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ABSTRACT. In this paper we develop a numerical method for solving a singularly perturbed

delay parabolic partial differential equation. The proposed method consists of Crank-Nicolson finite

difference method constructed on a mesh of Shishkin type and hence referred to as a fitted mesh

finite difference method. We analyzed the method for stability and convergence and found that it

is unconditionally stable and converges with order O
(
N−2

t + N−2
x ln2

Nx

)
where Nt and Nx are the

numbers of subintervals in the t and x directions, respectively. The performance of the method is

illustrated through numerical experiments.
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1. INTRODUCTION

We consider a singularly perturbed delay parabolic partial differential equation

(SPDPPDE) of the form

(1.1)
∂u(t, x)

∂t
− ε

∂2u(t, x)

∂x2
+ a(t, x)u(t, x) = f(t, x) − b(x)u(t − τ, x)

(t, x) ∈ Ω ≡ [0, T ] × [0, 1]

with the initial data

(1.2) u(t, x) = u0(t, x), (t, x) ∈ [−τ, 0] × (0, 1)

and boundary conditions

(1.3) u(t, x) = ΓL(t), (t, x) ∈ ΠL

and

(1.4) u(t, x) = ΓR(t), (t, x) ∈ ΠR,
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where 0 < ε ≤ 1 is the singular perturbation parameter and τ > 0 is the delay

parameter. The functions a(t, x) ≥ 0, b(t, x) ≥ β ≥ 0, f(t, x), u0(t, x), ΓL(t) and

ΓR(t) are bounded and sufficiently smooth functions and ΠL and ΠR denote [0, T ]×{0}
and [0, T ]×{1}, respectively, are the left and right boundaries of the domain Ω. The

terminal time T > 0 is assumed to satisfy T = Kτ where K is a positive integer,

whereas the initial function u0(t, x) is assumed to satisfy the compatibility conditions

[12]:

u0(0, 0) = ΓL(0),

u0(0, 1) = ΓR(0),

∂u0(0, 0)

∂t
= ε

∂2u0(0, 0)

∂x2
− b(0)u(−τ, 0) + f(0, 0),

and

∂u0(0, 1)

∂t
= ε

∂2u0(0, 1)

∂x2
− b(1)u(−τ, 1) + f(0, 1).

Under the above assumptions and conditions, problem (1.1) with the initial data

(1.2) and the boundary conditions (1.3) and (1.4) has a unique solution [1]. For the

occurrence and applications of such problems, the readers are referred to the standard

text by Murray [8] and some of the references therein.

Both fitted operator finite difference methods (FOFDMs) and fitted mesh finite

difference methods (FMFDMs), nowadays, are widely being used for singularly per-

turbed problems. While FOFDMs (see, e.g., [9, 10, 11] and references therein) can

provide a difference operator that reflects the dynamics of the solution on a uniform

mesh, they sometimes suffer from the drawback that their construction is not always

straightforward. In fact not many FOFDMs which are constructed for singularly

perturbed two-point boundary value problems can easily be extended for singularly

perturbed PDEs. The FMFDMs on the other hand are getting popularity because

of their ease in the construction for multi-dimensional problems. See for example

[6, 13, 14] and the references therein. To this end, in this paper we design and an-

alyze a FMFDM for a SPDPPDE described in (1.1)–(1.4). This problem has been

solved earlier by Ansari et al. in [1]. Unlike the work in [1], the proposed approach

has better convergence properties. Moreover, by adding some novel proofs for the a

priori estimates, we strengthen the mathematical theory related to such problems.

The rest of the paper is organized as follows. In Section 2, we derive estimates

for the bounds on the solution u(t, x) and its derivatives. Section 3 deals with the

construction of the FMFDM which is analyzed in Section 4. In Section 5, we illustrate

the performance of this method through a test example and compare the results with

those obtained by a standard finite difference method. These results are discussed in

Section 6 where we also provide some concluding remarks and scope for future works.
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2. QUALITATIVE PROPERTIES OF THE SOLUTION

In this section we find estimates for the bounds on the solution u(t, x) and its

partial derivatives using method of steps [2].

Let us assume that the function u(t, x) ∈ C3+α,4+β(Ω) where 0 < α, β < 1.

Let Tℓ = [(ℓ − 1)τ, ℓτ ] and let Ωℓ = Tℓ × (0, 1) for ℓ = 0, . . . , K. Also, let uℓ(t, x)

be the restriction of u(t, x) on Ωℓ, that is,

uℓ(t, x) = u(t, x)|(t,x)∈Ωℓ
, ℓ = 1, . . . , K.

Let (ΠL)ℓ and (ΠR)ℓ be the sets Tℓ × {0} and Tℓ × {1}, respectively, and let ∂Ωℓ =

{(ℓ − 1)τ} × [0, 1].

In Ωℓ problem (1.1)–(1.4) is transformed to a sequence of K singularly-perturbed

parabolic partial differential equations given by

(2.1)
∂uℓ(t, x)

∂t
− ε

∂2uℓ(t, x)

∂x2
+aℓ(t, x)uℓ(t, x) = fℓ(t, x)− b(x)uτ,ℓ(t, x), (t, x) ∈ Ωℓ,

with the initial condition

(2.2) uℓ((ℓ − 1)τ, x) = uℓ−1((ℓ − 1)τ, x), x ∈ [0, 1]

and boundary conditions

(2.3) uℓ(t, 0) = ΓL(t), t ∈ Tℓ

and

(2.4) uℓ(t, 1) = ΓR(t), t ∈ Tℓ,

for ℓ = 1, . . . , K.

The function uτ,ℓ(t, x) is given by

uτ,ℓ(t, x) = uℓ−1(t − τ, x), for (t, x) ∈ Ωℓ.

In the presentation below, Cℓ and C will denote positive constants that are always

independent of ε (and the mesh step sizes used in the later sections).

Following lemma presents bounds on the solution function u(t, x):

Lemma 2.1. If the initial function u0(t, x) is bounded by a constant at t = 0, then

there exists a positive constant C such that |u(t, x)| ≤ C for all (t, x) ∈ Ω.

Proof. The solution function u(t, x) satisfies the compatibility conditions at the two

corners (0, 0) and (0, 1), so does the function u1(t, x). This guarantees that

|u1(t, x) − u0(0, x)| ≤ M1t,

where M1 is a positive constant that is independent of ε. Hence,

|u1(t, x)| − |u0(0, x)| ≤ |u1(t, x) − u0(0, x)| ≤ M1t ≤ M1τ ⇒ |u1(t, x)| ≤ C1,
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where C1 is a constant. This proves that u1(t, x) is bounded by C1 in Ω1.

In Ωℓ, ℓ = 2, . . . , K, the continuity of u(t, x) implies that

uℓ((ℓ − 1)τ, x) = uℓ−1((ℓ − 1)τ, x), x ∈ [0, 1].

Then by using a similar argument as the above, we have

|uℓ(t, x)| ≤ Cℓ, ℓ = 1, . . . , K.

Let C = max
ℓ

{Cℓ}, ℓ = 1, . . . , K, then

|u(t, x)| ≤ C,

which completes the proof. �

Now, we prove that problem (1.1)–(1.4) satisfies a continuous maximum principle.

Lemma 2.2 (Continuous Maximum principle). Let Φ(t, x) be a sufficiently smooth

function satisfying Φ(t, x) ≥ 0 on ∂Ω, then LεΦ(t, x) ≥ 0 in Ω implies Φ(t, x) ≥ 0 for

all (t, x) ∈ Ω.

Proof. To begin with, let us define the differential operator Lε in (1.1) by

Lε ≡
∂

∂t
− ε

∂2

∂x2
+ a(t, x).

First we prove that the lemma is satisfied in Ω1 and then we generalize the proof for

Ωℓ.

In Ω1, we assume that the function Φ(t, x) takes its minimum value at a point

(t∗1, x
∗
1) and this minimum is negative, i.e.,

Φ(t∗1, x
∗
1) = min

(t,x)∈Ω1

Φ(t, x) < 0,

then
∂Φ(t∗1, x

∗
1)

∂t
=

∂Φ(t∗1, x
∗
1)

∂x
= 0 and

∂2Φ(t∗1, x
∗
1)

∂x2
> 0.

Hence,

LεΦ(t∗1, x
∗
1) = −εΦxx(t

∗
1, x

∗
1) + a(t∗1, x

∗
1)Φ(t∗1, x

∗
1) < 0,

which is a contradiction and therefore,

Φ(t, x) ≥ 0 for all (t, x) ∈ Ω1.

This implies that Φ(τ, x) ≥ 0.

Similarly, by using the result Φ(τ, x) ≥ 0 along with Φ(t, 0) ≥ 0, Φ(t, 1) ≥ 0,

t ∈ T2 and LεΦ(t, x) ≥ 0 ∈ Ω2 we obtain

Φ(t, x) ≥ 0 for all (t, x) ∈ Ω2,
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and in general, given that Φ((ℓ − 1)τ, x) ≥ 0 along with Φ(t, 0) ≥ 0, Φ(t, 1) ≥ 0,

t ∈ Tℓ and LεΦ(t, x) ≥ 0 in Ωℓ gives the result that

Φ(t, x) ≥ 0 for all (t, x) ∈ Ωℓ.

Proceeding in this manner, finally we get that

Φ(t, x) ≥ 0 for all (t, x) ∈ ∪K
ℓ=1Ωℓ = Ω. �

The following theorem gives the bounds on the derivatives of the solution.

Theorem 2.3. Let b(x) ∈ C4+β([0, 1]), f(t, x) ∈ C3+α,4+β(Ω), u0(t, x) ∈ C3+α,4+β(Ω),

ΓL, ΓR ∈ C3+α([0, T ]) and u(t, x) ∈ C3,4(Ω), where α, β ∈ (0, 1). Then, we have

(2.5)

∣∣∣∣
∂i+ju(t, x)

∂ti∂xj

∣∣∣∣ ≤ C
(
1 + ε1−j/2 + ε−j/2

(
e−x/

√
ε + e−(1−x)/

√
ε
))

,

for all the integers i and j such that 0 ≤ 2i + j ≤ 6.

Proof. To find estimates for the bounds on the solution function u(t, x) and its

partial derivatives, we consider the stretched variable x̃ = x/
√

ε which transforms

problem (1.1)–(1.4) into the following delayed parabolic partial differential equation

∂ũ

∂t
− ∂ũ

∂x̃2
+ ã(t, x̃)ũ = f̃ − b̃(x̃)ũ(t − τ, x̃)(2.6)

(t, x̃) ∈ Ω̃ = [0, T ] × [0, 1/
√

ε],

with the initial data

(2.7) ũ(t, x̃) = u0(t, x̃), (t, x̃) ∈ [−τ, 0] ×
[
0,

1√
ε

]

and boundary conditions

(2.8) ũ(t, 0) = ΓL(t)

and

(2.9) ũ

(
t,

1√
ε

)
= ΓR(t)

which by the method of steps can be transformed to a sequence of K parabolic partial

differential equations of the form

∂ũℓ

∂t
− ∂ũℓ

∂x̃2
+ ã(t, x̃)ũℓ = f̃ℓ − b̃(x̃)ũℓ(t − τ, x̃)(2.10)

(t, x̃) ∈ Ω̃ℓ ≡ Tℓ ×
[
0,

1√
ε

]
,

with the initial data

(2.11) ũℓ(t − τ, x̃) = ũℓ−1(t − τ, x̃), (t, x̃) ∈ Tℓ ×
[
0,

1√
ε

]

and boundary conditions

(2.12) ũℓ(t, 0) = ΓL(t), t ∈ Tℓ
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and

(2.13) ũℓ

(
t,

1√
ε

)
= ΓR(t), t ∈ Tℓ,

for ℓ = 1, . . . , K.

As is mentioned in [7] that problem (2.10)–(2.13) defined on Ω̃ℓ is independent

of ε, hence, the solution ũℓ(t, x̃) and its partial derivatives with respect to both t and

x̃ must satisfy

(2.14)

∣∣∣∣
∂i+j ũℓ(t, x̃)

∂ti∂x̃j

∣∣∣∣ ≤ C̃ℓ,

for all the non-negative integers i and j such that 2i + j ≤ 6. In terms of the

upstretched variable, (2.14) is reduced to

(2.15)

∣∣∣∣
∂i+juℓ(t, x)

∂ti∂xj

∣∣∣∣ ≤ Cℓε
−j/2, 0 ≤ 2i + j ≤ 6.

This implies that ∣∣∣∣
∂i+ju(t, x̃)

∂ti∂xj

∣∣∣∣ ≤ Cε−j/2,

for all the non-negative integers i and j such that 2i + j ≤ 6.

The above bounds do not show the explicit dependence on the boundary layer

solutions. Therefore, to obtain stronger estimates for the bounds on the solution

function u(t, x) and its partial derivatives, using the standard approaches, e.g., these

given in [6, 7] for singular perturbation problems.

We decompose the solution u(t, x) into its smooth and singular components v(t, x)

and w(t, x) respectively, that is,

u(t, x) = v(t, x) + w(t, x),

where the function v(t, x) satisfies

∂v(t, x)

∂t
− ε

∂2v(t, x)

∂x2
= f(t, x) − b(x)v(t − τ, x), (t, x) ∈ Ω,(2.16)

v(0, x) = u0(0, x), x ∈ (0, 1),(2.17)

and the values of the function v(t, x) at x = 0 and x = 1 are to be specified later

such that the bounds on the first two partial derivatives of v with respect to x are

independent of ε. The two terms asymptotic expansion for the smooth component

v(t, x) is

v(t, x) = v0(t, x) + εv1(t, x),

where the function v0(t, x) satisfies the reduced problem

∂v0(t, x)

∂t
= f(t, x) − b(x)v0(t − τ, x), (t, x) ∈ Ω,(2.18)

v0(0, x) = u0(0, x), x ∈ (0, 1),(2.19)
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whereas the function v1(t, x) satisfies

∂v1(t, x)

∂t
− ε

∂2v1(t, x)

∂x2
= −b(x)v1(t − τ, x) +

∂2v0(t, x)

∂x2
, (t, x) ∈ Ω

v1(t, x) = 0, for (t, x) ∈ ∂Ω.

On the other hand, the singular component w(t, x) solves the problem

∂w(t, x)

∂t
− ε

∂2w(t, x)

∂x2
= −b(x)w(t − τ, x), (t, x) ∈ Ω(2.20)

w(0, x) = 0,(2.21)

w(t, 0) = u(t, 0) − v(t, 0),(2.22)

w(t, 1) = u(t, 1) − v(t, 1)(2.23)

and is further decomposed into the left boundary layer solution wL(t, x) and the right

boundary layer solution wR(t, x) respectively. The component wL satisfies

∂wL(t, x)

∂t
− ε

∂2wL(t, x)

∂x2
= −b(x)wL(t − τ, x), (t, x) ∈ Ω,(2.24)

wL(t, x) = 0, for (t, x) ∈ [−τ, 0] × [0, 1],(2.25)

wL(t, 0) = ΓL(t) − v0(t, 0), for (t, x) ∈ [0, T ] × {0},(2.26)

wL(t, 1) = 0, for t ∈ ([0, T ](2.27)

and the component wR satisfies

∂wR(t, x)

∂t
− ε

∂2wR(t, x)

∂x2
= −b(x)wR(t − τ, x), (t, x) ∈ Ω,(2.28)

wR(t, x) = 0, for (t, x) ∈ [−τ, 0] × [0, 1],(2.29)

wR(t, 0) = 0, for (t, x) ∈ ([0, T ],(2.30)

wR(t, 1) = ΓR(t) − v0(t, 1), for (t, x) ∈ [0, T ] × {1}.(2.31)

We find estimates for each component that belongs to either the smooth compo-

nent v or the singular component w.

The method of steps applied in this case, suggests that the function v0(t, x)

should be written as a union of functions (v0)ℓ(t, x) each is defined on Ωℓ and satisfies

a problem of the form

∂(v0)ℓ(t, x)

∂t
= fℓ(t, x) − b(x)(v0)ℓ(t − τ, x), (v0)0(0, x) = u0(0, x), (t, x) ∈ Ωℓ.

Since each function (v0)ℓ is independent of ε, then for some constant Cℓ the

following estimate is satisfied ∣∣∣∣
∂i+j(v0)ℓ

∂ti∂xj

∣∣∣∣ ≤ Cℓ.
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By taking C = max
ℓ

{Cℓ}, ℓ = 1, . . . , K, the following estimates for the bounds

on v0(t, x) and its partial derivatives is obtained

(2.32)

∣∣∣∣
∂i+jv0

∂ti∂xj

∣∣∣∣ ≤ C,

for all the integers i and j such that 0 ≤ 2i + j ≤ 6.

Using the above procedure and the fact that the equation in v1(t, x) has the same

form as that for u(t, x), we obtain

(2.33)

∣∣∣∣
∂i+jv1

∂ti∂xj

∣∣∣∣ ≤ Cε−
j

2 .

By using the estimates (2.32) and (2.33), we proved the following lemma.

Lemma 2.4. The partial derivatives of v(t, x) satisfy
∣∣∣∣
∂i+jv

∂ti∂xj

∣∣∣∣ ≤ C
(
1 + ε1− j

2

)
.(2.34)

for all the integers i and j such that 0 ≤ 2i + j ≤ 6

In the following two lemmas we give bounds on wL(t, x) and wR(t, x) proof of

which follows the barrier function approach described in [3] and [5]. �

Lemma 2.5. The partial derivatives of wL(t, x) satisfy

(2.35)

∣∣∣∣
∂i+jwL

∂ti∂xj

∣∣∣∣ ≤ Cε−
j

2 e
− x√

ε , (t, x) ∈ Ω.

for all the integers i and j such that 0 ≤ 2i + j ≤ 6.

Proof. We transform problem (2.24)–(2.27) to a sequence of K singularly perturbed

parabolic partial differential equations of the form

∂(wL)ℓ(t, x)

∂t
− ε

∂2(wL)ℓ(t, x)

∂x2
= −b(x)(wL)ℓ(t − τ, x), (t, x) ∈ Ωℓ,(2.36)

(wL)ℓ(t, 0) = ΓL(t) − (v0)ℓ(t, 0), for (t, x) ∈ Tℓ × {0},(2.37)

(wL)ℓ(t, x) = 0, for (t, x) ∈ (Tℓ × {1}) ∪ ({0} × [0, 1]).(2.38)

In each Ωℓ we define a barrier function

Φ±
ℓ (t, x) = Cℓ e

− x√
ε ± (wL)ℓ(t, x).

It is clear that Φ±
ℓ (t, x) ≥ 0 for all (t, x) ∈ ∂Ωℓ and is satisfying

LεΦ
±
ℓ (t, x) ≥ 0,

for all (t, x) ∈ Ωℓ. Then by Lemma 2.2, we have

Φ±
ℓ (t, x) ≥ 0, for all (t, x) ∈ Ωℓ,



SINGULARLY PERTURBED DELAY PARABOLIC PDES 145

which implies that

|(wL)ℓ(t, x)| ≤ Cℓe
− x√

ε , (t, x) ∈ Ωℓ.

By taking C = max
ℓ

{Cℓ}, ℓ = 1, . . . , K we obtain the estimates

(2.39) |wL(t, x)| ≤ Ce
− x√

ε , (t, x) ∈ Ω.

Now the problem in wL also satisfies a continuous maximum principle and there-

fore, by using the transformation x̃ = x/
√

ε for problem (2.36)–(2.38) and the same

technique that was used for finding bounds on the transformed problem (2.6)–(2.9),

we obtain

(2.40)

∣∣∣∣
∂i+jwL

∂ti∂xj

∣∣∣∣ ≤ C |wL(t, x)| ≤ Cε−
j

2 e
− x√

ε .

�

Lemma 2.6. The partial derivatives of wL(t, x) satisfy

(2.41)

∣∣∣∣
∂i+jwR

∂ti∂xj

∣∣∣∣ ≤ Cε−
j

2 e
− 1−x√

ε , (t, x) ∈ Ω,

for all the integers i and j such that 0 ≤ 2i + j ≤ 6.

Proof. Analogous to the proof of Lemma 2.5.

From the two lemmas 2.5 and 2.6 we see that

Lemma 2.7. The partial derivatives of w(t, x) satisfy

(2.42)

∣∣∣∣
∂i+jw

∂ti∂xj

∣∣∣∣ ≤ Cε−
j

2

(
e
− x√

ε + e
− 1−x√

ε

)
, (t, x) ∈ Ω.

for all the integers i and j such that 0 ≤ 2i + j ≤ 6.

Proof. The proof is accomplished by using the decomposition w = wL + wR and the

estimates (2.35) and (2.41).

Finally, the proof of the theorem is completed by using the estimates in Lemma 2.4

and 2.7. �

The above bounds on the solution will be used later in the analysis of the numer-

ical method.

3. CONSTRUCTION OF THE FITTED MESH METHOD

Let Nx be a positive integer and let

σ = min{0.25, 2
√

ε ln Nx}

be the transition point. Let Nσ
x = Nx/4. To generate the Shishkin mesh we divide

each of the subintervals [0, σ] and [1 − σ, 1] into Nσ
x subintervals through the points
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x0, . . . , xNσ
x

and x3Nσ
x
, . . . , xNx

, respectively, whereas the subinterval [σ, 1 − σ] is di-

vided into 2Nσ
x subintervals through the points xNσ

x
, . . . , x3Nσ

x
. The associated step

size hm = xm+1 − xm is then given by

hm =





4σ/Nx, if m ∈ {0, . . . , Nσ
x − 1}

2(1 − 2σ)/Nx, if m ∈ {Nσ
x , . . . , 3Nσ

x }
4σ/Nx, if m ∈ {3Nσ

x + 1, . . . , Nx}.

Let Nt be any positive integer and k = T/Nt. We divide the space [0, T ] into Nt

subintervals through the points t0 = 0, . . . , tNt
= T where tn+1 = tn + k. We assume

that T = Kτ for some positive integer K and that Nt is chosen in such a way that

τ = ts = sk for some positive integer s.

Let ΩNt denotes {tn : n = 0, . . . , Nt}, ΩNx
σ denotes {xm : m = 0, . . . , Nx}, where

Nx ≥ 4 and N denotes (Nt, Nx), then the fitted piecewise uniform mesh ΩN
σ is then

given by the following tensor product grid

ΩN
σ = ΩNt × ΩNx

σ .

Let Un
m be the numerical approximation of u(tn, xm), D+

x Un
m, D−

x Un
m and δ2

x be

the forward, backward and central difference operators defined as

D+
x Un

m =
Un

m+1 − Un
m

xm+1 − xm

,

D−
x Un

m =
Un

m − Un
m−1

xm − xm−1

and

δ2
xU

n
m =

(D+
x − D−

x )Un
m

xm+1 − xm−1

.

Furthermore, the approximations of the functions a(t, x) and f(t, x) at a local

grid point (tn, xm) are denoted by an
m and fn

m, respectively, whereas the value of the

function b(x) at xm is denoted by bm.

Our fitted mesh finite difference method (FMFDM) is then consists of the Crank-

Nicolson discretization for problem (1.1)–(1.4) on the Shishkin mesh (described above)

and reads as

D+
t Un

m − ε

2

(
δ2
xU

n
m + δ2

xU
n+1
m

)
+

1

2
(an

mUn
m + an+1

m Un+1
m ) =

1

2

(
fn

m + fn+1
m

)

−1

2

(
bmHn

m + bmHn+1
m

)
,(3.1)

along with the initial data

(3.2) U0
m = u0(0, xm)

and boundary conditions

(3.3) Un
0 = ΓL(tn, 0)
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and

(3.4) Un
Nx

= ΓR(tn, 1).

The term Hn
m in (3.1) is called the history term and is given by

(3.5) Hn
m =





u0(tn − τ, xm), if tn < τ,

Un−s
m , if tn ≥ τ.

Expanding (3.1), we obtain

Un+1
m − Un

m

k
− ε

2

Un+1

m+1
−Un+1

m

hm
− Un+1

m −Un+1

m−1

hm−1
+

Un
m+1−Un

m

hm
− Un

m−Un
m−1

hm−1

hm+hm−1

2

+
1

2

(
an

mUn
m + an+1

m Un+1
m

)
=

1

2

(
(fn

m + fn+1
m ) − bm(Hn

m + Hn+1
m )

)

m = 1, . . . , Nx − 1; n = 0, . . . , Nt − 1,

which can be simplified to

− ε

hm−1(hm + hm−1)
Un+1

m−1 +

(
1

k
+

ε

hmhm−1
+

an+1
m

2

)
Un+1

m − ε

hm(hm + hm−1)
Un+1

m+1

=
ε

hm−1(hm + hm−1)
Un

m−1 +

(
1

k
− ε

hmhm−1
− an

m

2

)
Un

m +
ε

hm(hm + hm−1)
Un

m+1

+
1

2

((
fn

m + fn+1
m

)
− bm

(
Hn

m + Hn+1
m

))
.(3.6)

Equation (3.6) can further be written as a linear system of the form

(3.7) TLUn+1 = TRUn +
1

2

((
fn + fn+1

)
− b ⋆

(
Hn + Hn+1

)
+

(
gn + gn+1

))
,

for n = 1, . . . , Nt−1, where ⋆ denotes the componentwise multiplication of the two

vectors and TL and TR are two tridiagonal matrices given by

TL = Tri

(
− ε

hm−1(hm + hm−1)
,
1

k
+

ε

hmhm−1

+
an+1

m

2
,− ε

hm(hm + hm−1)

)
,

and

TR = Tri

(
ε

hm−1(hm + hm−1)
,
1

k
− ε

hmhm−1
− an

m

2
,

ε

hm(hm + hm−1)

)

m = 1, . . . , Nx.

Furthermore, the vector gn is given by

gn =

[
ε(Un

0 + Un+1
0 )

h0(h1 + h0)
, 0, . . . , 0,

ε(Un
Nx

+ Un+1
Nx

)

hNx−1(hNx−2 + hNx−1)

]T

∈ R
Nx−1.

The numerical solution is obtained by solving (3.7) along with (3.2), (3.3), (3.4)

and (3.5).
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4. CONVERGENCE OF THE METHOD

The convergence analysis presented in this section is based on some of approaches

used in [7].

Let Φn
m be any mesh function on ΩN

σ and from (3.1) we define the discrete operator

LN
ε at (tn, xm) as

LN
ε Φn

m ≡ D+Φn
m − ε

2

(
δ2
xΦ

n
m + δ2

xΦ
n+1
m

)
+

1

2

(
an

mΦn
m + an+1

m Φn+1
m

)
.

We show that the following discrete maximum principle is satisfied.

Lemma 4.1. Assume that Φn
m ≥ 0 on the boundaries of ΩN

σ . Then LN
ε Φn

m ≥ 0 on

ΩN
σ implies that Φn

m ≥ 0 on ΩN
σ .

Proof. Assume that Φn
m < 0 for some n, m, and its minimum denoted by Φ∗ is

achieved at a point (tn∗ , xm∗). Then D+Φ∗ = 0 and δ2
xΦ

∗ > 0.

Now we can choose Nt big enough in order to have either Φn∗+1
m∗ < 0 or

∣∣Φn∗

m∗

∣∣ >∣∣Φn∗+1
m∗

∣∣ and δ2
xΦ

n∗+1
m∗ ≥ 0. Then

LN
ε Φn∗

m∗ < 0,

which is a contradiction. Thus Φn
m ≥ 0 at any mesh point (tn, xm).

We also note that the above mesh function satisfies the stability estimate provided

in the following lemma.

Lemma 4.2. Let Φ be any mesh function satisfying Φn
m = 0 on ∂ΩN

σ and ā =

min
m,n

{an
m}, m = 0, . . . , Nx and n = 0, . . . , Nt. Then




|Φn

m| ≤ (1 + T ) max
∣∣LN

ε Φn
m

∣∣ , if ā = 0

|Φn
m| ≤

1 + T

ā
max

∣∣LN
ε Φn

m

∣∣ , if ā > 0

Proof. Let M̃ denotes max
m,n

∣∣LN
ε Φn

m

∣∣. We define a barrier function (Ψn
m)± as

(Ψn
m)± =





(1 + t)M̃ ± Φn
m, if ā = 0

1 + T

ā
M̃ ± Φn

m, if ā > 0

Since Φn
m = 0 on ∂ΩN

σ and M̃ > 0 on ∂ΩN
σ , then on ∂ΩN

σ we have

(Ψn
m)± =





(1 + t)M̃, if ā = 0
1 + T

ā
M̃, if ā > 0

≥





M̃, if ā = 0
1 + T

ā
M̃, if ā > 0

≥ 0

Now,

LN
ε (Ψn

m)± =





M̃ ± LN
ε Φn

m, if ā = 0

(1 + T )

2ā
M̃

(
an

m + an+1
m

)
± LN

ε Φn
m ≥ (1 + T )M̃ ± LεΦ

n
m if ā > 0

≥ 0
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on ΩN
σ .

Using the discrete maximum principle, we have (Ψn
m)± ≥ 0 on ΩN

σ . The proof is

then completed by noticing that 0 ≤ t ≤ T .

Now, we find an error estimate in approximating the exact solution u(tn, xm) by

the numerical solution Un
m using the FMFDM. To simplify the notations, we denote

the quantity f(tn, xm) − bmHn
m by Gn

m and the values of a mesh function Φ at the

boundaries of Ω by Φ(∂ΩN
σ ). That is,

Φ(∂ΩN
σ ) = Φ(tn, xm), (tn, xm) ∈ ∂ΩN

σ .

We decompose the numerical solution U into its smooth and singular components

V and W respectively, that is,

U = V + W,

where the smooth component V satisfies

LεV
n
m =

1

2

(
Gn

m + Gn+1
m

)
, V

(
∂ΩN

σ

)
= v

(
∂ΩN

σ

)

and the singular component W satisfies

LεW
n
m = 0, W

(
∂ΩN

σ

)
= u

(
∂ΩN

σ

)
− v

(
∂ΩN

σ

)
.

The error at the point tn, xm is then given by

u(tn, xm) − Un
m = v(tn, xm) − V n

m + w(tn, xm) − W n
m,

which by the triangle inequality implies that

(4.1) |u(tn, xm) − Un
m| = |v(tn, xm) − V n

m| + |w(tn, xm) − W n
m|

Thus,

LN
ε (V n

m − v(tn, xm)) = LN
ε V n

m − LN
ε v(tn, xm)

=
1

2

(
Gn

m + Gn+1
m

)
− LN

ε (v(tn, xm))

=
1

2

(
Gn

m + Gn+1
m

)
−

(
D+ − ∂

∂t

)
v(tn, xm)

+ ε

(
δ2
xv(tn, xm) + δ2

xv(tn+1, xm)

2
− ∂2

∂x2
v(tn, xm)

)

=
1

2

(
Gn

m + Gn+1
m

)
− N−2

t

12
(εvxxttt(ξ, xm) + (av)ttt(ξ, xm) + fttt(ξ, xm))

+





ε
hm+1 − hm

3
vxxx(tn, ζ), if xm = σ or xm = 1 − σ

−ε
h2

m+1 − hmhm+1 + h2
m

12
vxxxx(tn, ζ), otherwise
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which implies that

|LN
ε (V n

m − v(tn, xm))| ≤ N−2
t

12
(ε |vxxttt| + |attt| |v| + |a(tn, xm)| |vttt| + |fttt|) (ξ, xm)

+





ε
∣∣∣hm−hm−1

3

∣∣∣ |vxxx(tn, ζ)| , if xm = σ or xm = 1 − σ

ε
∣∣∣h2

m−hmhm+1+h2
m+1

12

∣∣∣ |vxxxx(tn, ζ)| otherwise,

≤





ε
∣∣∣hm−hm−1

3

∣∣∣ |vxxx(tn, ζ)| , if xm = σ or xm = 1 − σ

ε
∣∣∣h2

m−hmhm+1+h2
m+1

12

∣∣∣ |vxxxx(tn, ζ)| otherwise,

≤





C
(
N−2

t + N−1
x ln Nx

)
, if xm = σ or xm = 1 − σ

C
(
N−2

t + N−2
x

)
, otherwise.

(4.2)

Defining a barrier function

φ(tn, xm) = C
(σ

ε
N−2

x θ(xm) + (1 + tn)N−2
x + tnN−2

t

)

where

θ(x) =





x
σ
, if 0 ≤ x ≤ σ

1, if σ ≤ x ≤ 1 − σ
1 − x

σ
, if 1 − σ ≤ x ≤ 1

and applying the discrete maximum principle (Lemma 4.2), we have

(4.3) |V n
m − v(tn, xm)| ≤





C
(
N−2

t + N−2
x ln2 Nx

)
, if xm = σ or xm = 1 − σ

C
(
N−2

t + N−2
x

)
, otherwise.

On the other hand, the singular component W is decomposed into its left bound-

ary solution WL and right boundary solution WR, that is,

W = WL + WR

and hence the error can then be written as

W n
m − w(tn, xm) = (WL)n

m − wL(tn, xm) + (WR)n
m − wR(tn, xm).
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We estimate the errors (WL)n
m −wL(tn, xm) and (WR)n

m −wR(tn, xm), separately. We

have

LN
ε ((WL)n

m − wL(tn, xm)) = −LN
ε (wL(tn, xm))

≤ −
(

D+ − ∂

∂t

)
wL(tn, xm)

+ ε

(
δ2
xwL(tn, xm) + δ2

xwL(tn+1, xm)

2
− ∂2

∂x2
wL(tn, xm)

)

=
N−2

t

12
((wL)xxttt + (awL)ttt) (ξ, xm)

−





ε
hm+1 − hm

3
(wL)xxx(tn, ζ), if xm = σ or xm = 1 − σ

−ε
h2

m+1 − hmhm+1 + h2
m

12
(wL)xxxx(tn, ζ), otherwise

By taking the absolute values of the two sides, applying the triangle inequality,

using the estimates of the bounds on wL from Lemma 2.5 and simplifying further, we

obtain

∣∣LN
ε ((WL)n

m − wL(tn, xm))
∣∣ ≤ C

(
N−2

t +
(
N−1

x ln Nx

)2
)

.

Finally, applying Lemma 4.2, we get

(4.4) |(WL)n
m − wL(tn, xm)| ≤ C

(
N−2

t +
(
N−1

x ln Nx

)2
)

.

Similarly, we can prove that

(4.5) |(WR)n
m − wR(tn, xm)| ≤ C

(
N−2

t +
(
N−1

x ln Nx

)2
)

.

Combining (4.1), (4.3), (4.4) and (4.5), we have the following theorem.

Theorem 4.3. The FMFDM (3.1)–(3.4) is convergent of order O(N−2
t +N−2

x ln2 Nx)

in the sense that

sup
0<ε≤1

max
1≤m,n≤N−1

|u(tn, xm) − Un
m| ≤ C(N−2

t + N−2
x ln2 Nx).

where U is the numerical solution obtained by the FMFDM (3.1)–(3.4) and N is the

total number of subintervals taken in either directions.

5. NUMERICAL RESULTS

In this section we provide numerical results confirming the estimate given in

Theorem 4.3. We also compare the results by applying the Crank-Nicolson’s method

on a uniform mesh throughout the region. The latter is referred to as a standard

finite difference method (SFDM).
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Example 5.1. Consider

∂u(t, x)

∂t
− ε

∂2u(t, x)

∂x2
=

1

2

((
2x

√
ε − ε

)
e−(t+x/

√
ε) −

(
2x

√
ε + ε

)
e−(t+(1−x)/

√
ε)

)

− 2e−1u(t − 1, x), (t, x) ∈ [0, 2] × [0, 1],

with the initial data

u(t, x) = (2 + x2)(e−(t+x/
√

ε) + e−(t+(1−x)/
√

ε)), (t, x) ∈ [−τ, 0] × [0, 1],

and boundary conditions

u(t, 0) = e−t + e−t−1/
√

ε, t ∈ [0, 2]

and

u(t, 1) =
3

2
(e−t + e−t−1/

√
ε), t ∈ [0, 2].

The exact solution of the above problem is given by

u(t, x) =
(
2 + x2

) (
e−(t+x/

√
ε) + e−(t+(1−x)/

√
ε)

)
.

By taking Nt = Nx = N , the maximum errors (denoted by EN,ε) at all grid

points are evaluated using the formula

EN,ε := max
0≤m, n≤N

|u(tn, xm) − Un
m|.

We also tabulate the errors

EN = max
0<ε≤1

EN,ε.

These errors are presented in tables 1 and 2. The acronym SFDM in the caption of

Table 1 stands for the standard finite difference method which is defined by (3.1)–(3.4)

by setting σ = 0.25.

The numerical rates of convergence are computed using the formula [4]:

ri ≡ ri,ε := log2 (ENi,ε/E2Ni,ε) , i = 1, 2, · · ·

whereas those of uniform convergence are computed using

RN := log2 (EN/E2N ) .

These rates are presented in Table 3.

6. CONCLUSIONS

In this paper, we constructed a fitted mesh finite difference method (FMFDM)

based on the Crank-Nicolson method for solving a singularly perturbed delay para-

bolic partial differential equation. The method is analyzed for convergence. A test

example is solved to confirm the theoretical estimates.

The proposed FMFDM is unconditionally stable and is converging with the order

O(N−2
t +N−2

x ln2 Nx) which is an improvement over the estimate presented in Ansari
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Table 1. Maximum Errors obtained by SFDM for Example 5.1 using Nx = Nt = N

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

1 6.64E-06 1.66E-06 4.15E-07 1.04E-07 2.59E-08 6.40E-09

10−2 4.64E-04 1.16E-04 2.91E-05 7.26E-06 1.82E-06 4.54E-07

10−4 3.09E-02 9.10E-03 2.48E-03 6.25E-04 1.57E-04 3.93E-05

10−6 4.28E-03 1.63E-02 4.05E-02 3.83E-02 1.42E-02 3.76E-03

10−8 4.31E-05 1.72E-04 6.89E-04 2.76E-03 1.08E-02 3.30E-02

10−10 4.31E-07 1.72E-06 6.90E-06 2.76E-05 1.10E-04 4.41E-04

10−12 4.31E-09 1.72E-08 6.90E-08 2.76E-07 1.10E-06 4.42E-06

10−14 4.31E-11 1.72E-10 6.90E-10 2.76E-09 1.10E-08 4.42E-08

10−16 4.31E-12 1.72E-11 6.90E-11 2.76E-10 1.10E-09 4.42E-10

Table 2. Maximum Errors obtained by FMFDM for Example 5.1 using Nx =

Nt = N

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

1 6.64e-06 1.66e-06 4.15e-07 1.04e-07 2.59e-08 6.44e-09

10−1 7.00e-05 1.75e-05 4.38e-06 1.09e-06 2.74e-07 6.84e-08

10−3 4.08e-03 1.04e-03 2.61e-04 6.53e-05 1.63e-05 4.08e-06

10−4 4.34e-03 1.49e-03 4.92e-04 1.56e-04 4.82e-05 1.46e-05

10−5 4.28e-03 1.47e-03 4.85e-04 1.54e-04 4.76e-05 1.44e-05

10−6 4.26e-03 1.47e-03 4.83e-04 1.53e-04 4.74e-05 1.43e-05

10−7 4.25e-03 1.47e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

10−8 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

10−12 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

10−13 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

10−16 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

EN 4.25e-03 1.46e-03 4.82e-04 1.53e-04 4.73e-05 1.43e-05

Table 3. Rates of Convergence obtained by FMFDM for Example 5.1 using

Nx =Nt =N =2i, i = 6(1)10

ε r1 r2 r3 r4 r5

1 2.00 2.00 2.00 2.00 2.01

10−1 2.00 2.00 2.00 2.00 2.00

10−3 1.98 1.99 2.00 2.00 2.00

10−4 1.54 1.60 1.66 1.69 1.72

10−5 1.54 1.60 1.66 1.69 1.72

10−6 1.54 1.60 1.66 1.69 1.73

10−7 1.54 1.60 1.66 1.69 1.73

10−8 1.54 1.60 1.66 1.69 1.73

10−12 1.54 1.60 1.66 1.69 1.73

10−13 1.54 1.60 1.66 1.69 1.73

10−16 1.54 1.60 1.66 1.69 1.73

RN 1.54 1.60 1.66 1.69 1.73
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et al. in [1] for the problem under consideration. These improved results can be seen

from the results presented in Tables 2–3. For the sake of comparison, the results

obtained by the corresponding standard finite difference method (the Crank-Nicolson

method on uniform mesh) are presented in Table 1. One can see that the latter does

not converges to a specific order.

A further improvement to the results can be made if we use the proposed method

on a mesh of Bakhvalov type rather than a mesh of Shishkin type. Due the absence of

the locking term in the error in the Bakhvalov mesh, one would expect the accuracy

of order O(N−2
t + N−2

x ) if a Crank-Nicolson method is used on this mesh. We are

currently investigating these issues.
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