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ABSTRACT. We present a second order numerical method based on cubic spline on a non-uniform

mesh for the singularly perturbed two-point boundary value problems having interior layer in the

turning point region. As opposed to our previous work dealing with the turning point problems having

boundary layers [Kadalbajoo, M. K. & Patidar, K. C., (2001). Variable mesh spline approximation

method for solving singularly perturbed turning point problems having boundary layer(s), Comp.

Math. Appl., v. 42(10-11), 1439–1453], the distinctive feature of the problem considered in this paper

lies in the fact that the layer appears in the interior of the region around the turning point. Rather

than using a piecewise uniform mesh of Shishkin type [Miller, J. J. H., O’Riordan, E. & Shishkin, G.

I., (1996). Fitted numerical methods for singular perturbation problems, Singapore: Word Scientific]

which can not resolve the interior layer problems efficiently, we design a fully nonuniform mesh in the

interior layer region. We then extend the classical approach of Berger et al. [Berger, A. E., Solomon,

J. M. & Ciment, M., (1981). An analysis of a uniformly accurate difference method for a singular

perturbation problem, Math. Comp., v. 37, 79–94] and Kellogg and Tsan [Kellogg, R. B. & Tsan,

A., (1978). Analysis of some difference approximations for a singular perturbation problem without

turning points, Math. Comp., v. 32, 1025–1039] to analyze our numerical method. Some numerical

results confirming the theoretical estimates are also provided.

Key Words Boundary value problems; ordinary differential equations; singular perturbations; cubic

splines; turning point problems; interior layers
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1. INTRODUCTION

We consider the following class of turning point problems (TPPs) for a singularly

perturbed two-point boundary value problem:

(1.1)
Ly ≡ εy′′ + a(x)y′ − b(x)y = f(x) on [p1, p2]

y(p1) = η1, y(p2) = η2

}
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where a(x) is assumed to be in C2[p1, p2]; b(x) and f(x) are required to be in C1[p1, p2];

η1, η2 are given constants; p1 ≤ 0, p2 > 0 (usually p1 = −1 and p2 = 1) and 0 < ε≪ 1.

Moreover

(1.2) a(0) = 0, a′(0) > 0.

For the solution of (1.1) to satisfy a maximum principle, we require that

(1.3) b(x) ≥ 0, b(0) > 0.

Furthermore, in order to avoid resonance [1], the coefficient function b(x) is required

to be bounded below by some positive constant b, i. e.,

(1.4) b(x) ≥ b > 0.

We also impose the following condition which ensures that there are no other turning

points in the interval [p1, p2]

(1.5) |a′ (x)| ≥
∣∣∣∣
a′ (0)

2

∣∣∣∣ , x ∈ [p1, p2].

Under conditions (1.2)–(1.5), the turning point problem (1.1) has a unique solution

having interior layer (a region of rapid variation in y or its derivatives) in the turning

point region (c.f. [36]).

The turning point is simple if a(x) vanishes at x = 0 and is called a multiple

turning point if not only a(x) but also its first derivative vanishes at x = 0. Sim-

ple turning point problems have attracted the most attention of all turning point

problems, both analytically and numerically. The present work deals with the simple

turning point problems. However, for multiple turning point problems, the readers

are referred to [6, 42] and the references therein.

To the best of our knowledge, there are three principle approaches to solve such

problems numerically, namely, the Finite-Difference Methods, the Finite-Element

Methods and the Spline Approximation Methods. Probably Berger et al. ([6]) were

the first to analyze TPPs using comparison function approach for finite difference

techniques. Kellogg [28] solved these type of problems using Allen-Southwell differ-

ence schemes. Farrell [10] derived sufficient conditions for uniform convergence for

some difference schemes for TPPs. Sun and Stynes [39] used Galerkin finite element

methods for such problems, whereas Surla and Uzelac [41] solved them by taking

a linear combination of the two spline difference schemes: El Mistikawy and Werle

(EMW) scheme of [6] and Improved El Mistikawy and Werle (IEMW) scheme of

[40]. More results based on numerical methods for turning point problems have been

obtained in [31, 33, 37].

In this paper we have used the third approach, namely, the Spline Approxima-

tion Method which involves the use of a cubic spline on a non-uniform mesh in the
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interior layer region and uniform outside the region. Such spline techniques are used

in the past to solve two-point boundary value problems for singularly perturbed non-

turning point problems, see, e.g., [3, 12, 20, 21, 22, 23, 24, 25, 26] and the references

therein (for older works) and those by the authors [14, 15, 16, 17, 18, 19]; or sin-

gularly perturbed turning point problems whose solutions possess boundary layers

(see, e.g., [13]). However, to the best of our knowledge, this is the first work using

spline techniques to solve interior layer problems. As far as non-spline techniques

are concerned, some researchers did attempt to solve these interior layer problems

(see, e.g., [11, 30, 32, 34] but the success (in terms of efficiency and overall order of

convergence) was very limited.

The rest of the paper is organized as follows. In Section 2 we derive the differ-

ence scheme. Meshes are chosen according to the mesh selection strategy described

in Section 3. The proposed numerical method has been analyzed for convergence

in Section 4. Some comparative numerical results are presented in Section 5. We

summarize the main outcomes of this paper in Section 6 where we also indicate the

scope for future research.

2. DERIVATION OF THE SCHEME

The approximate solution of the problem (1.1) is sought in the form of the cubic

spline function, which on each interval [xj−1, xj ], denoted by Sj(x) and will be defined

as follows. Let

x0 = p1, xj = p1 +

j∑

m=1

hm, j = 1(1)n, hm = xm − xm−1, xn = p2.

For the values y(x0), y(x1), . . . , y(xn), there exists an interpolating cubic spline with

the following properties

(i) Sj(x) coincides with a polynomial of degree 3 on each interval [xj−1, xj ], j =

1(1)n,

(ii) Sj(x) ∈ C2[0, 1],

(iii) Sj(xj) = y(xj), j = 0(1)n.

Hence as in [2], the cubic spline can be given by

Sj(x) =
(xj − x)3

6hj
Uj−1 +

(x− xj−1)
3

6hj
Uj +

(
yj−1 −

h2
jUj−1

6

) (
xj − x

hj

)

+

(
yj −

h2
jUj

6

) (
x− xj−1

hj

)
,(2.1)

where

x ∈ [xj−1, xj ], hj = xj − xj−1, j = 1(1)n



210 M. K. KADALBAJOO AND K. C. PATIDAR

and

Uj = S ′′
j (xj), j = 0(1)n.

Using this spline function we will derive the difference scheme in Section 3, which will

give us the approximate solution of y(x).

Differentiating (2.1) and denoting the nodal interpolants of y(x) by uj’s, we get

(2.2) S ′
j(x) = −(xj − x)2

2hj

Uj−1 +
(x− xj−1)

2

2hj

Uj +

(
uj − uj−1

hj

)
−

(
Uj − Uj−1

6

)
hj.

Since Sj(x) ∈ C2[0, 1], therefore we have

(2.3) S ′
j(xj) = S ′

j+1(xj).

This implies

(2.4)
hj

6
Uj−1 +

hj + hj+1

6
Uj +

hj+1

6
Uj+1 =

uj+1 − uj

hj+1

− uj − uj−1

hj

,

where

(2.5) Uj =
1

ε

(
fj − aju

′
j + bjuj

)
.

Taking the Taylor series expansion for u around xj and neglecting the terms containing

third and higher order terms, we get the following approximations for uj+1 and uj−1:

(2.6) uj+1 ≈ uj + hj+1u
′
j +

h2
j+1

2
u′′j

(2.7) uj−1 ≈ uj − hju
′
j +

h2
j

2
u′′j

Simplifying (2.6) and (2.7), we obtain

(2.8) u′j ≈
1

hjhj+1 (hj + hj+1)

[
h2

juj+1 −
(
h2

j − h2
j+1

)
uj − h2

j+1uj−1

]

and

(2.9) u′′j ≈ 2

hjhj+1 (hj + hj+1)
[hjuj+1 − (hj + hj+1) uj − hj+1uj−1] .

On the other hand, we have

(2.10) u′j+1 ≈ u′j + hj+1u
′′
j

and

(2.11) u′j−1 ≈ u′j − hju
′′
j .

From equations (2.8), (2.9) and (2.10), we get

(2.12)

u′j+1 ≈
1

hjhj+1 (hj + hj+1)

[
h2

j+1uj−1 − (hj + hj+1)
2 uj +

(
h2

j + 2hjhj+1

)
uj+1

]
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and from equations (2.8), (2.9) and (2.11), we get

(2.13)

u′j−1 ≈
1

hjhj+1 (hj + hj+1)

[
−

(
h2

j+1 + 2hjhj+1

)
uj−1 − (hj + hj+1)

2 uj − h2
juj+1

]
.

Therefore, using (2.4), (2.5), (2.8), (2.12) and (2.13), we obtain the difference scheme

(2.14) Ruj = Qfj , j = 1(1)n− 1,

where

Ruj = r−j uj−1 + rc
juj + r+

j uj+1,

Qfj = q−j fj−1 + qc
jfj + q+

j fj+1,

u0 = α0, un = α1,

r−j =
2hj + hj+1

6(hj + hj+1)
aj−1 +

hj+1

3hj
aj −

h2
j+1

6hj(hj + hj+1)
aj+1 +

hj

6
bj−1 −

ε

hj
,

r+
j =

h2
j

6hj+1(hj + hj+1)
aj−1 −

hj

3hj+1

aj −
2hj+1 + hj

6(hj + hj+1)
aj+1 +

hj+1

6
bj+1 −

ε

hj+1

,

rc
j = −hj + hj+1

6hj+1
aj−1 −

h2
j+1 − h2

j

3hjhj+1
aj +

hj + hj+1

6hj
aj+1 +

hj + hj+1

3
bj +

ε

hj
+

ε

hj+1
,

(2.15) q−j = −hj

6
, q+

j = −hj+1

6
, qc

j = −hj + hj+1

3
.

3. MESH SELECTION STRATEGY

There are a number of different mesh selection strategies found in the literature

for non-turning point problems but almost all of them can not be adopted for the

turning point problems whose solutions possess interior layers. Some attempts were

made using piecewise uniform meshes of Shishkin type but the results were not very

promising. This is largely due to the fact that determining the location of the interior

layer is not as straightforward as in the case of boundary layers. To this end, we design

in this section a totally non-uniform mesh. We form it in such a way that more points

are generated in the interior layer region than outside this.

Let the concerned interval on which the problem is to be solved be [p1, p2], where

p1 < 0 and p2 > 0. Let its midpoint, i.e., (p1 + p2)/2, be denoted by cp. By means of

singular perturbation techniques (see, e.g., [29, 35, 36], etc, for details) we know that

the interior layer is located near to this point cp for the problems of the type (1.1)

with conditions (1.2)–(1.5). Let δ denotes the width of this interior layer. Thus we

have four subintervals[
p1, cp −

δ

2

]
,

[
cp −

δ

2
, cp

]
,

[
cp, cp +

δ

2

]
and

[
cp +

δ

2
, p2

]
.

Let n1, n2, n3 and n4 be the number of points in these subintervals, respectively, such

that, n1 + n2 + n3 + n4 = n, n1 = n4 and n2 = n3. Further let the positive constants

h̃n1+n2+1 and K are known. Then we generate the mesh as follows.
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On the interval
[
p1, cp − δ

2

]
, the mesh is uniform and is defined as hj =

(cp−
δ
2)−p1

n1
,

j = 1(1)n1. On the interval
[
cp, cp + δ

2

]
, the mesh is non-uniform and is defined as

h̃n1+n2+j = h̃n1+n2+j−1 +K

[
h̃n1+n2+j−1

ε

]
min

(
h̃2

n1+n2+j−1, ε
)
, j = 2(1)n3.

Now, let

q̃ =

n3∑

j=1

h̃n1+n2+j , q =
δ/2

q̃
, hn1+n2+j = qh̃n1+n2+j, j = 1(1)n3.

On the interval
[
cp − δ

2
, cp

]
the mesh is the mirror image of the mesh on

[
cp, cp + δ

2

]
,

i.e., hn1+n2−j+1 = hn1+n2+j ,j = 1(1)n3. Finally, on the interval
[
cp + δ

2
, p2

]
, the mesh

is uniform and is defined as hj =
p2−(cp−

δ
2)

n4
, j = n1 +n2 +n3 +1, n. and then we have

x0 = p1, xj = xj−1 + hj, j = 1(1)n.

4. ANALYSIS OF THE NUMERICAL METHOD

For the sake of simplicity, we consider p1 = −1 and p2 = 1. Also throughout the

paper M will be used to denote positive constants which may take different values in

different equations (inequalities) but that are always independent of h and ε.

Before we proceed, it is to be acknowledged that for the error analysis, we have

used the comparison functions method developed by Kellogg and Tsan [27] and Berger

et al. [5]. These functions are used together with the maximum principle to convert

the bounds on the truncation error to the bounds on the discretization error. This

method uses the following two lemmas [5]:

Lemma 4.1 (Discrete maximum principle). Let {uj} be a set of values at the mesh

points xj, satisfying u0 ≤ 0, un ≤ 0; (u0 = u(x = −1)) and Ruj ≥ 0, j = 1(1)n− 1,

then uj ≤ 0, j = 0(1)n.

This discrete maximum principle permits the use of the comparison function

approach for an error analysis of the scheme ([4, 27]).

Lemma 4.2. If K1(h, ε) ≥ 0 and K2(h, ε) ≥ 0 are such that

R(K1(h, ε)φj +K2(h, ε)ψj) ≥ R(±ej) = ±τj(y),

for each j = 1, 2, . . . , n− 1, then the discrete maximum principle implies that

|ej | ≤ K1(h, ε)|φj| +K2(h, ε)|ψj|,

where |ej | = |y(xj) − uj|, for each j and φ and ψ are two comparison functions.

We use the following lemma (which is analogous to the Lemma 2.4 in [27]), for

the properties of the exact solution of (1.1).
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Lemma 4.3. If y(x) satisfies (1.1), then it can be decomposed as

y(x) = g1(x) + v(x) + g2(x),

where

v(x) =

(
−εy

′(θ)

a(θ)

)
exp

[
−a(θ)

ε

(
1 +

δ

2

)
x

]
,

∣∣∣g(k)
1 (x)

∣∣∣ ≤ M

[
1 + ε−k+1 exp

{
−c

(
1 + δ

2

)

ε
x

}]
,

∣∣∣g(k)
2 (x)

∣∣∣ ≤M

[
1 + ε−k+1 exp

{
−c

(
1 − δ

2

)

ε
x

}]
,

θ = cp − δ
2
, k = 0(1)4, c is some constant, M is a positive constant independent of h

and ε and δ denotes the width of the interior layer.

We use the two comparison functions:

φ = C1 exp

[
−2ηC3

(
1 + δ

2

)
x

ε

]
and ψ = C2 exp

[
−2ηC3

(
1 − δ

2

)
x

ε

]
,

where C1, C2, C3 and η are constants independent of h and ε.

Remark 4.4. The following inequalities hold

Rφj ≥M, Rψj ≥M when Ch2
c ≤ ε

and

Rφj ≥Mhc, Rψj ≥ Mhc when Ch2
c ≥ ε,

where hc = maxj hj ( = a constant) and C is a positive constant independent of h

and ε.

Now we estimate the truncation error of the scheme (2.14) using (2.15).

First consider the case in which Ch2
c ≤ ε. We have

τj(y) = T0yj + T1y
′
j + T2y

′′
j + T3y

′′′(ξ),

where ξ ∈ (xj−1, xj+1) and

T0 =
(
r−j + rc

j + r+
j

)
+

(
q−j bj−1 + qc

jbj + q+
j bj+1

)
,

T1 =
(
hj+1r

+
j − hjr

−
j

)
−

{
q−j (aj−1 + hjbj−1) + qc

jaj + q+
j (aj+1 − hj+1bj+1)

}
,

T2 =

(
h2

j

2
r−j +

h2
j+1

2
r+
j

)
− ε

(
q−j + qc

j + q+
j

)
+

{
q−j

(
hjaj−1 +

h2
j

2
bj−1

)

+q+
j

(
−hj+1aj+1 +

h2
j+1

2
bj+1

)}
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and

T3 =

(
h3

j+1

6
r+
j −

h3
j

6
r−j

)
+ ε

(
q−j hj − q+

j hj+1

)
− q−j

{
h2

j

2
aj−1 +

h3
j

6
bj−1

}

− q+
j

{
h2

j+1

2
aj+1 −

h3
j+1

6
bj+1

}
.

Using (2.15) we see that T0 = 0, T1 = 0, T2 = 0 and |T3| ≤ Mh3
c . Now from

Lemma 4.3, we have

v′′′j =

(
−a(θ)

ε

)2 (
1 +

δ

2

)3

y′(θ) exp

{
−a(θ)

ε

(
1 +

δ

2

)
xj

}
.

Therefore

|τj(v)| ≤
Mh3

c

ε2
exp

{
−a(θ)

ε

(
1 +

δ

2

)
xj

}
, Ch2

c ≤ ε.

Also ∣∣∣g(3)
1 (xj)

∣∣∣ ≤M

[
1 + ε−2 exp

{
−c

(
1 + δ

2

)

ε
xj

}]
, Ch2

c ≤ ε

and ∣∣∣g(3)
2 (xj)

∣∣∣ ≤M

[
1 + ε−2 exp

{
−c

(
1 − δ

2

)

ε
xj

}]
, Ch2

c ≤ ε

⇒ |τj(g1)| ≤Mh3
c

[
1 +

1

ε2
exp

{
−c

(
1 + δ

2

)

ε
xj

}]
, Ch2

c ≤ ε

and

|τj(g2)| ≤Mh3
c

[
1 +

1

ε2
exp

{
−c

(
1 − δ

2

)

ε
xj

}]
, Ch2

c ≤ ε.

Since

τj(y) = τj(g1) + τj(v) + τj(g2),

We have

|τj(y)| ≤ M
h3

c

ε2

[
1 + exp

{
−c

(
1 + δ

2

)

ε
xj

}
+ exp

{
−c

(
1 − δ

2

)

ε
xj

}]
, Ch2

c ≤ ε.

In the opposite case, i.e., when Ch2
c ≥ ε, we use the following expression for truncation

error

τj(y) =

(
h3

j+1

6
r+
j −

h3
j

6
r−j

)
y′′′(ξ1) + ε

(
q−j hj − q+

j hj+1

)
y′′′(ξ2)

− q−j

{
h2

j

2
aj−1 +

h3
j

6
bj−1

}
y′′′(ξ3) − q+

j

{
h2

j+1

2
aj+1 −

h3
j+1

6
bj+1

}
y′′′(ξ4),

xj−1 < ξi < xj+1, i = 1(1)4.

After some algebraic manipulations, we find that
∣∣∣∣
h3

j+1

6
r+
j −

h3
j

6
r−j

∣∣∣∣ ≤ Mh3
c ,

∣∣ε
(
q−j hj − q+

j hj+1

)∣∣ ≤Mh3
c ,
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∣∣∣∣q
−
j

(
h2

j

2
aj−1 +

h3
j

6
bj−1

)∣∣∣∣ ≤Mh3
c ,

and ∣∣∣∣q
+
j

(
h2

j+1

2
aj+1 −

h3
j+1

6
bj+1

)∣∣∣∣ ≤Mh3
c .

Using these estimates and the above expression for τj(y), we obtain the same estimates

for τj(g1), τj(v) and τj(g2) as were in the case of Ch2
c ≤ ε. Finally, choosing

K1 = h2
c exp

{
−c

(
1 + δ

2

)

ε
xj

}

and

K2 = h2
c exp

{
−c

(
1 − δ

2

)

ε
xj

}
,

we see that Lemma 4.2 is satisfied (in both the cases Ch2
c ≤ ε and Ch2

c ≥ ε) and thus

we have proved the following main result.

Theorem 4.5. Let {uj}, j = 0(1)n, be a set of values of the approximate solution to

y(x) of (1.1), obtained by using (2.14) and (2.15). Then there are positive constants

C̃1

(
= c(2+δ)

2ε
(1 + 2ηC3)

)
, C̃2

(
= c(2−δ)

2ε
(1 + 2ηC3)

)
and M (independent of h and ε)

such that the following estimate holds

max
j

|yj − uj| ≤Mh2
c

[
exp

{
−C̃1xj

ε

}
+ exp

{
−C̃2xj

ε

}]
,

where hc = maxj hj = a constant.

The above estimate shows that for a fixed ε, our method is second order accurate.

We will demonstrate this through some numerical experiments in the next section.

5. TEST EXAMPLES AND NUMERICAL RESULTS

Example 5.1 ([8]). Consider

εy′′ + xy′ − 0.5y = 0; y(−1) = 1, y(1) = 2.

Exact solution is not available.

Characteristics: The equation has a turning point at x = 0 and the solution has an

interior layer of width O (
√
ε) in the turning point region ([8]).

Example 5.2 ([37]). Consider

εy′′ + xy′ = 0; y(−1) = 0, y(1) = 2,

whose exact solution is given by

y(x) = 1 +
erf

(
x/

√
2ε

)

erf
(
1/
√

2ε
) .
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Characteristics: The equation has a turning point at x = 0 and the solution has an

interior layer of width O (
√
ε) in the turning point region ([37]).

Tables 1 and 2 contain maximum errors based on the double mesh principle

(Dollan et al. [7]) (as for Example 5.1, the exact solution is not available):

max
0≤j≤n

∣∣un
j − u2n

2j

∣∣ .

Tables 4 and 5 contain the maximum errors maxj |yj − uj|, at all the mesh points for

different n and ε, where uj is the approximate solution of the problem considered in

Example 5.2.

Tables 3 and 6 contain the numerical rate of uniform convergence which is deter-

mined as in [7]:

rk ≡ rk,ε := log2 (zk,ε/zk+1,ε) , k = 0, 1, 2, . . .

where

zk,ε = max
j

|uhj/2k

j − u
hj/2k+1

2j |, k = 0, 1, 2, . . .

denotes the maximum error for n = nk and u
hj/2k

j denotes the value of uj for the

mesh length hj/2
k.

6. SUMMARY AND SCOPE FOR FUTURE RESEARCH

We have described a second order numerical method using cubic spline on a non-

uniform mesh to solve a class of singularly perturbed turning point problems whose

solutions possess interior layer in the turning point region. The method is analyzed

for convergence and we found that it is second order accurate which is duly verified

by solving two numerical examples. Performance of the proposed numerical method

on our non-uniform mesh can be seen further from the Tables 1, 2, 4 and 5 in which

we have shown that the results obtained by using the non-uniform mesh are better

than those obtained using the uniform mesh.

It should be noted that in our mesh selection procedure, we have chosen δ =

O (
√
ε) (see [8, 37]), h̃n1+n2+1 = 0.00001 and K = 1. However the increase in the

value of K will lead to more concentration of points in the interior layer region.

Moreover, for a fixed K, the increase in the value of h̃n1+n2+1 leads to the same

conclusion.

While a lot of work can be found in the literature using adaptive mesh methods

for problems without interior layers, not much has been done towards interior layer

problems. In fact it is seen how difficult it is to construct such methods when the

solution has an interior layer (see , e.g., [9, 38]). To this end, the present work is not

only a reasonable achievement but also the first attempt towards achieving higher
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Table 1. Numerical Results for Example 5.1: Max. Error using uniform mesh

ε n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

2−10 0.13E-01 0.29E-02 0.66E-03 0.17E-03 0.42E-04 0.10E-04

2−11 0.21E-01 0.53E-02 0.12E-02 0.27E-03 0.71E-04 0.18E-04

2−12 0.31E-01 0.93E-02 0.21E-02 0.47E-03 0.12E-03 0.30E-04

Table 2. Numerical Results for Example 5.1: Max. Error using about

25% mesh points in the interior layer region

ε n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

2−10 0.34E-02 0.46E-03 0.10E-03 0.27E-04 0.72E-05 0.19E-05

2−11 0.72E-02 0.12E-02 0.16E-03 0.42E-04 0.12E-04 0.31E-05

2−12 0.13E-01 0.26E-02 0.37E-03 0.67E-04 0.18E-04 0.50E-05

Table 3. Numerical Results for Example 5.1: Rates of convergence using

about 25% mesh points in the interior layer region nk = 32, 64, 128, 256, 512

ε r1 r2 r3 r4 r5

2−8 0.20E+01 0.19E+01 0.20E+01 0.20E+01 0.20E+01

2−9 0.25E+01 0.20E+01 0.19E+01 0.20E+01 0.20E+01

2−10 0.29E+01 0.22E+01 0.19E+01 0.19E+01 0.19E+01

2−11 0.26E+01 0.29E+01 0.19E+01 0.19E+01 0.19E+01

Table 4. Numerical Results for Example 5.2: Max. Error using uniform mesh

ε n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

2−5 0.29E-02 0.72E-03 0.18E-03 0.45E-04 0.11E-04 0.28E-05

2−6 0.52E-02 0.14E-02 0.36E-03 0.90E-04 0.22E-04 0.56E-05

2−7 0.12E-01 0.29E-02 0.72E-03 0.18E-03 0.45E-04 0.11E-04

Table 5. Numerical Results for Example 5.2: Max. Error using about

25% mesh points in the interior layer region

ε n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

2−5 0.18E-02 0.45E-03 0.11E-03 0.28E-04 0.69E-05 0.17E-05

2−6 0.30E-02 0.67E-03 0.16E-03 0.41E-04 0.10E-04 0.25E-05

2−7 0.65E-02 0.14E-02 0.33E-03 0.83E-04 0.21E-04 0.52E-05

Table 6. Numerical Results for Example 5.2: Rates of convergence using

about 25% mesh points in the interior layer region nk = 32, 64, 128, 256, 512

ε r1 r2 r3 r4 r5

2−4 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

2−5 0.20E+01 0.20E+01 0.20E+01 0.20E+01 0.20E+01

2−6 0.22E+01 0.21E+01 0.20E+01 0.20E+01 0.20E+01

2−7 0.23E+01 0.21E+01 0.20E+01 0.20E+01 0.20E+01
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accuracy. However, there are still some concerns about parameter uniform results.

Authors are currently investigating these issues.
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