

+

*

e

1

0

-

3

2

/

Figure 4. Graph with functions and terminals
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Fitness Function

The aim of the fitness function is to provide a basis for competition among avail-

able solutions and to obtain the optimal solution. Hence the fitness function for (3)

is defined as

(10)

Er =
(

k1n(tm)− ϕ(kij(tm))
)2

+
n−1
∑

i,j=1

(

k̇ij(tm)− φij(kij(tm))
)2

, (m = 0, 1, 2, . . . , tf),

where m represents the equidistance points in the relevant range [0, tf ].

Terminal Criteria

The group of ants and their collective tours form a generation. In each generation,

a set of expressions are generated by the artificial ants. If the required number of

expressions minimize the fitness function Er to zero or very close to zero and they

satisfy the terminal conditions, the process may be stopped; otherwise continue the

ACP approach.

ACP Methodology

Artificial ants build solutions by performing randomized tours on the completely

connected graph G(V,E). In the graph, vertices (V) are represented by Functions

and Terminals and the set (E) of edges connect the vertices. The ants move on the

graph by applying a stochastic local decision policy that makes use of pheromone

trails and heuristic information. In this way, ants incrementally build solutions to the

given problem.

In the first generation, all edges are initialized by equal pheromone weight. Send

k (< ℓ) ants through the graph from k starting points in a random fashion. Each ant

is initially put on a randomly chosen start node. Each ant is moving from the node r

to node s in the graph at time t according to the following probability law (Boryczka,

2005)

prs(t) =
τrs(t) · [γs]

β

∑

i∈Jk
r
[τri(t)] · [γi]β

,

where γs = (1/(2 + πs))
d, πs is the power of symbol s which can be either a terminal

symbol or a function, d is the current length of the arithmetic expression, β is a

parameter which controls the relative weight of the pheromone trail and visibility

and Jk
r is the set of unvisited nodes. The power of the symbols can be calculated

from Table 1. When an ant reaches a node, it determines whether the node is a

terminal or a function node. If the ant is on a terminal node, the end of the tour has

been reached by that ant.
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Terminal symbol or function Power

Constant, variable -1

Functions 1

Table 1. Power of terminal symbols and functions

After completing the tour, the ant deposits pheromone information on the edges

through which it travelled. It constitutes a local update of the pheromone trail, which

also comprises partial evaporation of the trail. The local update process is carried

out according to the formula:

τij(t+ 1) = (1 − ρ).τij(t) + ρ · τ0

where (1 − ρ), ρ ∈ (0, 1], is the pheromone decay coefficient, τij is the amount of

pheromone on edge (i, j) and τ0 is the initial amount of pheromone on edge (i, j).

Each ant has a working memory that stores data about its tour. The ant’s

memory is represented programmatically by a parse tree structure. In this tree, the

root and branches are functions and leaves are terminals. The depth of the memory

tree is limited according to the nature of the problem.

The tour e∗ t+1∗+5 of an ant is represented as parse trees in Figure 5. The tour

e∗t/7∗+4/5 of another ant is represented as parse trees in Figure 6. The tours of the

e

t

+

5

1

+

-Functions -Terminals

Figure 5. Tour of an ant and its parse tree

ants and their corresponding expressions extracted from the parse trees are given in

Table 2. Some tours of the ants can not be represented as the parse trees. Such type

of tours are given in Table 3. They are discarded when the parse tree construction

process is carried out for the tours of the ants. This parse tree construction is helpful

to converge the solution quickly and also reduces the computation time by discarding

the unnecessary tours. After each generation, a global update of pheromone trail
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e

t

+

/

7

/ 4 5

Figure 6. Tour of an ant and its parse tree

Tours of ants Expressions

e ∗ t∗ et

e ∗ t+ 1 ∗ +5 et+1 + 5

e ∗ t/5 ∗ +0 et/5 + 0

e ∗ t/7 ∗ +4/5 et/7 + 4/5

e ∗ 3 ∗ t− 2 ∗ ∗ + 5/2 e3(t−2) + 5/2

e ∗ 3 ∗ t ∗ +5/2 − e ∗ t ∗ /7 e3t + 5/2 − et/7

Table 2. Tours and Expressions

Tours of ants

+e ∗ t ∗ +1

e ∗ t+ 1 ∗ + − 5

e ∗ t/− ∗2

− ∗ e ∗ t/7 ∗ + − /+ 0

Table 3. Discarded tours

takes place. The level of pheromone is then changed as follows:

τij(t+ g) = (1 − ρ) · τij(t) + ρ ·
1

L
,

where g is the number of generations, edges (i, j) belong to the optimal tour found

so far and L is the length of this tour. The aim of the pheromone value update rule

is to increase the pheromone values on the solution path. The update rule reduces

the size of the searching region in order to find high quality solution with reasonable

computation time. On the updated graph, the consecutive cycles of the ant colony

algorithm are carried out by sending the ants through the best tour of the previous

generation. The procedure is repeated until the fitness function (10) becomes zero or
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very close to zero. The optimal tour of the ACP and its corresponding tree are given

in Figures 7 and 8 respectively.

t

+

*

1

-

3

2

/

e

0

+

Figure 7. Optimal tour of the ACP

e

t

+

3

/

2

Expression: e + 3/2
t

Figure 8. Parse tree and its expression

ACP Algorithm.

Step 1. Construct a graph with ℓ nodes.

Step 2. Initialize the equal weight of pheromone in each edge of the graph.

Step 3. Pass k ants through the graph from k starting points and They move to the next

node according to the probability law.

Step 4. Apply local update rule after the tour of each ant.

Step 5. Construct parse trees from the tours of k ants.
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Step 6. Extract the expressions from the trees.

Step 7. Evaluate the fitness function.

Step 8. If Er → 0 and they satisfy the terminal conditions, then stop. Otherwise, apply

global update rule.

Step 9. Identify the best tour of the previous generation.

Step 10. Pass the same k ants through the best tour and go to Step 4.

4. NUMERICAL EXAMPLE

Consider the optimal control problem:

Minimize

J = E
{1

2
xT (tf )F

T
i SFix(tf ) +

1

2

∫ tf

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt
}

subject to the stochastic linear singular T-S fuzzy system Ri: If xj is Tji(mji, σji),

i = 1, 2 and j = 1, 2, then

Fidx(t) = [Aix(t) +Biu(t)]dt+Diu(t)dW (t), x(0) = x0

where fuzzy term sets T11(0.4158, 0.6545), T12(0.597, 0.7889), T21(0.3982, 0.5249),

T22(0.8596, 0.6376);

S =

[

2 3

3 5

]

, Fi =

[

1 0

0 0

]

, A1 =

[

−1 −1

0 1

]

, A2 =

[

−2 −2

0 2

]

,

Bi =

[

0

1

]

, R = 1, Q =

[

1 −1

−1 1

]

, Di =

[

1

0

]

.

The numerical implementation could be adapted by taking tf = 2 for solving the

related MRDE of the above linear singular fuzzy system with the matrix A1. The

appropriate matrices are substituted in equation (2), the MRDE is transformed into

DAE in k11 and k12. In this problem, the value of k22 of the symmetric matrix K(t)

is free and let k22 = 0. Then the optimal control of the system can be found out by

the solution of MRDE.

4.1. SOLUTION OBTAINED USING ANT COLONY PROGRAMMING.

The graph is generated randomly with 10 nodes. Let ρ = 0.8 and β = 2. Each edge

is initialized by a pheromone weight of 1.0. Six ants are taken to be sent through the

graph from 6 different points. The equidistance points of the interval [0, 2] are taken

as m = 0, 1, 2.

As the ant colony programming is carried out continuously, the solution of each

generation will be improved by the pheromone updating rules. The construction

of parse tree for the tour of the ants will converge the optimal solution quickly by

discarding some unnecessary tours.
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RK Solution ACP Solution

t k11 k12 k11 k12

0.0 0.004960 1.004960 0.004957 1.004957

0.2 0.009037 1.009037 0.009033 1.009033

0.4 0.016466 1.016466 0.016459 1.016459

0.6 0.030002 1.030002 0.029991 1.029991

0.8 0.054665 1.054664 0.054647 1.054647

1.0 0.099600 1.099600 0.099574 1.099574

1.2 0.181474 1.181474 0.181435 1.181435

1.4 0.330649 1.330649 0.330597 1.330597

1.6 0.602451 1.602451 0.602388 1.602388

1.8 1.097680 2.097680 1.097623 2.097623

2.0 2.000000 3.000000 2.000000 3.000000

Table 4. Solutions of MRDE

After 50 generations, the value of the fitness function is 301.7303 and the corre-

sponding tours and expression are given below.

Tours : k11 = e ∗ t− 2 ∗ +3, k12 = e ∗ t− 2 ∗ +4

Expressions : k11 = e(t−2) + 3, k12 = e(t−2) + 4

After 100 generations, the value of the fitness function is 49.6532 and the correspond-

ing tours and expression are given below.

Tours : k11 = e ∗ t− 2 ∗ +1, k12 = e ∗ t− 2 ∗ +2

Expressions : k11 = e(t−2) + 1, k12 = e(t−2) + 2

After 150 generations, the following expressions satisfy the fitness function and the

value of the fitness function tends to 0. The expressions also satisfy the terminal

conditions. Hence the solution of the DAE/MRDE is obtained.

Tours : k11 = e ∗ 3 ∗ t− 2 ∗ ∗ ∗ 2, k12 = e ∗ 3 ∗ t− 2 ∗ ∗ ∗ 2 + 1

Expressions : k11 = 2e(3(t−2)), k12 = 2e(3(t−2)) + 1

The numerical solutions of MRDE are calculated and displayed in Table 4 using

ACP and RK method. Since this problem provides explicit solution, the ACP solution

is equivalent to exact solution of the DAE. ACP solution curves are shown in Figures 9

and 12.

The parse trees for the solutions are given in Figures 10 and 13. The error region

between ACP and RK solutions are given in Figures 11 and 14.
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Figure 10. Tree and Expression for k11

Similarly, the solution of the above system with the matrix A2 can be found out

using ant colony programming.
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5. CONCLUSION

The optimal control for the stochastic linear quadratic singular T-S fuzzy system

can be found by ACP approach. To obtain the optimal control, the solution of

MRDE is computed by solving differential algebraic equation (DAE) using a novel

and nontraditional ACP approach. The obtained solution in this method is equivalent

to the exact solution of the problem. Accuracy of the solution computed by ACP

approach to the problem is qualitatively better when it is compared with RK solution.

A numerical example is given to illustrate the derived results.
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