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ABSTRACT. In this paper, the authors give sufficient conditions for the existence and global

attractivity of a positive periodic solution of the first order nonlinear differential equation

N ′(t) = −a(t)N(t) + b(t)
N(t)

1 +
(

N(t)
p(t)

)γ ,

where the coefficients are periodic functions. This equation is used to model fish populations where

N(t) is the population size at time t. Some examples showing the independence of the results are

included.
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1. INTRODUCTION

Periodicity plays an important role in problems associated with real world ap-

plications such as those involving ecosystem dynamics and environmental variability.

There have been considerable contributions to the literature in recent years on the

existence and global attractivity of periodic solutions of differential equation models

of such phenomena; see, for example [4, 7, 9, 10]. Here, we are interested in investi-

gating the existence and global attractivity of a positive periodic solution of a first

order differential equation for a fishing model.

Differential equations of the form

(1) N ′(t) = [R(t, N) − M(t, N)]N − F (t)N,

where R, M : [0,∞) × R → R and F : R → R are continuous functions, are often

used as population models, and in particular for models of fish populations (see, for

example, [3, 6]). Here, N = N(t) denotes the population size at time t, R(t, N) is

the birth rate, M(t, N) is the mortality rate, and F (t) denotes the harvesting rate.

Seasonal effects including such things as weather, food supply, mating habits, and

seasonal harvesting are often incorporated into these kind of models in the form of
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periodic coefficients. A common choice for the function R is what is often referred to

as Hill’s function (see [1, 2, 3, 6])

(2) R(t, N) =
b

1 +
(

N
p

)γ ,

where b and p are positive constants. The parameter γ > 0 affects how quickly density

dependence sets in.

Berezansky and Idels [2] considered the delay differential equation model

(3) N ′(t) = −a(t)N(t) +
b(t)

1 +
(

N(θ(t))
p(t)

)γ N(t),

and they studied the existence of a periodic solution and its stability properties. In

particular, they proved the existence of a positive periodic solution of (3) that is a

global attractor for all positive solutions. They also considered the case of equation

(3) with proportional coefficients. In another nice paper, Berezansky, Braverman,

and Idels [3], studied the model

(4) N ′(t) = −a(t)N(t) +
b(t)N(t)

1 + Nγ(t)
− r(t)N(θ(t)),

and also gave sufficient conditions for the existence of a positive bounded solution.

Here, we will consider the equation

(5) N ′(t) = −a(t)N(t) + b(t)
N(t)

1 +
(

N(t)
p(t)

)γ ,

where a, b, p : [0,∞) → [0,∞) are positive continuous periodic functions with period

T . We too will determine conditions, different from those in [2] and [3], under which

this equation has a positive periodic solution. We will also give conditions under

which this periodic solution is a global attractor as defined in the following definition.

Definition 1.1. Suppose that x(t) and x(t) are two positive solutions of equation

(5) on [0,∞). The solution x(t) is said to be asymptotically attractive to x(t) if

lim
t→∞

[x(t) − x(t)] = 0.

Furthermore, x(t) is called globally attractive if x(t) is asymptotically attractive to

all positive solutions of (5).

In the next section of this paper, we prove the existence of a positive periodic

solution N(t) of equation (5) and give sufficient conditions for the global attractivity

of this solution. The final section contains some examples showing that our various

results are independent of each other.
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For convenience, we introduce the following notations. For any continuous T -

periodic function h : [0,∞) → R, let

h∗ = max
0≤t≤T

h(t) and h∗ = min
0≤t≤T

h(t).

Throughout the paper, we assume that γ > 1.

2. EXISTENCE AND GLOBAL ATTRACTIVITY OF A PERIODIC

SOLUTION

Our first lemma shows that, given a positive initial condition, solutions of equa-

tion (5) are positive and bounded.

Lemma 2.1. Every solution of (5) having a positive initial condition is positive and

satisfies the property

(6) lim sup
t→∞

N(t) ≤ K

where

(7) K =
b∗

a∗

p∗

(
p∗

p∗

)γ (
1

γ

)
(γ − 1)

γ−1

γ .

Proof. Let N(t) be a solution of (5) with N(0) = N0 > 0; then

N(t) = N0 exp

∫ t

0



−a(s) +
b(s)

1 +
(

N(s)
p(s)

)γ



 ds.

Consequently, N(t) is defined on [0,∞) and N(t) > 0 for t ≥ 0.

Next, we claim that N(t) is bounded. Setting

g̃(N) =
p∗γN(t)

p∗γ + Nγ(t)
,

we see that

(8) g̃(N) ≤ g =
p∗γµ

p∗γ + µγ
where µ = p∗

(
1

γ − 1

) 1

γ

.

From (5), we obtain

(9) N ′(t) ≤ −a(t)N(t) + b∗g.

To prove (6), note that from (8) and (9), we have

N(t) ≤ N0e
−

R t

0
a(s) ds +

∫ t

0

b∗ge−
R t

s
a(u) du ds

≤ N0e
−a∗t + b∗g

∫ t

0

e−a∗(t−s) ds

≤ N0e
−a∗t +

b∗g

a∗

(
1 − e−a∗t

)
.
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This in turn implies that

lim sup
t→∞

N(t) ≤
b∗g

a∗

= K,

where K is given in (7). This completes the proof of the lemma.

Remark 2.2. Note that from the proof of Lemma 2.1, we have

N(t) < N0 +
b∗g

a∗

= N0 + K

for all t ≥ 0.

The following theorem gives a sufficient condition for the existence of a positive

periodic solution of (5). We shall use a method of proof similar to that used by Graef

et al. in [5].

Theorem 2.3. If b∗ > a∗, then (5) has at least one positive periodic solution.

Proof. From Lemma 2.1, it follows that every solution of (5) with a positive initial

condition is positive and bounded. Furthermore, the function g̃(N) = p∗γN(t)
p∗γ+Nγ(t)

is

decreasing in (p∗( 1
γ−1

)
1

γ ,∞). Consider the function

f(N) = −aN + b
N

1 +
(

N
p∗

)γ ,

where a and b are constants. Clearly, the function attains its maximum

fmax =
p∗

(2a)
1

γ

[
(4abγ + (γ − 1)2b2)

1

2 − (2a + (γ − 1)b)

] 1

γ

×

[
−a +

(4abγ + (γ − 1)2b2)
1

2 + (γ − 1)b

2γ

]

at

N = N̂ =
p∗

(2a)
1

γ

[
(4abγ + (γ − 1)2b2)

1

2 − (2a + (γ − 1)b)

] 1

γ

.

Now, N̂ > 0, and fmax > 0 for b > a, and since f(N) → −∞ as N → ∞, it follows

that there exists an α ∈ (N̂ ,∞) such that f(α) = 0. Thus, f1(N) = 0 and f2(N) = 0

has roots N1 and N2 respectively, where

f1(N) =
b∗N

1 +
(

N
p∗

)γ − a∗N

and

f2(N) =
b∗N

1 +
(

N
p∗

)γ − a∗N.
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Furthermore, a simple calculation shows that

max

{
N̂ , p∗

(
1

γ − 1

) 1

γ

}
< N1 < N2.

Let N(t) = N(t, 0, α), α ≥ max{N̂, p∗( 1
γ−1

)
1

γ }, be the unique solution of (5)

through (0, α). We claim that N(t) ∈ [N1, N2] for every α ∈ [N1, N2] and t ≥ 0.

Suppose this is not the case; say, let

t1 = inf{t > 0 : N(t) > N2}.

Then there exists a t2 ≥ t1 such that N(t2) > N2 and N ′(t2) > 0. Hence, from (5)

we obtain

0 < N ′(t2) = −a(t2)N(t2) +
b(t2)N(t2)

1 +
(

N(t2)
p(t2)

)γ

≤ −a∗N2 +
b∗N2

1 +
(

N2

p∗

)γ = f2(N2) = 0,

which is a contradiction. Consequently, N(t) ≤ N2. By a similar argument, we can

show that N(t) ≥ N1. Thus, in particular,

NT = N(T, 0, α) ∈ [N1, N2].

Next, we define a mapping F : [N1, N2] → [N1, N2] as follows: for each α ∈

[N1, N2], let F (α) = NT . Since the solution N(t, 0, α) depends continuously on the

initial value α, the mapping F is continuous and maps the interval [N1, N2] into

[N1, N2]. By Brouwer’s fixed point theorem, F has a fixed point N . Thus, the unique

solution N = N(t, 0, α) is periodic with period T . This completes the proof of the

theorem.

We want to show that N(t) is an attractor to all other positive solutions of (5).

To prove our theorems, we need the following lemma. An indirect proof of this lemma

can be found in [8]. We will present a proof here for the sake of completeness.

Lemma 2.4. Let z ∈ C1([0,∞), R) and σ ∈ R. If z ∈ L2[σ,∞) and z′(t) is bounded,

then z(t) → 0 as t → ∞.

Proof. Clearly the statement holds for any nonoscillatory function on [0,∞), so let

z(t) be an oscillatory function on [0,∞). Since z ∈ L2[0,∞),
∫ ∞

0
z2(t)dt < ∞. This

in turn implies that lim inf t→∞ z(t) = 0. To complete the proof of the theorem, it

remains to show that lim supt→∞ z(t) = 0. Suppose that lim supt→∞ z(t) 6= 0. Then

there exist an ǫ > 0 and a sequence {tn}
∞
n=1 such that tn → ∞ as n → ∞ and

z(tn) > 2ǫ for large n. Since lim inft→∞ z(t) = 0, there exists a sequence {t∗n}
∞
n=1 such

that t∗n → ∞ as n → ∞ and z(t∗n) → 0 as n → ∞. Thus, z(t∗n) < ǫ for n ≥ Nǫ
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for some positive integer Nǫ. It is possible to extract sequences {sn}
∞
n=1 and {σn}

∞
n=1

such that σn < sn < σn+1, σn → ∞ as n → ∞, z(sn) > 2ǫ, and z(σn) < ǫ for

n ≥ Nǫ. Since z(t) is continuous, there exist sequences {τn}
∞
n=1 and {τ ∗

n}
∞
n=1 such

that σn < τ ∗
n < τn < sn with z(τ ∗

n) = ǫ and z(τn) = 2ǫ. It is clear that the intervals

(τ ∗
n , τn) are disjoint. Then,

∞∑

n=1

(τn − τ ∗
n)ǫ2 ≤

∞∑

n=1

∫ τn

τ∗

n

z2(t) dt ≤

∫ ∞

0

z2(t) dt < ∞,

which implies that limn→∞(τn−τ ∗
n) = 0. By the Mean Value Theorem, the calculation

z′(ξn) =
z(τn) − z(τ ∗

n)

τn − τ ∗
n

, τ ∗
n < ξn < τn,

implies that z′(ξn) → ∞ as n → ∞, which contradicts the hypothesis of the lemma.

Hence, our claim holds, that is, lim supt→∞ z(t) = 0. Consequently, z(t) → 0 as

t → ∞, and the lemma is proved.

Theorem 2.5. Assume that

(H1) b∗p∗γ(γ − 1)2 < 4a∗(p
∗γ + pγ

∗(γ − 1))

holds. Then N(t) is a global attractor to all other positive solutions of (5). That is,

every positive solution N(t) of (5) satisfies

lim
t→∞

[N(t) − N(t)] = 0.

Proof. Setting Z(t) = N(t) − N(t), we obtain

(10) Z ′(t) = −a(t)Z(t) + b(t)



 N(t)

1 +
(

N(t)
p(t)

)γ −
N(t)

1 +
(

N(t)
p(t)

)γ



 .

Equation (10) is equivalent to

(11)

(
1

2
Z2(t)

)′

= −a(t)Z2(t) + Z(t)b(t)pγ(t)

[
N(t)

pγ(t) + Nγ(t)
−

N(t)

pγ(t) + N
γ
(t)

]
.

Let F (t, θ) =
θ

pγ(t) + θγ
; then

∂

∂θ
F (t, θ) =

pγ(t) + (1 − γ)θγ

(pγ(t) + θγ)2
< F1(t, θ) =

p∗γ + (1 − γ)θγ

(pγ(t) + θγ)2
,

where θ lies between N(t) and N(t). Since F1(t, θ) < 0 for θ >
p∗

(γ − 1)
1

γ

, set

G1(t, θ) = −F1(t, θ) =
(γ − 1)θγ − p∗γ

(pγ(t) + θγ)2
.



DYNAMICS OF A FISHING MODEL 115

Note that G1(t, θ) > 0 for θ >
p∗

(γ − 1)
1

γ

. Furthermore,

G1(t, θ) < G(θ) =
(γ − 1)θγ − p∗γ

(pγ
∗ + θγ)2

.

A simple calculation shows that G(θ) attains its maximum value
(γ − 1)2

4(pγ
∗(γ − 1) + p∗γ)

at θ =

[
2p∗γ + (γ − 1)pγ

∗

γ − 1

] 1

γ

.

Applying the Mean Value Theorem, (11) yields

(
1

2
Z2(t)

)′

≤ −a(t)Z2(t) + Z(t)b(t)pγ(t)|N(t) − N(t)|G(θ)

≤ −a(t)Z2(t) + b(t)pγ(t)G(θ)Z2(t)

≤ −

[
a∗ − b∗p∗γ

(γ − 1)2

4(pγ
∗(γ − 1) + p∗γ)

]
Z2(t)

that is,

(12)

(
1

2
Z2(t)

)′

≤ −µZ2(t),

where

µ = a∗ − b∗p∗γ
(γ − 1)2

4(pγ
∗(γ − 1) + p∗γ)

> 0

by (H1). Integrating inequality (12) from t1 to t with t1 ≥
p∗

(γ − 1)
1

γ

, we obtain

µ

∫ t

t1

Z2(s) ds ≤
1

2
Z2(t1) −

1

2
Z2(t) ≤

1

2
Z2(t1).

This shows
∫ ∞

t1
Z2(s) ds < ∞, i.e., Z ∈ L2[t1,∞). Furthermore, the boundedness

of N(t) and N(t) imply that Z ′(t) is bounded. Hence, by Lemma 2.4, Z(t) → 0 as

t → ∞, that is, N(t) → N(t) as t → ∞. This completes the proof of the theorem.

Our next theorem gives another sufficient condition for N(t) to be a global at-

tractor to all other positive solutions of (5). As we shall see in the examples below,

this condition is independent of the one given in Theorem 2.5 above.

Theorem 2.6. Suppose that

(H2) a∗ > b∗p∗γ
[
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

]

holds. Then N(t) is a global attractor to all other positive solutions of (5).
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Proof. Letting Z(t) = N(t)−N (t) and proceeding as in the proof of the Theorem 2.5,

we again obtain (11). Applying the Mean Value Theorem yields

(13)

(
1

2
Z2(t)

)′

≤ −a(t)Z2(t) + Z(t)b(t)pγ(t)|N(t) − N(t)|G1(t, θ).

We then have

G1(t, θ) =
(γ − 1)θγ − p∗γ

(pγ(t) + θγ)2
=

(γ − 1)θγ

(pγ(t) + θγ)2
−

p∗γ

(pγ(t) + θγ)2

<
(γ − 1)θγ

p2γ(t)
−

p∗γ

(pγ(t) + θγ)2

≤
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2
.

Since G1(t, θ) > 0 for θ >
p∗

(γ − 1)
1

γ

, we have
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2
> 0 for

θ >
p∗

(γ − 1)
1

γ

. Hence, from (13), we obtain

(
1

2
Z2(t)

)′

≤

[
−a(t) + b(t)pγ(t)

(
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

)]
Z2(t)

≤ −

[
a∗ − b∗p∗γ

(
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

)]
Z2(t)

or (
1

2
Z2(t)

)′

≤ −µZ2(t),

where µ = a∗ − b∗p∗γ
(

(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

)
> 0 by (H2).

The remainder of the proof is similar to the proof of Theorem 2.5. Lemma 2.4

again implies that N(t) is a global attractor to all other positive solutions of (5), and

this completes the proof of the theorem.

Remark 2.7. A somewhat easier condition to verify than (H2) is

(H3)

(
b∗

a∗

)γ+1 (
p∗

p∗

)γ(γ+1) (
γ − 1

γ

)γ

< 1.

It can be shown that this condition implies (H2).

3. EXAMPLES

The following examples illustrate our theorems as well as show the independence

of the hypotheses.

Example 3.1. Consider the equation

N ′(t) = −

(
1 +

sin2 t

10

)
N(t) +

(1.5 + cos2 t
20

)N(t)

1 +
(

N(t)
2+cos2 t

)3 , t ≥ 0.
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Figure 1. Simulation for Example 1

Here a(t) = 1 + sin2 t
10

, b(t) = 1.5 + cos2 t
20

, p(t) = 2 + cos2 t, and γ = 3. Clearly

b∗ = 1.5 > 1.1 = a∗. It is easy to see that condition (H1) of Theorem 2.5 is satisfied.

Therefore, this equation has a positive periodic solution that is a global attractor to

all other positive solutions. On the other hand,

b∗p∗γ
[
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

]
= 218.7 > 1 = a∗

implying that (H2) fails to hold. Consequently, Theorem 2.6 cannot be applied to

this example.

Example 3.2. Consider the equation

N ′(t) = −

(
1.2 +

sin2 t

50

)
N(t) +

(1.3 + cos2 t
10

)N(t)

1 +

(
N(t)

0.5+ sin2 t

1000

)6 , t ≥ 0.

Here a(t) = 1.2 + sin2 t
50

, b(t) = 1.3 + cos2 t
10

, p(t) = 0.5 + sin2 t
1000

, and γ = 6. Now

b∗ = 1.3 > 1.22 = a∗ and
(

b∗

a∗

)γ+1 (
p∗

p∗

)γ(γ+1) (
γ − 1

γ

)γ

= 0.918412032 < 1,

that is, (H3) and hence (H2) is satisfied. Thus, Theorem 2.6 can be applied, and so

the equation has a positive periodic solution that is a global attractor to all other

positive solutions. On the other hand, condition (H1) fails to hold, which means that

Theorem 2.5 cannot be applied to this example.
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Figure 2. Simulation for Example 2

Example 3.3. Consider the equation

N ′(t) = −

(
1.5 +

sin2 t

10

)
N(t) +

(1.7 + cos2 t
20

)N(t)

1 +

(
N(t)

4+ sin2 t

100

)6 , t ≥ 0.

Here a(t) = 1.5 + sin2 t
10

, b(t) = 1.7 + cos2 t
20

, p(t) = 4 + sin2 t
100

, and γ = 6. Since

b∗ = 1.7 > 1.6 = a∗, K = 3.0189, and

b∗p∗γ
[
(γ − 1)Kγ

p
2γ
∗

−
p∗γ

(p∗γ + Kγ)2

]

= (1.75)(4.01)6

[
5(3.0189)6

412
−

(4.01)6

((4.01)6 + (3.0189)6)2

]

< 0.42 < 1.5 = a∗,

condition (H2) of Theorem 2.6 is satisfied. This shows that again we have a positive

periodic solution that is a global attractor to all other positive solutions. However,

a simple calculation shows that (H1) fails to hold, so Theorem 2.5 cannot be applied

to this example.

Our final example is a simple one, yet it shows that our results may hold when

those in [2] do not.

Example 3.4. Consider the equation

N ′(t) = −N(t) +
2N(t)

1 + N2(t)
, t ≥ 0.

Here, a(t) = 1 < b(t) = 2, p(t) = 1, and γ = 2. It is easy to see that condition (H1)

of Theorem 2.5 is satisfied, so this equation has a positive periodic solution globally
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Figure 3. Simulation for Example 3

Figure 4. Simulation for Example 4

attracting all other positive solutions. In fact, this solution is N(t) ≡ 1. However,

Theorem 2.1 in [2] does not apply to this example.
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