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ABSTRACT. We consider a Dirichlet boundary value problem for singularly perturbed reaction-

diffusion equation. The problem is discretized using an exponential spline difference scheme derived

on the basis of splines in tension. The fitted mesh technique is employed to generate piecewise-

uniform Shishkin type mesh, condensed in the neighborhood of the boundary layers. The convergence

analysis is given and the method is shown to have second order ε-uniform convergence on piecewise-

uniform Shishkin type mesh. Numerical experiments are conducted to demonstrate the theoretical

results.
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1. INTRODUCTION

Consider the singularly perturbed reaction-diffusion problem

(1.1) Lεu ≡ −εu′′(x) + b(x)u(x) = f(x), for x ∈ (0, 1),

with boundary conditions

(1.2) u(0) = 0 and u(1) = 0,

where ε is a small parameter and f(x), b(x) are smooth functions and satisfy b(x) >

β2 > 0 > 0, ∀x ∈ [0, 1] for some positive constant β. The boundary value problem

(1.1)–(1.2) under these assumptions possesses unique solution u(x). In general, as ε

tends to zero, the solution u(x) may exhibit exponential boundary layers of width

O(
√

ε ln(1/
√

ε)) at both ends of the interval [0, 1]. We consider the boundary value

problem (1.1)–(1.2) with homogenous boundary conditions. As it is well known, by

a simple substitution the boundary value problem with non-homogenous boundary

conditions can be reduced to a boundary value problem with homogenous boundary

conditions.
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The classical numerical methods on uniform mesh for solving singularly perturbed

problems may give rise to difficulties when the singular perturbation parameter ε is

sufficiently small. This leads to the development of the numerical methods that are

uniformly convergent with respect to the perturbation parameter ε, that is, numerical

methods for which there exists an N0, independent of ε, such that for all N ≥ N0,

where N is the number of mesh elements, the error constant and the rate of conver-

gence in maximum norm are independent of ε. Thus a numerical method is said to

be ε-uniform convergence of order k on the mesh XN = {xi, i = 0, 1, . . . , N} if there

exists an N0 independent of ε such that for all N ≥ N0

sup
0<ε≤1

max
XN

|u − UN | ≤ CN−k,

where u is the exact solution, UN is the numerical approximate to u, C and k > 0

are independent of ε and N .

In general, there are two types of ε-uniform numerical methods: fitted operator

methods and fitted mesh methods. For the numerical solution of singularly perturbed

boundary value problem (1.1)–(1.2), ε-uniform numerical methods consisting of fitted

operators on uniform meshes have been constructed and analyzed in [2, 4–6, 12, 15];

and several types of special fitted mesh methods have been introduced and analyzed

in [2, 6–7, 9, 13]. The application of exponential splines for the numerical solution

of singularly perturbed boundary value problem (1.1)–(1.2) has been described [4–5,

10–12, 15]. In general exponentially fitted scheme is used to achieve the uniform

convergence on uniform meshes. But some exponentially fitted schemes on non-

uniform meshes were also derived in [3, 14, 16–17]. In these schemes the problem

is how to change the mesh points when ε changes was not considered. This was

addressed first in [1] for the classical difference schemes and this idea of Bakhvalov

was further used in [17]. The determination of fitting factor for non-uniform meshes is

more complicated. The fitting factor is determined in such a way that the truncation

error of the difference scheme for the boundary layer functions should be zero (by

assuming b(x) is constant); and a special condition on the meshes is determined to

prove the required accuracy of the difference scheme.

In the present paper, for the solution of singulary perturbed reaction-diffusion

problem (1.1)–(1.2) we construct an exponential spline difference scheme based on

spline in tension on piecewise-uniform Shishkin mesh. Since the spline difference

scheme has the same order of accuracy and the similar matrix structure on both

uniform and non-uniform meshes, we use an exponential spline difference scheme

on piecewise-uniform Shishkin mesh to have more nodal points within the layers re-

gion. The present scheme is derived by combining the exponential spline identity

relation with the exponential spline approximation of (1.1)–(1.2) at nodal points x′
is

of the mesh. Let T (x) ∈ C2[0, 1] be the exponential spline and let T (x)|[xi−1,xi] ∈
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span{1, x, exp(pix), exp(−pix)}. When b(x) is constant, the exponential spline collo-

cation method, in which T (x) collocate (1.1)–(1.2) at the nodal points x′
is, can be

interpreted as the present exponential spline difference scheme (see [10, 12]).

This paper is arranged as follows. The exponential spline difference scheme on

piecewise-uniform Shishkin mesh for singularly perturbed boundary value problem

(1.1)–(1.2) is described in section 2. The discrete comparison principle and uniform

stability result of the present exponential spline difference scheme are also presented.

In section 3, ε-uniform convergence result of the exponential spline difference scheme

on piecewise uniform Shishkin mesh is given. Numerical experiments are conducted to

demonstrate the efficiency of the proposed method in section 4. Results of experiments

are discussed also discussed. Finally, the conclusions are included in section 6.

Let 0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1, be the partition of [0, 1] and

hi = xi+1−xi, for i = 0, 1, . . . , N−2, N−1, be the mesh spacing. We use the following

notations in the remaining parts of the paper. p = min
∀i

pi, hmax = max
∀i

hi > 0,

si = sinh(pihi), ci = cosh(pihi) and C is a generic positive constant independent of

hi and ε. ‖ · ‖ is used for the maximum norm, that is, ‖u‖ = max
∀i

|ui|.

2. DISCRETIZATION

In this section, we introduce an exponential spline difference scheme to discretize

the singulary perturbed reaction-diffusion problem (1.1)–(1.2). Let Π be the partition

of the given domain [0, 1], defined by

Π : 0 = x0 < x1 < x2 < · · · < xN−2 < xN−1 < xN = 1,

with mesh width hi = xi+1 − xi.

Suppose pis are non-negative tension parameters defined on each subinterval

[xi−1, xi], i = 1(1)N . Define the exponential spline T (x) ∈ span{1, x, exp(pix), exp(−pix)},
as the solution to the boundary value problems on each subinterval [xi−1, xi], i =

1(1)N .

(D4 − p2
i D

2)T (x) = 0, for x ∈ (xi−1, xi),

T (xi−1) = Ui−1, T (xi) = Ui, T ′′(xi−1) = T ′′
i−1, T ′′(xi) = T ′′

i ,

with T ′′
i (i = 0, . . . , N) yet to be determined. Note that pi → 0 implies that D4T (x) →

0, x ∈ (xi−1, xi), which gives the cubic spline S(x).

Using T (x) from the above boundary value problem we obtain the following

exponential spline identity relation

(2.1) ei−1T
′′
i−1 + (di−1 + di)T

′′
i + eiT

′′
i+1 =

Ui+1 − Ui

hi
− Ui − Ui−1

hi−1
, i = 1(1)N − 1,

where

ei =
si − pihi

p2
i sihi

, di =
pihici − si

p2
i sihi

,
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di−1 =
pi−1hi−1ci−1 − si−1

p2
i−1si−1hi−1

, ei−1 =
si−1 − pi−1hi−1

p2
i−1si−1hi−1

,

which ensures the continuity of T ′(x) at the interior nodes.

Approximate the solution u(x) of (1.1)–(1.2) with the exponential spline T (x) and

use T ′′
j = 1

ε
(b(xj)Uj − f(xj)), j = i, i± 1, in (2.1) to obtain the following exponential

spline difference scheme

[LεU ]i = −ε[D̃U ]i + [PbU ]i = [Pf ]i, for i = 1(1)N − 1,(2.2)

U0 = 0, UN = 0.

where

[D̃v]i =
1

~i
(
vi+1 − vi

hi
− vi − vi−1

hi−1
), [Pv]i = P−

i vi−1 + P c
i vi + P+

i vi+1

where

P−
i =

si−1 − pi−1hi−1

~ip2
i−1si−1hi−1

, P+
i =

si − pihi

~ip2
i (sihi

,

P c
i =

pi−1hi−1ci−1 − si−1

~ip
2
i−1si−1hi−1

+
pihici − si

~ip
2
i sihi

,

with

hi = xi+1 − xi and ~i =
hi−1 + hi

2
.

Note that, if the tension parameters pis become zero then the present exponential

spline difference scheme (2.2) reduces to the following cubic spline difference scheme

[LεU ]i = −ε[D̃U ]i + [PbU ]i = [Pf ]i, for i = 1(1)N − 1,(2.3)

U0 = 0, UN = 0,

where

[D̃v]i =
1

~i

(
vi+1 − vi

hi

− vi − vi−1

hi−1

), [Pv]i = P−
i vi−1 + P c

i vi + P+
i vi+1,

where

P−
i =

hi−1

6~i
, P c

i =
2

3
, P+

i =
hi

6~i
,

with

hi = xi+1 − xi and ~i =
hi−1 + hi

2
.

We apply the exponential spline difference scheme (2.2) on a piecewise uniform

Shishkin mesh XN
s . For this, the mesh XN

s is constructed as follows.

Define the transition parameter

(2.4) τ = min

{
1

4
,
2
√

ε

β
ln N

}
.

Assuming that N is an integer and N is divisible by 4, we divide each of the two

intervals [0, τ ] and [1 − τ, 1] uniformly into N/4 subintervals and [τ, 1 − τ ] into N/2

subintervals of equal length.
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The resulting piecewise-uniform Shishkin mesh may be represented as

(2.5) hi =

{
H1 = 4τ

N
, xi = xi−1 + H1, for i = 1(1)N

4
and i = 3N

4
+ 1(1)N ;

H2 = 2(1−2τ)
N

, xi = xi−1 + H2, for i = N
4

+ 1(1)3N
4

.

If τ = 1
4
, that is, 1

4
≤ 2

√
ε

β
ln N , then N−1 is very small relative to ε. This is unlikely

in practice and in this case the method can be analyzed using the classical technique.

We therefore assume τ = 2
√

ε
β

lnN . From (2.5), these mesh widths H1 and H2 satisfy

H1 =
8

β

√
εN−1 ln N, N−1

6 H2 6 2N−1.

The coefficient matrix of (2.2) is of size (N + 1) × (N + 1) and the unknowns are

U0, U1, . . . , UN−1, UN . On eliminating the U0 and UN using the boundary conditions,

the coefficient matrix of (5) reduces to the size (N − 1)× (N − 1) with the unknowns

U1, . . . , UN−1. This system may be represented as

(2.6) Aα = d,

where A is an (N − 1) × (N − 1) tridiagonal matrix, α = [U1, . . . , UN−1]
T and d =

[d1, . . . , dN−1]
T .

The elements of tridiagonal matrix A = [aij ] are

(2.7)





a1,1 = 2ε
h0h1

+ (p0h0c0−s0

~1p2
0
s0h0

+ p1h1c1−s1

~1p2
1
s1h1

)b1;

a1,2 = − ε
h1~1

+ ( s1−p1h1

~1p2
1
s1h1

)b2;

ai,i−1 = − ε
hi−1~i

+ ( si−1−pi−1hi−1

~ip2
i−1

si−1hi−1
)bi−1, i = 2, . . . , N − 2;

ai,i = 2ε
hi−1hi

+ (pi−1hi−1ci−1−si−1

~ip2
i−1

si−1hi−1
+ pihici−si

~ip2
i sihi

)bi, i = 2, . . . , N − 2;

ai,i+1 = − ε
hi~i

+ ( si−pihi

~ip2
i sihi

)bi+1, i = 2, . . . , N − 2;

aN−1,N−2 = − ε
hN−2~N−1

+ ( sN−2−pN−2hN−2

~N−1p2
N−2

sN−2hN−2
)bN−2

aN−1,N−1 = 2ε
hN−2hN−1

+ (pN−2hN−2cN−2−sN−2

~N−1p2
N−2

sN−2hN−2
+ pN−1hN−1cN−1−sN−1

~N−1p2
N−1

sN−1hN−1
)bN−1

ai,j = 0, ∀|i − j| > 1.

The elements di of column vector d are

di =

(
si−1 − pi−1hi−1

~ip2
i−1si−1hi−1

)
fi−1 +

(
pi−1hi−1ci−1 − si−1

~ip2
i−1(si−1hi−1)

+
pihici − si

~ip2
i sihi

)
fi

+

(
si − pihi

~ip2
i sihi

)
fi+1, i = 1, . . . , N − 1.

As

|ai,i| − (|ai,i−1| + |ai,i+1|) > 0,

where b(xi) > β2 > 0, pi > 0 and hi > 0, the matrix A is strictly diagonally dominant.

So the linear systems Aα = d can be solved uniquely for the unknowns U1, . . . , UN−1.

Define p = min
∀i

pi is a uniform tension parameter for our present scheme (4). Now

we use this uniform tension parameter p on each [xi−1, xi]. In general the matrix A is
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not an M-matrix. However now we choose a uniform tension parameters p as given

in the following lemma that ensures the coefficient matrix A in (2.6) is an M-matrix.

Lemma 2.1. If the tension parameter p ≥ max
∀i

√
bi/ε, i = 1, . . . , N − 1, then

ai,i−1 < 0, ai,i+1 < 0, ai,i > 0,

and

ai,i + ai,i−1 + ai,i+1 ≥ K > 0,

where K is a positive constant independent on hi and ε.

Proof. From (2.7), We can write ai,i−1, ai,i and ai,i+1 as

ai,i−1 = − ε

hi−1~i

+

(
si−1 − pi−1hi−1

~ip
2
i−1si−1hi−1

)
bi−1 =

1

hi−1~i

(
−ε +

bi−1

p2
i−1

)
− bi−1

pi−1si−1~i

,

ai,i+1 = − ε

hi~i
+

(
si − pihi

~ip2
i sihi

)
bi+1 =

1

hi~i

(
−ε +

bi+1

p2
i

)
− bi+1

pisi~i
,

ai,i =
2ε

hi−1hi
+

(
pi−1hi−1ci−1 − si−1

~ip2
i−1si−1hi−1

+
pihici − si

~ip2
i sihi

)
bi,

=
2ε

hi−1hi
+

(
pi−1hi−1(ci−1 − 1) + (pi−1hi−1 − si−1)

~ip2
i−1si−1hi−1

+
pihi(ci − 1) + (pihi − si)

~ip2
i sihi

)
bi

=
1

hi−1~i

(
ε − bi

p2
i−1

)
+

(pi−1hi−1(ci−1 − 1) + (pi−1hi−1)

~ip2
i−1si−1hi−1

+
pihi(ci − 1) + (pihi)

~ip
2
i sihi

)
bi +

1

hi~i

(
ε − bi

p2
i

)
.

Choose the uniform tension parameter p = min
∀i

pi ≥ max
∀i

√
b(xi)/ε, this implies that

ai,i−1 < 0, ai,i−1 < 0 and ai,i > 0. While

ai,i + ai,i−1 + ai,i+1 =

(
pi−1hi−1ci−1 − si−1

~ip2
i−1si−1hi−1

+
pihici − si

~ip2
i sihi

)
bi

+

(
si−1 − pi−1hi−1

~ip2
i−1si−1hi−1

)
bi−1 + (

si − pihi

~ip2
i sihi

)bi+1,

≥
(

ci−1 − 1

~ipi−1si−1

+
ci − 1

~ipisi

)
β2 > 0, as bi = b(xi) ≥ β2 > 0.

Also,

ci − 1 = cosh(pihi) − 1 =
(pihi)

2

2
+

(pihi)
4

24
+ · · ·

pihisi = pihi sinh(pihi) = (pihi)
2 +

(pihi)
4

6
+ · · ·

This implies that

ai,i + ai,i−1 + ai,i+1 ≥ K(say) > 0,

where K is a constant independent of hi and ε.
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With the suitable choice of uniform tension parameter p as mentioned in the

above lemma, the coefficient matrix A is an M-matrix, and hence, [LεU ]i satisfies the

following discrete comparison principle.

Lemma 2.2 (Discrete Comparison Principle). Let V and W be two mesh functions

and satisfy [LεV ]i ≥ [LεW ]i, i = 1, 2, . . . , N − 1, V0 ≥ W0 and VN ≥ WN , then

Vi ≥ Wi i = 0, 1, . . . , N .

Using the above discrete comparison principle we obtain the following discrete

stability estimate.

Lemma 2.3 (Stability Estimate). Let V be the mesh function with V0 = VN = 0.

Then there exist a positive constant C = 1/ min{K, 1} such that

||V || ≤ C||LεV ||,

where C is independent of hi and ε.

We use the uniform tension parameter p on each subinterval [xi−1, xi]∀i = 1(1)N ,

which is given by p =
√

β∗/ε, where β∗ ≥ b(x) for x ∈ [0, 1]. This criterion of choosing

the uniform tension parameter p leads to the ε-uniform stability for the exponential

spline difference scheme.

Remarks

(i) In the present scheme P−
i ≥ 0, P+

i ≥ 0 and P c
i ≥ 0.

P−
i =

si−1 − pi−1hi−1

~ip
2
i−1si−1hi−1

=
hi−1

3(hi−1 + hi)

{
1 + (pi−1hi−1)2

20
+ · · ·

1 + (pi−1hi−1)2

6
+ · · ·

}

<
hi−1

3(hi−1 + hi)
, ∀pi−1hi−1 > 0,

P+
i =

si − pihi

~ip
2
i sihi

=
hi

3(hi−1 + hi)

{
1 + (pihi)2

20
+ · · ·

1 + (pihi)2

6
+ · · ·

}
<

hi

3(hi−1 + hi)
, ∀pihi > 0,

similarly

P c
i <

2

3
, ∀pi−1hi−1 > 0, pihi > 0.

These bounds on P−
i , P+

i and P c
i are useful in establishing the truncation error

estimate (in the next section) at the transition points τ and 1 − τ of piecewise

uniform Shishkin mesh XS
N .

(ii) In the present scheme, as the tension parameters p′is → 0, the exponential spline

T (x) reduces to the cubic spline S(x). Consequently, the present exponential

spline difference scheme (2.2) reduces to a non-monotone cubic spline difference

scheme (2.3) which can also be derived via FEM discretization (see [7]).
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(iii) The present exponential spline difference scheme (2.2), on uniform mesh hi =

hi−1 = h = 1/N , with the tension parameters pi =
√

( bi

ε
), ∀ i, reduces to the

similar difference scheme derived via spline in tension on uniform mesh in [18];

in which the error of the form O(h min(h,
√

ε)) is proved and the second order

global uniform convergence result is established when b(x) is constant. The

numerical results in section 4 show that the above theoretical results are also

true for the present scheme (4) on uniform mesh.

3. UNIFORM CONVERGENCE

We investigate the truncation error estimate of the present scheme (2.2) when

applied to the problem (1.1)–(1.2). For the analysis of the truncation error we need

sharp error bounds on the exact solution u(x) of (1.1)–(1.2) and its derivatives. Vu-

lanović [17] proved the following lemma for a priori estimates of the solution of the

problem (1.1)–(1.2).

Lemma 3.1. Let the exact solution u(x) ∈ C3[0, 1] and it can be represented as

u(x) = v(x) + w(x),

where, for k = 0, 1, 2, 3 ∀x ∈ [0, 1]

|v(k)(x)| 6 C,

|w(k)(x)| 6 Cε−k/2(exp(−βx/ε + exp(−β(1 − x)/ε))}.

Proof. See Vulanović [17].

Now we discuss the convergence of the exponential spline difference scheme (2.2)

on a piecewise-uniform Shishkin mesh XN
s . For the purpose, we have hmax ≤ 2N−1.

Let η = u − U denote the error of the scheme. We consider the two distinct cases :

τ = 1
4

and τ < 1
4
.

In the first case, when τ = 1
4

the mesh is uniform with uniform spacing hi = 1
N

for i = 1(1)N . Moreover ε−1 ≤ ( 8
β

ln N)2.

If u(x) ∈ C3[0, 1], then by a Taylor’s expansion, using Lemma 3.1 with the value

of p =
√

β∗/ε (as discussed in the last section), we obtain

(3.1)

|[Lεη]i| = ε|[Pu′′ − D̃u]i| ≤ Cεh2
i p

2‖u′′‖[xi−1,xi+1] ≤ CN−2 ln2 N, i = 1(1)N − 1.

While in the second case, when τ < 1
4
, the mesh is piecewise-uniform and the mesh

spacing hi’s is given by equation (2.5). The error analysis on piecewise-uniform

Shishkin mesh XN
s is discuss in the following cases.
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(i) For xi ∈ (0, τ)∪ (1− τ, 1), we have hi = hi−1 = 8
√

ε
βN

ln N . If u(x) ∈ C3[0, 1], then

by Taylor’s expansion, using the value of p =
√

β∗/ε with p2‖u′′‖[xi−1,xi+1] ≤
Cε−2, we obtain

ε|[Pu′′ − D̃u]i| ≤ Cεh2
i p

2‖u′′‖[xi−1,xi+1] ≤ CN−2 ln2 N, for xi ∈ (0, τ) ∪ (1 − τ, 1).

(ii) For xi ∈ (τ, 1 − τ), according to the decomposition of u = v + w, split the

truncation error into two parts as

(3.2) ε|[Pu′′ − D̃u]i| ≤ ε|[Pv′′ − D̃v]i| + ε|[Pw′′ − D̃w]i|.

If u(x) ∈ C3[0, 1], then by Taylor’s expansion, |[Lεη]i| ≤ Cεh2
i p

2‖u′′‖[xi−1,xi+1],

using the value of p =
√

β∗/ε with εp2‖v′′‖ ≤ C and hi = hi−1 ≤ 2N−1, the

bound on the first term of the right hand side of (3.2) is given by

(3.3) ε|[Pv′′ − D̃v]i| ≤ Cεh2
i p

2‖v′′‖[xi−1,xi+1] ≤ CN−2, for xi ∈ (τ, 1 − τ).

It can be observed that the estimate |[Lεη]i| ≤ Cεh2
i p

2‖u′′‖[xi−1,xi+1], together

with Lemma 3.1 do not yield a bound on ε|[Pw′′ − D̃w]i|, that is uniform in ε.

Therefore we use a Taylor’s expansion with integral remainder to control w(x).

Using the estimate |[Lεη]i| ≤ Cε‖u′′‖[xi−1,xi+1], together with Lemma 3.1, the

bound on the second term on the right hand side of (3.2) is given by

(3.4) ε|[Pw′′ − D̃w]i| ≤ ε‖w′′‖[xi−1,xi+1] ≤ CN−2.

Using (3.3)–(3.4) in (3.2), we obtain

|[Lεη]i| = ε|[Pu′′ − D̃u]i| ≤ CN−2, for xi ∈ (τ, 1 − τ).

(iii) For xi ∈ {τ, 1− τ}, according to the decomposition of u(x), split the truncation

error into two parts as

(3.5) ε|[Pu′′ − D̃u]i| ≤ ε|[Pv′′ − D̃v]i| + ε|[Pw′′ − D̃w]i|.

Using the estimate |[Lεη]i| ≤ Cεp2(hi−1 + hi)
2||u′′||[xi−1,xi+1], for hi−1 6= hi,

with the value of p =
√

β∗/ε and Lemma 3.1, the bound on the first term of the

right hand side of (3.5) is given by

ε|[Pv′′ − D̃v]i| ≤ CN−2, for i = τ, 1 − τ.

It can be observed that the estimate |[Lεη]i| ≤ Cεp2(hi−1 + hi)
2‖u′′‖[xi−1,xi+1]

together with Lemma 3.1 do not yield a bound on ε|[Pw′′ − D̃w]i|, that is

uniform in ε. Therefore we use Taylor’s expansion with integral remainder to

control w(x). Using the estimate |[Lεη]i| ≤ Cε‖u′′‖[xi,xi+1] +Cεhi−1‖u(3)‖[xi−1,xi],
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for hi−1 6= hi, together with Lemma 3.1, the bound on the second term of the

right hand side of (3.5) is given by

ε|[Pw′′ − D̃w]i| ≤ C{exp(−βxN/4/
√

ε) + exp(−β(1 − x3N/4)/
√

ε)}
+ CN−1 ln N{exp(−βxN/4−1/

√
ε) + exp(−β(1 − x3N/4+1)/

√
ε)}

≤ C{exp(−βxN/4/
√

ε)} + CN−1 ln N{exp(−βxN/4−1/
√

ε)},
≤ C{exp(−βxN/4/

√
ε)}

+ CN−1 ln N{exp(−βxN/4/
√

ε)}{exp(βH1/
√

ε)},
≤ CN−2 + CN8/NN−3 ln N,

since xN/4 = 2
β

√
ε ln N , H1 =

4xN/4

N
. As N1/N < ∞ for N ≥ 1, we obtain

ε|[Pw′′ − D̃w]i| ≤ CN−2 + CN−3 ln N.

With the analogous estimate for i = 3N/4, we have

ε|[Pw′′ − D̃w]i| ≤ CN−2 + CN−3 ln N.

On combining the various bounds for the truncation error, we get (for τ < 1
4
)

(3.6) ε|[Pu′′ − D̃u]i| ≤ ε|[Pv′′ − D̃v]i| + ε|[Pw′′ − D̃w]i| ≤ CN−2 ln2 N.

From the above three cases (i), (ii) and (iii); we obtain

(3.7) ε|[Pu′′ − D̃u]i| ≤ CN−2 ln2 N, for τ <
1

4
.

Thus combining (3.1) with (3.7), we obtain the truncation error estimate for the

exponential spline difference scheme (4) on piecewise-uniform Shishkin mesh XS
N is

given by

(3.8) ‖Lεη‖ ≤ CN−2 ln2 N.

On combining the above truncation error estimate (3.8) with the uniform stability

estimate (Lemma 2.3), we conclude the section with following main theorem.

Theorem 3.2. Let u(x) be the exact solution of the singularly perturbed reaction-

diffusion problem (1.1)–(1.2) and it satisfies Lemma 3.1. Let U be the approximate

solution obtained by the exponential spline difference scheme (2.2) with a uniform

tension parameter p =
√

β∗/ε, where β∗ ≥ b(x) > 0 for x ∈ [0, 1], on piecewise

uniform Shishkin mesh XS
N . Then

‖u − U‖ ≤ CN−2 ln2 N,

where C is independent of N and ε.
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4. NUMERICAL EXPERIMENTS

The proposed exponential spline difference scheme (2.2) on a piecewise-uniform

Shishkin mesh XS
N is implemented on two test examples. For the present method,

the maximum error, eN
ε,i = max

06i6N
|ui − Ui|, at the nodal points is calculated and the

numerical order of convergence is computed for different values of ε and N .

Example 4.1 Consider the following singularly perturbed boundary value problem

−εu′′ + u(x) = − cos2(πx) − 2επ2 cos(2πx),

u(0) = 0, u(1) = 0,

whose exact solution is

u(x) = (exp(−(1 − x)/
√

ε) + exp(−x/
√

ε))/(1 + exp(−1/
√

ε)) − cos2(πx)

and having the boundary layer of width δ = O(
√

ε) at both ends of the given interval

[0, 1].

Example 4.2 Consider the following singularly perturbed boundary value problem

−εu′′ + b(x)u(x) = f(x),

u(0) = 0, u(1) = 0,

where b(x) = 1+x(1−x) and f(x) = 1+x(1−x)+ [2
√

ε−x(1−x)2] exp(−x/
√

ε)+

[2
√

ε − x2(1 − x)] exp(−(1 − x)/
√

ε), whose exact solution is

u(x) = 1 + (x − 1) exp(−x/
√

ε) − x exp(−(1 − x)/
√

ε)

and having the boundary layer of width δ = O(
√

ε) at both ends of the given interval

[0, 1].

The numerical rate of convergence R is calculated using the formula

R =
log(eN

ε /e2N
ε )

log 2
,

for different value of ε and N , where eN
ε,i = max

06i6N
|ui − Ui| denotes the maximum

error. Table 4.1 and Table 4.4 show the maximum error eN
ε,i and the numerical rate

of convergence R of the present method on piecewise-uniform Shishkin mesh for the

Example 4.1 and for the Example 4.2 respectively. It can be observed from these tables

that the present method is uniformly convergent with respect to singular perturbation

parameter ε and the computed order of convergence is almost close to theoretical order

of convergence that is proved in section 3.

Table 4.3 and Table 4.6 show the numerical rate of convergence R of the present

method on uniform mesh for the Example 4.1 and for the Example 4.2 respectively.

For the smaller values of ε, it can be seen from the Table 4.3 and the Table 4.6 that the

exponential spline difference scheme on uniform mesh have second order convergent
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Table 4.1: Maximum error of the present method for the Example 4.1 on piecewise-uniform

Shishkin mesh.

ε = 10−k
N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

3.04E − 03 7.61E − 04 1.90E − 04 4.76E − 05 1.19E − 05 2.98E − 06

100 2.00 2.00 2.00 2.00 2.00

2.28E − 03 5.73E − 04 1.43E − 04 3.58E − 05 8.96E − 06 2.24E − 06

10−1 1.99 2.00 2.00 2.00 2.00

1.84E − 03 4.60E − 04 1.15E − 04 2.88E − 05 7.21E − 06 1.80E − 06

10−2 2.00 2.00 2.00 2.0 2.00

3.65E − 03 1.21E − 04 3.06E − 04 7.66E − 05 1.91E − 05 4.79E − 06

10−3 1.59 1.98 2.00 2.00 2.00

3.93E − 03 1.22E − 03 3.53E − 04 1.16E − 05 3.66E − 05 1.13E − 06

10−4 1.69 1.79 1.61 1.66 1.70

2.82E − 03 1.01E − 04 3.43E − 04 1.12E − 05 3.55E − 05 1.09E − 06

10−5 1.48 1.56 1.61 1.66 1.70

2.81E − 03 1.01E − 04 3.42E − 04 1.12E − 05 3.54E − 05 1.09E − 06

10−6 1.48 1.56 1.61 1.66 1.70

Table 4.2: Comparison of maximum error of the present scheme (4)

and non-monotone scheme (5) for N = 32 on piecewise-uniform

Shishkin mesh for the Example 4.1.

ε = 10−k Non-monotone scheme (5) Present scheme (4)

100 2.96E − 03 3.04E − 03

10−1 2.01E − 03 2.28E − 03

10−2 1.31E − 03 1.85E − 03

10−3 1.22E − 02 3.65E − 03

10−4 1.23E − 02 3.93E − 03

10−5 1.23E − 02 2.82E − 03

10−6 1.23E − 02 2.81E − 03

Table 4.3: Numerical rate of convergence R of the present scheme for

the Example 4.1 on uniform mesh.

ε = 10−k
N = 32 N = 64 N = 128 N = 256 N = 512

100 2.00 2.00 2.00 2.00 2.00

10−1 1.99 2.00 2.00 2.00 2.00

10−2 2.00 2.00 2.00 2.0 2.00

10−3 1.97 1.98 2.00 2.00 2.00

10−4 1.84 1.99 1.99 1.99 2.00

10−5 1.38 1.70 1.90 1.96 2.10

10−6 1.08 1.22 1.49 1.78 1.94

rate only when h ≤ √
ε. This supports the error estimate stated in Remark (iii)

of section 2. In general in fitted scheme the fitting factor is determined in such a

way that the truncation error of the difference scheme (under the assumption that
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Table 4.4: Maximum error of the present method for the Example 4.2 on piecewise-uniform

Shishkin mesh.

ε = 10−k
N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

1.58E − 05 3.85E − 06 9.56E − 07 2.38E − 07 6.00E − 07 1.50E − 07

100 2.04 2.01 2.01 1.99 2.00

7.67E − 05 1.78E − 05 4.38E − 06 1.09E − 06 2.72E − 07 6.80E − 08

10−1 2.11 2.02 2.01 2.00 2.00

5.11E − 04 3.74E − 05 6.80E − 06 1.70E − 06 4.25E − 07 1.06E − 07

10−2 3.77 2.46 2.54 2.00 2.00

2.42E − 03 7.18E − 04 1.78E − 04 4.47E − 05 1.12E − 05 2.79E − 06

10−3 1.75 2.01 1.99 2.00 2.00

2.67E − 03 9.60E − 04 3.25E − 04 1.06E − 04 3.36E − 05 1.03E − 05

10−4 1.48 1.56 1.62 1.66 1.71

2.81E − 03 1.01E − 03 3.42E − 04 1.12E − 04 3.55E − 05 1.10E − 05

10−5 1.48 1.56 1.61 1.66 1.69

2.86E − 03 1.03E − 03 3.48E − 04 1.14E − 04 3.61E − 05 1.11E − 05

10−6 1.46 1.57 1.61 1.66 1.70

Table 4.5: Comparison of maximum error of the present scheme (4) and non-monotone

scheme (5) for N = 32 on piecewise-uniform

Shishkin mesh for the Example 4.2.

ε = 10−k Non-monotone scheme (5) Present scheme (4)

100 5.10E − 05 1.58E − 05

10−1 4.14E − 04 7.67E − 05

10−2 2.18E − 03 5.11E − 04

10−3 1.82E − 02 2.42E − 03

10−4 1.42E − 02 2.67E − 03

10−5 1.28E − 02 2.81E − 03

10−6 1.24E − 02 2.86E − 03

Table 4.6: Numerical rate of convergence R of the present scheme for

the Example 4.2 on uniform mesh.

ε = 10−k
N = 32 N = 64 N = 128 N = 256 N = 512

100 2.04 2.01 2.01 1.99 2.00

10−1 2.11 2.02 2.01 2.00 2.00

10−2 3.77 2.46 2.54 2.00 2.00

10−3 2.35 2.01 1.99 2.00 2.00

10−4 1.45 1.92 1.98 1.98 1.99

10−5 1.00 1.12 1.53 1.66 1.69

10−6 1.00 0.98 1.01 1.03 1.21

b(x) is constant) for the boundary layer functions should be zero. In the case of

variable coefficient problems (1.1)–(1.2) the same fitting factor corresponding to the

constant coefficient b is used after replacing b with bi = b(xi). The determination
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of the fitting factor for exponentially fitted scheme on nonuniform meshes is more

complicated. Also the error analysis of the fitted scheme on non-uniform meshes is

complicated. The present scheme belongs to the class of fitted schemes and the fitting

factor appears in an implicit form which can be obtained after rearranging the term

of the scheme, under the assumption that b is constant. The error analysis of the

present scheme on piecewise-uniform Shishkin is given and the scheme is shown to

have almost second order uniform convergence in section 3. This theoretical rate of

convergence can be verified from the results shown in Table 4.1 and Table 4.4 for the

Example 4.1 and Example 4.2 respectively.

As the uniform tension parameter p → 0, the tension spline T (x) reduces to the

cubic spline S(x). Consequently the present exponential spline difference scheme (4)

reduces to a non-monotone cubic spline difference scheme (5). In general the non-

monotone cubic spline difference scheme (5) does not satisfy the discrete maximum

principle. Recently Linss [7] derived the same non-monotone difference scheme (5)

using FEM discretization and gives the stability estimate with the condition that

hmax is smaller than some threshold value which is independent of ε. The second

order ε-uniform convergence is proved via. Green’s function technique. However,

in the present exponential spline difference scheme based on spline in tension on

piecewise-uniform Shishkin mesh, the uniform tension parameter p is so chosen that

the coefficient matrix corresponding to the present scheme results in an M-matrix.

The second order ε-uniform convergence in maximum norm on piecewise-uniform

Shishkin mesh is proved using the truncation error and the barrier function technique.

Table 4.2 and Table 4.5 show better approximation results of the present method in

comparison to the non-monotone cubic spline difference scheme (5) on piecewise-

uniform Shishkin mesh for small value of ε, for the Example 4.1 and for the Example

4.2 respectively.

5. CONCLUSIONS

We presented an exponential spline difference scheme based on spline in tension on

a piecewise uniform Shishkin mesh for singularly perturbed Dirichlet boundary value

problem (1.1)–(1.2). The essential idea in this method is to use exponential spline

identity relation based on second derivative formulation to approximate the solution

of given problems via. spline in tension that results in a tridiagonal system which

can be solved using standard algorithm. The convergence analysis in maximum norm

of the present exponential spline difference scheme is given and method is shown

to have second order ε-uniform convergence on piecewise-uniform Shishkin mesh.

The numerical experiments are presented to verify the uniform convergence of the

exponential spline difference scheme with respect to singular perturbation parameter

ε. Also this method produces a exponential spline function which is useful to obtain
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the solution at any point of the interval whereas the finite difference method gives

the solution only at the selected nodal points.

REFERENCES

[1] N. S. Bakhvalov, Towards optimization of methods for solving boundary value problems with

a boundary layer, Zh. Vychisl. Mat. i Mat. Fiz., 9(4):841–859, 1969 (in Russian).

[2] E. P. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform numerical methods for problems

with intial and boundary layers, Boole Press, Dublin, 1980.

[3] D. Herceg, A uniformly convergent scheme with quasi-constant fitting factors, Univ. u Novom

Sadu, Zb. Rad. Prirod.-mat. Fak., Ser. Mat., 11:105–115,1981.

[4] M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed two point

boundary value problems by spline in tension, Appl. Math. Comput., 131(2):299–320,2002.

[5] M. K. Kadalbajoo and K. C. Patidar, Tension spline for the solution of self-adjoint singular

perturbation problems, Inter. J. Comput. Math., 79(7):849–865,2002.

[6] M. K. Kadalbajoo and K. C. Patidar, A survey of numerical techniques for solving singularly

perturbed ordinary differential equations, Appl. Math. Comput., 130(2):457–510,2002.

[7] T. Linss, Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed

reaction-diffusion problem, BIT Num. Math. , 47:379–391,2007.

[8] B. J. McCartin, Theory of exponential splines, J. Approx. Theory, 66:1–23,1991.

[9] J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted numerical methods for singular pertur-

bation problems, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. Error estimates in

the maximum norm for linear problems in one and two dimensions.

[10] S. C. S. Rao and M. Kumar, Exponential B-spline collocation method for self-adjoint singularly

perturbed boundary value problems, Appl. Num. Math., 58(10):1572–1581,2008.

[11] S. C. S. Rao and M. Kumar, Parameter-Uniformly Convergent Exponential Spline Difference

Scheme for Singularly Perturbed Semi-linear Reaction-Diffusion Problems, Nonlinear Anal.:

Theory, Methods & Appl., 71:e1579–e1588,2009.

[12] M. Stojanovic, Numerical solution of a singularly perturbed problem via exponential splines,

BIT Num. Math., 30:171–176,1990.

[13] K. Surla and Z. Uzelac, A spline difference scheme on a piecewise equidistant grid, Z. Angew.

Math. Mech.,77(12):901–909,1997.

[14] K. Surla and V. Jerkovic, An exponentially fitted quadratic spline difference scheme on a non-

uniform mesh, Univ. u. Novomsadu, Zb. Rad. Prirod.-mat. Fak., Ser. Mat., 19(1):1–10,1989.

[15] K. Surla and M. Stojanovic, Solving singularly perturbed boundary value problems by spline

in tension, J. Comp. Appl. Math., 24:355–363,1988.
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