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ABSTRACT. A singularly perturbed semilinear convection-diffusion problem is considered. The

leading term is multiplied by a small positive parameter ε. The solution to this problem exhibits

boundary layer at the left end of the domain. To solve this problem numerically, we develop a

B-spline collocation method on a piecewise-uniform Shishkin mesh. The error analysis is given and

the method is proved to be almost second-order convergent in the maximum norm uniformly in ε.

Numerical results are presented in support of the theory.
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1. INTRODUCTION

We consider the following singularly perturbed semilinear convection-diffusion

equation

(1.1) Lu(x) := −εu′′(x) − a(x)u′(x) + f(x, u(x)) = 0, x ∈ Ω = [0, 1]

subject to boundary conditions

(1.2) u(0) = 0, u(1) = 0,

where 0 < ε ≪ 1 is a small parameter. We assume that a and f are sufficiently

smooth functions with

(1.3) a(x) ≥ γ > 0 for x ∈ Ω, fu(x, u) ≥ f∗ > 0 for (x, u) ∈ Ω × R.

With these assumptions, there exists a unique solution u to the problem (1.1)–

(1.2); see [1]. The solution u generally has an exponential boundary layer at x = 0.

The solution u and its derivatives can be bounded as follows [2]:

(1.4) |u(m)(x)| ≤ C(1 + ε−m exp(−γx/ε)) for m = 0, . . . , 4 and x ∈ Ω.
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Singular perturbation problems arise frequently in many areas of science and

engineering such as the heat transfer problem with large Peclet numbers, Navier-

Strokes flows with large Reynolds numbers, chemical reactor theory, aerodynamics,

quantum mechanics, optimal control, etc. It is well known that classical numerical

methods on uniform meshes are not adequate for solving such problems. Therefore

special measures are needed to efficiently obtain good numerical approximations.

Properly layer adapted meshes have been proven to overcome these difficulties ([3, 4,

5, 6]).

A wide class of spline approximation method for the numerical solution of sin-

gularly perturbed problems have been studied by various researchers. Some spline

approximation methods for the numerical solution of nonlinear singularly perturbed

boundary problem are given in [7, 8, 9, 10, 11, 12], and the references therein. Among

the various classes of splines, the polynomial spline has received a greater atten-

tion primarily because it admits a B-splines basis which can be computed efficiently.

Kadalbajoo and Gupta [13] gave a B-spline collocation method on a piecewise-uniform

Shishkin mesh for singularly perturbed linear convection-diffusion problem and proved

the almost second order uniform convergence of the method. Also they extended this

method for singularly perturbed one-dimensional time dependent linear convection-

diffusion problem ([14]).

We reformulate the problem (1.1)–(1.2) to an equivalent problem of the form

(1.5) Lεu(x) := −εu′′(x) − a(x)u′(x) + b(x)u(x) = g(x, u(x)), x ∈ Ω = [0, 1]

(1.6) u(0) = 0, u(1) = 0,

where b(x) ≥ β > 0 for x ∈ Ω, and g(x, u) = b(x)u(x) − f(x, u), that satisfies

(1.7) | g(x, u1) − g(x, u2)| ≤ M | u1 − u2|, ∀ x ∈ Ω (Lipschitz condition)

such that, for K = (min
∀x

2b(x))−1, 1 − 6KM > 0.

In this paper, we develop a B-spline collocation method on a piecewise-uniform

Shishkin mesh for the numerical solution of the modified problem (1.5)–(1.6). It is

interesting to note, that in all the numerical experiments, there is no difficulty in

solving (1.1)–(1.2) directly by present B-spline collocation method, and they ren-

dered exactly the same result as the modified form (1.5)–(1.6). The reformulation

of the problem (1.1)–(1.2) to (1.5)–(1.6) is solely for the theoretical purpose. Two

test problems are considered to demonstrate the efficiency of the proposed B-spline

collocation method.

This paper is arranged as follows. In section 2, the B-spline collocation method

on a piecewise-uniform Shishkin mesh is developed for the numerical solution of the

problem (1.5)–(1.6). In section 3, the error analysis is given and the method is
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proved to be almost second order convergent in the maximum norm uniformly in ε.

In section 4, numerical experiments are conducted to validate the theoretical results.

Finally, discussion is included in section 5.

NOTATIONS: Throughout the paper we use C, to denote a generic positive con-

stant independent of ε and the discretization parameter N . For a real valued function

y ∈ C(Ω), define ‖y‖Ω = max
x∈Ω

|y(x)|. For a mesh function yN = (g0, . . . , gN), define

‖yN‖ = max
0≤i≤N

|gi|, and denote the corresponding subordinate matrix norm in the same

way.

2. THE DISCRETIZATION

In this section, we develop a B-spline collocation method on a piecewise-uniform

Shishkin mesh for the numerical solution of singularly perturbed problem (1.5)–(1.6).

First we construct a piecewise-uniform Shishkin mesh ΩN = {xi}
N
i=0, in such a way

that more mesh points are generated in the boundary layer region than outside of it.

Let N = 2k, k ≥ 2 be a positive integer. Set

σ = min

{
1

2
,
2ε

γ
ln N

}
.

We divide each of the subintervals [0, σ], [σ, 1] into N/2 equidistant subintervals.

Set i0 = N
2
, then xi0 = σ is the transition point. Let xi = xi−1 + hi, ∀ i = 1, . . . , N .

Then the resulting piecewise-uniform Shishkin mesh is represented as

(2.1) h̃ :=





hi =
2σ

N
for i = 1, . . . , i0;

hi =
2(1 − σ)

N
for i = i0 + 1, . . . , N ;

Note that if σ = 1/2, then the mesh is uniform, N−1 is very small with respect

to ε and therefore a classical analysis could be used to prove the uniform convergence

of the method. So, in the convergence analysis of method we only consider the case

σ = 2ε lnN/γ.

Now we describe the B-spline collocation method for the problem (1.5)–(1.6) on

a piecewise-uniform mesh ΩN . We extend the partition ΩN by introducing x−3 <

x−2 < x−1 mesh points on the left side and xN+1 < xN+2 < xN+3 mesh points on the

right side. Then, for i = −1, 0, . . . , N +1, the cubic B-splines are defined by ([13, 14])

(2.2)

Bi(x) =
1

h̃3





(x − xi−2)
3 for x ∈ [xi−2, xi−1];

h̃3 + 3h̃2(x − xi−1) + 3h̃(x − xi−1)
2 − 3(x − xi−1)

3 for x ∈ [xi−1, xi];

h̃3 + 3h̃2(xi+1 − x) + 3h̃(xi+1 − x)2 − 3(xi+1 − x)3 for x ∈ [xi, xi+1];

(xi+2 − x)3 for x ∈ [xi+1, xi+2];

0, otherwise.
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Suppose V = span{B−1(x), B0(x), . . . , BN(x), BN+1(x)}. It is well known that

cubic B-splines {Bi(x)}N+1
i=−1 are linearly independent and dim V = N + 3. Suppose

the approximate solution to the problem (1.5)–(1.6) is given by

uN(x) =

N+1∑

i=−1

αiBi(x),

where αi are the unknown parameters and Bi’s are cubic B-spline functions. We force

the function uN to satisfy the differential equation at the mesh points of the partition

ΩN and also the boundary conditions. Thus we have

(2.3) LεuN(xi) = g(xi, uN(xi)), i = 0, . . . , N,

with

(2.4) uN(x0) = 0, uN(xN ) = 0,

where

LεuN(xi) := −εu′′
N(xi) − a(xi)u

′
N(xi) + b(xi)uN(xi).

Explicitly, the collocation equation (2.3) can be rewritten as

αi−1( − εB′′
i−1(xi) − a(xi)B

′
i−1(xi) + b(xi)Bi−1(xi))

+ αi(−εB′′
i (xi) − a(xi)B

′
i(xi) + b(xi)Bi(xi))

+ αi+1(−εB′′
i+1(xi) − a(xi)B

′
i+1(xi) + b(xi)Bi+1(xi))

= g(xi, uN(xi)), i = 0, . . . , N.

Each basis function Bi is twice continuously differentiable. The values of the basis

functions Bi at the mesh points in ΩN can be determined from (2.2). Putting the

values of basis functions Bi and their derivative at the mesh points in ΩN , we obtain

αi−1

(
−6ε

h̃2
+

3a(xi)

h̃
+ b(xi)

)
+ αi

(
12ε

h̃2
+ 4b(xi)

)

+ αi+1

(
−6ε

h̃2
−

3a(xi)

h̃
+ b(xi)

)
= g(xi, uN(xi)), i = 0, . . . , N(2.5)

with

(2.6) α−1 + 4α0 + α1 = 0, αN−1 + 4αN + αN+1 = 0.

On eliminating α−1 and αN+1, the resulting system (2.5)–(2.6) can be represented as

(2.7) Aα = g(α),

where A is an (N + 1) × (N + 1) tridiagonal matrix, α is an (N + 1)-dimensional

column vector with components αi and g(α) is the right hand side vector of dimension

N + 1.
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The elements of the tridiagonal matrix A = (aij) are





a0,0 =
36ε

h̃2
−

12a(x0)

h̃
,

a0,1 = −
6a(x0)

h̃
,

ai,i−1 =
−6ε

h̃2
+

3a(xi)

h̃
+ b(xi), i = 1, . . . , N − 1,

ai,i =
12ε

h̃2
+ 4b(xi), i = 1, . . . , N − 1,

ai,i+1 =
−6ε

h̃2
−

3a(xi)

h̃
+ b(xi), i = 1, . . . , N − 1,

aN,N−1 =
6a(xN )

h̃
,

aN,N =
36ε

h̃2
+

12a(xN )

h̃
,

ai,j = 0, ∀ |i − j| > 1.

Following the arguments in [13, 14], we prove that the collocation matrix A is strictly

diagonally dominant and hence nonsingular. Moreover

(2.8) ‖A−1‖ ≤
1

2β
≡ K(say).

This bound on A−1 will be useful in the convergence analysis of the present B-spline

collocation method.

3. CONVERGENCE ANALYSIS

In this section, we estimate the error ‖u − uN‖Ω. Let uN be the unique cubic

spline collocation approximate solution of (1.5)–(1.6) given by

(3.1) uN(x) =

N+1∑

i=−1

αiBi(x),

and let uN be the unique cubic spline interpolate from the space V to the exact

solution u of (1.5)–(1.6) given by

(3.2) uN(x) =

N+1∑

i=−1

αiBi(x).

An application of the triangle inequality gives

(3.3) ‖u − uN‖Ω ≤ ‖u − uN‖Ω + ‖uN − uN‖Ω.

We now estimate both terms on the right hand side of (3.3). First consider the

interpolation error ‖u − uN‖Ω. Let y be the unique cubic spline interpolant of y ∈
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C4(Ω). Then by the standard cubic spline interpolation error estimates ([15, 16]) for

x ∈ Ωi := [xi−1, xi] ⊂ Ω,

(3.4) |(y − y)(k)(x)| ≤





Ch4−k
i ‖y(4)‖Ωi

;

C‖y(k)‖Ωi
; k = 0, 1, 2.

First consider the case when Ωi ⊂ [0, σ]. In this case hi ≤ CεN−1 ln N . Further-

more ‖u(4)‖Ω ≤ Cε−4 by (1.4). Using first interpolation error estimate of (3.4) with

k = 0, we get

|(u − uN)(x)| ≤ CN−4 ln4 N, x ∈ Ωi ⊂ [0, σ].

Next consider the case when Ωi ⊂ [σ, 1]. Here we need a special decomposition

of the exact solution u into regular part v and layer part w. Set x∗ = 4εγ−1 ln(1/ε)

and define, for x ∈ Ω

v(x) =





4∑

ℓ=0

(x − x∗)ℓ

ℓ!
u(ℓ)(x∗) for 0 ≤ x ≤ x∗;

u(x) for x∗ ≤ x ≤ 1;

and w(x) = u(x) − v(x). Then equation (1.4) and the choice of x∗ yields

(3.5) |v(m)(x)| ≤ C and

(3.6) |w(m)(x)| ≤ Cε−me−xγ/ε for m = 0, . . . , 4.

Decomposing the interpolation error according to the the decomposition of u, we get

(3.7) |(u − uN )(x)| ≤ |(v − vN)(x)| + |(w − wN)(x)|.

For the first term on the right hand side of (3.7), we use the first interpolation error

estimate of (3.4) with k = 0, hi ≤ CN−1 and ‖v(4)‖Ω ≤ C, and for the second term

on the right hand side of (3.7), we use the second interpolation error estimate of (3.4)

with k = 0 and (3.6). Thus, we get

|(u − uN)(x)| ≤ CN−4 + C‖w‖Ωi

≤ CN−4 + C max
x∈[σ,1]

exp(−xγ/ε)

≤ CN−4 + C exp(−σγ/ε)

≤ CN−4 + CN−2 ≤ CN−2.

Collecting all the interpolation error estimates, we have

(3.8) ‖u − uN‖Ω ≤ CN−2.

Now we estimate ‖uN−uN‖Ω. For this consider the quantities LεuN(xi), i = 0, . . . , N .

Using interpolation error estimates (3.4) and the arguments that we have used to
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estimate ‖u − uN‖Ω, we obtain ‖LεuN − Lεu‖Ω ≤ CN−2 ln2 N . At the mesh points,

in particular, we write

LεuN(xi) = g(xi, uN(xi)) + r(xi), i = 0, . . . , N,

where r(x) is the error function with the order of magnitude O(N−2 ln2 N). With the

boundary conditions uN(x0) = 0, uN(xN ) = 0, this lead to the nonlinear system

(3.9) Aα = g(α) + r ,

where A is the same matrix as in (2.7), α, g(α) and r are vectors of dimension (N+1)

with components αi, g(xi, uN (xi)) and r(xi) respectively. Let e = (e0, . . . , eN)T ,

where ei = αi − αi. Subtraction of (2.7) from (3.9) results in

(3.10) Ae = r + g(α) − g(α).

The Lipschitz condition (1.7) implies

g(xi, uN(xi)) − g(xi, uN(xi)) = Mi(uN(xi) − uN(xi))

=





Mi[ei−1 + 4ei + ei+1] for 1 ≤ i ≤ N − 1

0 for i = 0, N ,
(3.11)

for some constants Mi, where |Mi| ≤ M , for i = 0, . . . , N . Thus (3.10) can be written

as

(3.12) Ae = r + M̃Te ,

where M̃ =diag(M0, M1, . . . , MN),

T =




0 0 0

1 4 1

1 4 1
. . .

. . .
. . .

1 4 1

0 0 0




and satisfy

(3.13) ‖M̃ ‖ ≤ M, ‖T‖ = 6.

Thus, from

e = A−1r + A−1M̃Te ,

and the bound on ‖A−1‖, it follows that

‖e‖ ≤ K‖r‖ + 6KM‖e‖.

As (1 − 6KM) > 0, and ‖r‖ ≤ CN−2 ln2 N , we have

(3.14) ‖e‖ ≤ CN−2 ln2 N.
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We have

(α−1 − α−1) + 4(α0 − α0) + (α1 − α1) = 0,

(αN−1 − αN−1) + 4(αN − αN) + (αN+1 − αN+1) = 0.

Using (3.14), we get |α−1 − α−1| ≤ CN−2 ln2 N, |αN+1 − αN+1| ≤ CN−2 ln2 N .

Hence

(3.15) max
−1≤i≤N+1

|αi − αi| ≤ CN−2 ln2 N.

From (3.1)–(3.2), we get

(3.16) |uN(x) − uN(x)| ≤ max
−1≤i≤N+1

|αi − αi|
N+1∑

i=−1

|Bi(x)|.

By [13, 14], we have the following inequality

(3.17)
N+1∑

i=−1

|Bi(x)| ≤ 10, 0 ≤ x ≤ 1.

Thus from (3.15)–(3.17), we get

(3.18) ‖uN − uN‖Ω ≤ CN−2 ln2 N.

Finally we combine (3.3),(3.8) and (3.18), to get our main convergence result.

Theorem 3.1. Let u be the exact solution of the problem (1.5)–(1.6) and let uN be

the cubic B-spline collocation approximate solution on a piecewise-uniform Shishkin

mesh. Then

‖u − uN‖Ω ≤ CN−2 ln2 N.

4. NUMERICAL RESULTS

The present B-spline collocation method on a piecewise-uniform Shishkin mesh

is implemented on two test problems.

Example 4.1. Consider the singularly perturbed problem

−εu′′ − (1 + x)u′ + u + (1 + x)2 = 0, x ∈ Ω

u(0) = 0, u(1) = 0.

Example 4.2. Consider the singularly perturbed problem

−εu′′ − (2 − x)u′ + exp(u) = 0, x ∈ Ω

u(0) = 0, u(1) = 0.
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Table 4.1: Maximum Errors EN
ε , EN and parameter-uniform

numerical rate pN for the Example 4.1.

ε = 10−K N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

K=0 6.46E-06 1.62E-06 4.04E-07 1.01E-07 2.53E-08 6.31E-09

1 1.69E-03 4.18E-04 1.04E-04 2.61E-05 6.52E-06 1.63E-06

2 3.48E-03 1.31E-03 4.17E-04 1.38E-04 4.41E-05 1.37E-05

3 3.32E-03 1.24E-03 4.32E-04 1.44E-04 4.62E-05 1.37E-05

4 3.30E-03 1.23E-03 4.27E-04 1.41E-04 4.51E-05 1.40E-05

5 3.30E-03 1.23E-03 4.26E-04 1.41E-04 4.50E-05 1.40E-05

10 3.30E-03 1.23E-03 4.26E-04 1.41E-04 4.50E-05 1.40E-05

15 3.30E-03 1.23E-03 4.26E-04 1.41E-04 4.50E-05 1.40E-05

EN 3.48E-03 1.31E-03 4.32E-04 1.44E-04 4.62E-05 1.40E-05

pN 1.41 1.60 1.59 1.64 1.72

To solve the corresponding nonlinear systems, the Newton’s method is used with

the initial guess u
(0)
N = (0, u0(x1), . . . , u0(xN−1), u0(xN))T , where u0(x) is the solution

of the reduced problem. The stopping criterion is ‖u
(k)
N − u

(k−1)
N ‖ < 10−9. Here u

(k)
N ,

for k = 1, 2, . . . , represent the successive approximates to uN computed iteratively.

For each N and ε in the tables, it takes only about 5 iterations to satisfy this criterion.

As the exact solutions of the test problems are not known, so we used a double

mesh method to estimate the errors. Let uN be the solution of the present B-spline

collocation method on the original mesh with N discretization parameters and ũN

that on the mesh obtained by uniformly bisecting the original mesh. We then estimate

the maximum errors and the parameter-uniform errors by

EN
ε = max

0≤i≤N
|(uN)i − (ũ2N)2i|, EN = max

∀ε
EN

ε .

The ε-uniform numerical rate of convergence pN is calculated by

pN = log2(E
N/E2N).

For the different values of ε and N , Tables 4.1 and 4.2 represent the maximum

errors EN
ε , EN and the ε-uniform numerical rate of convergence pN of the present B-

spline collocation method on a piecewise-uniform Shishkin mesh for the Examples 4.1

and 4.2 respectively.

5. DISCUSSION

The cubic B-spline collocation method on a piecewise-uniform Shishkin mesh

for the numerical solution of singularly perturbed semilinear convection-diffusion two

point boundary value problem is presented. The original problem (1.1)–(1.2) is re-

formulated to an equivalent problem (1.5)–(1.6). A B-spline collocation method for
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Table 4.2: Maximum Errors EN
ε , EN and parameter-uniform

numerical rate pN for the Example 4.2.

ε = 10−K N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

K=0 4.85E-06 1.21E-06 3.03E-07 7.58E-08 1.89E-08 4.74E-09

1 1.27E-03 3.14E-04 7.82E-05 1.96E-05 4.89E-06 1.22E-06

2 8.35E-03 3.00E-03 9.73E-04 3.19E-04 1.01E-04 3.14E-05

3 8.35E-03 2.99E-03 1.01E-03 3.31E-04 1.05E-04 3.15E-05

4 8.35E-03 2.99E-03 1.01E-03 3.30E-04 1.04E-04 3.21E-05

5 8.35E-03 2.99E-03 1.01E-03 3.30E-04 1.04E-04 3.21E-05

10 8.35E-03 2.99E-03 1.01E-03 3.30E-04 1.04E-04 3.21E-05

15 8.35E-03 2.99E-03 1.01E-03 3.30E-04 1.04E-04 3.21E-05

EN 8.35E-03 3.00E-03 1.01E-03 3.31E-04 1.05E-04 3.21E-05

pN 1.48 1.57 1.61 1.66 1.71

the modified problem (1.5)–(1.6) on a piecewise-uniform Shishkin mesh is proposed.

It is interesting to note, that in all the numerical experiments, there is no difficulty

in solving (1.1)–(1.2) directly by the present B-spline collocation method, and they

rendered exactly the same result as the modified form (1.5)–(1.6). The reformulation

of the problem (1.1)–(1.2) to (1.5)–(1.6) is solely for the theoretical purpose. The

essential idea in this method is to use the cubic B-spline basis on a piecewise-uniform

Shishkin mesh to approximate the solution of the modified problem (1.5)–(1.6) via.

collocation approach. The cubic B-spline basis function are defined in section 2 and

has a finite support on the four consecutive intervals [xi+jh, xi+(j+1)h]
1
j=−2, and results

in a tridiagonal system which can be solved using the standard algorithm.

From the Tables 4.1 and 4.2, it can be observed that, for fixed value of ε, the

maximum errors EN
ε decreases as the mesh points increases. The last row in each

of the Tables (4.1 and 4.2) represent the ε-uniform numerical rate of convergence

pN of the present method. Clearly these results are in good agreement with the

Theorem 3.1.

The most significant virtue of the spline collocation procedure is its ease in ap-

plication; e.g. matrix elements of the defining equation are evaluated directly, rather

than by numerical integration as in the Galerkin method. Therefore the collocation

system is set up rather easily. Also this method ensure that the solution is, at least,

continuous in the domain Ω, whereas the finite difference methods give the solution

only at the chosen mesh points.
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