
Neural, Parallel, and Scientific Computations 18 (2010) 253-268

PARALLEL MONOTONE DOMAIN DECOMPOSITION

ALGORITHMS FOR NONLINEAR SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEMS OF PARABOLIC TYPE

MATTHEW HARDY AND IGOR BOGLAEV

Mathematical Sciences Institute, Australian National University

Canberra, Australia

Institute of Fundamental Sciences, Massey University

Palmerston North, New Zealand

ABSTRACT. Recently, a monotone iterative domain decomposition algorithm has been proposed

for nonlinear singularly perturbed reaction-diffusion problems of parabolic type. This paper de-

scribes a parallel implementation of the algorithm on a distributed memory cluster. Interprocess

communication is effected by means of the MPI message passing library. For various domain de-

compositions, we give the execution time and parallel speedup on up to 16 processors. The parallel

scale-up of the algorithm improves as the number of mesh points is increased.

Keywords: parabolic reaction-diffusion problem; boundary layers; implicit scheme; monotone iter-

ative method; domain decomposition; parallel computing

1. INTRODUCTION

We are interested in the nonlinear reaction-diffusion problem of parabolic type

(1) −µ2 (uxx + uyy) + ut = −f(x, y, t, u),

(x, y, t) ∈ v = ω × (0, tf], ω = {0 < x < 1, 0 < y < 1} ,

c∗ ≥ fu ≥ 0, (x, y, t, u) ∈ v × (−∞,∞), (fu ≡ ∂f/∂u),

where µ is a small positive parameter and c∗ is constant. The initial-boundary con-

ditions are defined by

u(x, y, 0) = u0(x, y), (x, y) ∈ ω, u = g, (x, y, t) ∈ ∂ω × (0, tf],

where ∂ω is the boundary of ω. For µ ≪ 1, problem (1) is singularly perturbed and

characterized by boundary layers of width O(µ| lnµ|) at ∂ω. Note that the assumption

fu ≥ 0 can always be obtained by a change of variables like v = exp(λt)u, where λ is

a constant.

On each time level, discrete approximation of (1) leads to an algebraic system

of nonlinear difference equations whose solution converges with mesh refinement to

Received March 15, 2010 1061-5369 $15.00 c©Dynamic Publishers, Inc.

254 M. HARDY AND I. BOGLAEV

that of the continuous problem. The algebraic system is typically solved by Newton’s

method, or some other iterative technique. One drawback of Newton’s method is its

sensitivity to the initial guess. In contrast, the method of upper and lower solutions

generates a monotonically convergent sequence from any one of a wide class of initial

iterates. Indeed, as shown in [1], the initial iterate may be constructed using only

the boundary conditions. No knowledge of the solution is necessary to implement the

algorithm.

The beowulf cluster has brought high-performance computing within reach of

academe and fostered renewed interest in alternating Schwarz-type iterative algo-

rithms. In [2] the spatial domain is partitioned into nonoverlapping boxes on which

the monotone iterative method is applied at each time step. At horizontal and verti-

cal subdomain boundaries, interfacial subdomains are introduced and corresponding

linear problems generate boundary Dirichlet data for the nonoverlapping subdomains.

As shown theoretically and confirmed by serial computations [2], the algorithm retains

global monotonicity under such decomposition. In [5], we implemented on a parallel

cluster the algorithm from [2] for an elliptic (time-independent) problem. The present

paper describes a parallel implementation of the algorithm from [2] for the parabolic

reaction-diffusion problem (1).

In Section 2 we define the piecewise uniform mesh on which the central difference

implicit scheme converges µ-uniformly to the solution of (1). In Section 3 we describe

the domain decomposition from [2] and the associated monotone iterative algorithm.

We also state the main results from the convergence analysis. Section 4 discusses our

parallel implementation of the algorithm. In Section 5 we give the results of numer-

ical experiments for a model problem. For various domain decompositions we give

the convergence iteration counts and execution times on up to 16 processors. Since

domain decomposition enhances the algorithm’s serial execution, we define parallel

speedup in terms of the optimal decomposition for a given number of processors. The

parallel scale-up of the algorithm improves as the mesh size is increased.

2. DISCRETE APPROXIMATION

On v introduce the mesh ωh × ωτ , ωh = ωhx × ωhy defined as

ωhx = {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx
= 1; hxi = xi+1 − xi} ,

ωhy =
{
yj, 0 ≤ j ≤ Ny; y0 = 0, yNy

= 1; hyj = yj+1 − yj

}
,

ωτ = {tk = kτ, 0 ≤ k ≤ Nτ , Nττ = tf} .

Define D2
xU and D2

yU , the central difference approximations to the second x- and

y-derivatives, respectively,

D2
xU

k
ij = (~xi)

−1 [(
Uk

i+1,j − Uk
ij

)
(hxi)

−1 −
(
Uk

ij − Uk
i−1,j

)
(hx,i−1)

−1] ,

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 255

D2
yU

k
ij = (~yj)

−1 [(
Uk

i,j+1 − Uk
ij

)
(hyj)

−1 −
(
Uk

ij − Uk
i,j−1

)
(hy,j−1)

−1] ,

~xi = 2−1 (hx,i−1 + hxi) , ~yj = 2−1 (hy,j−1 + hyj) ,

where Uk
ij ≡ U (xi, yj, tk).

We seek a mesh function U on ωh × ωτ satisfying the implicit difference scheme

(2) LU(P, t) =
1

τ
U(P, t − τ) − f(P, t, U), (P, t) ∈ ωh × ωτ ,

U(P, 0) = u0(P), P ∈ ωh, U(P, t) = g(P, t), (P, t) ∈ ∂ωh × ωτ ,

where LU =
[
−µ2

(
D2

x + D2
y

)
+ τ−1

]
U .

The meshes ωhx and ωhy are defined in the manner of [6] and are referred to as

Shishkin meshes. For an arbitrary positive constant m, boundary layer thicknesses

σx and σy are chosen as

(3) σx = min {0.25, mµ lnNx} , σy = min {0.25, mµ lnNy} ,

and mesh spacings hxµ, hx, hyµ and hy are defined by

(4) hxµ =
4σx

Nx

, hx =
2(1 − 2σx)

Nx

, hyµ =
4σy

Ny

, hy =
2(1 − 2σy)

Ny

.

The mesh ωhx is constructed thus: in each of the subintervals [0, σx] and [1−σx, 1]

the fine mesh spacing is hxµ while in the interval [σx, 1− σx] the coarse mesh spacing

is hx. The mesh ωhy is defined similarly. The difference scheme (2) on the piecewise

uniform mesh (3), (4) converges µ-uniformly to the solution of the continuous problem

(1);

max
t∈ωτ

‖U(t) − u(t)‖ωh ≤ C
(
d

(
N−1

)
+ τ

)
, N = min {Nx, Ny} ,

‖U(t) − u(t)‖ωh ≡ max
P∈ωh

|U(P, t) − u(P, t)|,

where d is near order 2 in N−1, and constant C is independent of µ, N and τ (see [3]

for details).

3. BOX-DOMAIN DECOMPOSITION ALGORITHM

For solving the nonlinear difference scheme (2), we now describe the box-domain

decomposition algorithm from [2]. Consider a decomposition of ω into M×L nonover-

lapping main subdomains ωm,l, m = 1, . . . , M , l = 1, . . . , L:

ωm,l = (xm−1, xm) × (yl−1, yl), x0 = 0, xM = 1, y0 = 0, yL = 1.

Then introduce vertical interfacial subdomains θm, m = 1, . . . , M − 1:

θm = (xb
m, xe

m) × ωy, xb
m < xm < xe

m, θm−1 ∩ θm = ∅,

and horizontal interfacial subdomains ϑl, l = 1, . . . , L − 1:

ϑl = ωx × (yb
l , y

e
l), yb

l < yl < ye
l , ϑl−1 ∩ ϑl = ∅.

256 M. HARDY AND I. BOGLAEV

With the global mesh ωh = ωhx × ωhy, we also require that

{xb,e
m , xm} ⊂ ωhx, m = 1, . . . , M − 1, {yb,e

l , yl} ⊂ ωhy, l = 1, . . . , L − 1.

On each time level t ∈ ωτ , the algorithm from [2] generates n∗ iterates V (n)(P, t), (P, t) ∈

ωh × ωτ as follows.

Step 0. On the whole mesh ωh choose an initial mesh function V (0)(P, t) satisfying

the boundary conditions, V (0)(P, t) = g(P, t), P ∈ ∂ωh.

For n = 1 to n∗ do Steps 1 to 4:

Step 1. For each main subdomain ωh
m,l, solve the linear difference problem

(L + c∗)Z
(n)
m,l(P, t) = −G(n−1)(P, t), P ∈ ωh

m,l = ωm,l ∩ ωh,

G(n−1)(P, t) = LV (n−1)(P, t) + f
(
P, t, V (n−1)

)
− τ−1V (P, t− τ),

with Z
(n)
m,l(∂ωh

m,l, t) = 0.

Step 2. For each vertical interfacial subdomain θ
h

m, solve the linear difference problem

(L + c∗)Z(n)
m (P, t) = −G(n−1)(P, t), P ∈ θh

m = θm ∩ ωh,

with Z
(n)
m (∂θh

m, t) defined by the mesh functions computed in Step 1.

Step 3. For each horizontal interfacial subdomain ϑ
h

l , solve the linear difference

problem

(L + c∗)Z̃
(n)
l (P, t) = −G(n−1)(P, t), P ∈ ϑh

l = ϑl ∩ ωh,

with Z̃
(n)
l (∂ϑh

l , t) defined by the mesh functions computed in Step 2 where possible,

or the mesh functions from Step 1 otherwise.

Step 4. Piece together the mesh functions from Steps 1-3 to form the new global

iterate V (n):

V (n)(P, t) =

V (n−1)(P, t) + Z̃
(n)
l (P, t), P ∈ ϑ

h

l ,

V (n−1)(P, t) + Z
(n)
m (P, t), P ∈ θ

h

m\
{⋃L−1

l=1 ϑ
h

l

}
,

V (n−1)(P, t) + Z
(n)
m,l(P, t), P ∈ ωh

m,l\
{⋃M−1

m=1 θ
h

m

⋃L−1
l=1 ϑ

h

l

}
.

Step 5. Set up V (P, t) = V (n∗)(P, t), P ∈ ωh.

Convergence of the algorithm. We say that on a time level t ∈ ωτ , V (P, t) is an

upper solution with respect to a given function V (P, t − τ) if it satisfies

LV (P, t) + f
(
P, t, V

)
− τ−1V (P, t − τ) ≥ 0, P ∈ ωh,

V (P, t) = g(P, t), P ∈ ∂ωh.

Similarly, V (P, t) is called a lower solution with respect to V (P, t − τ) if it satisfies

the reversed inequality and the boundary condition.

On each time level t ∈ ωτ , we have the following convergence property of the

algorithm.

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 257

Theorem 1. Let V (P, t−τ) be given and V
(0)

(P, t) and V (0)(P, t) be upper and lower

solutions with respect to V (P, t − τ). From V
(0)

and V (0), the algorithm respectively

generates sequences {V
(n)

} and {V (n)} which converge monotonically from above and

below to the unique solution V ∗(P, t) of the problem

LV (P, t) + f (P, t, V) − τ−1V (P, t − τ) = 0, P ∈ ωh,

V (P, t) = g(P, t), P ∈ ∂ωh.

That is, at each mesh point P ∈ ωh, we have for n = 0, 1, 2, . . .

V (n)(P, t) ≤ V (n+1)(P, t) ≤ V ∗(P, t) ≤ V
(n+1)

(P, t) ≤ V
(n)

(P, t).

The proof of this result may be found in [2].

Remark 1. Consider the following approach for constructing initial upper and lower

solutions V
(0)

(P, t) and V (0)(P, t). Let a mesh function R(P, r) be defined on ωh and

satisfy the boundary condition R(P, t) = g(P, t) on ∂ωh. Introduce the difference

problems

LZ(0)
ν = ν

∣∣LR(P, t) + f(P, t, R) − τ−1V (P, t− τ)
∣∣ , P ∈ ωh,

Z(0)
ν (P, t) = 0, P ∈ ∂ωh, ν = 1,−1.

Then the functions V
(0)

(P, t) = R(P, t)+Z
(0)
1 (P, t) and V (0)(P, t) = R(P, t)+Z

(0)
−1(P, t)

are upper and lower solutions, respectively. The proof of this result can be found in

[2]. We mention that much discussions on this subject can be found in [7].

A method for constructing the initial iterate V (0) from an arbitrary mesh function

is also given therein.

We now consider the convergence rate of the algorithm. Let hb+
xm and hb−

xm be the

respective mesh step sizes to the right and left of xb
m. Define he+

xm and he−
xm similarly

with respect to xe
m. Let hb+

yl and hb−
yl be the respective mesh step sizes above and

below yb
l . Define he+

yl and he−
yl similarly with respect to ye

l . With averages

~
b,e
xm =

1

2
(hb−,e−

xm + hb+,e+
xm), ~

b,e
yl =

1

2
(hb−,e−

yl + hb+,e+
yl),

define parameters rI and rII , respectively associated with the x- and y-decompositions,

rI = max
1≤m<M

{
µ2

(c∗ + τ−1) ~b
xmhb+

xm

;
µ2

(c∗ + τ−1) ~e
xmhe−

xm

}
,

rII = max
1≤l<L

{
µ2

(c∗ + τ−1) ~b
ylh

b+
yl

;
µ2

(c∗ + τ−1) ~e
ylh

e−
yl

}
.

258 M. HARDY AND I. BOGLAEV

Theorem 2. Let U(P, t) be the exact solution of the nonlinear scheme (2), and at

each t ∈ ωτ let V (P, t) = V (n∗)(P, t), P ∈ ωh, where V (0)(P, t) is an upper or lower

solution with respect to V (P, t − τ). Then we can find constant C independent of τ

such that

(5) max
t∈ωτ

‖V (t) − U (t)‖ωh ≤ C
(
c∗ + τ−1

)
r̃n∗ , r̃ = r + rI + rII ,

here r = c∗/(c∗+τ−1) is the convergence rate of the undecomposed monotone iterative

algorithm (M = L = 1).

The proof of this result is given in [2].

Remark 2. The implicit two-level difference scheme (2) is of first order with respect

to τ . Since r̃ = O(τ), one may choose n∗ = 2 to keep the global error of the box-

domain decomposition algorithm consistent with the global error of the difference

scheme (2).

Remark 3. Consider an M × L decomposition in which the mesh points are dis-

tributed equally among main subdomains. This is called a balanced domain decom-

position. If a balanced domain decomposition has M ≥ 4 then θh
1 and θh

M−1 overlap

the boundary layers and rI is maximal. Similarly, if a balanced decomposition has

L ≥ 4 then rII is maximal. By contrast, if the interfacial subdomains are located

wholly outside the boundary layers, ensuring minimality of rI and rII , then the de-

composition is said to be unbalanced.

4. PARALLEL IMPLEMENTATION

We have implemented the box-domain decomposition algorithm on Helix ; the

distributed memory Linux cluster at Massey University, New Zealand. This com-

prises 65 nodes, each equipped with two Athlon MP-2100 processors, 1 GB of RAM

and 2 gigabit network interface cards. The nodes are arranged on 7 24-port switches

such that any two nodes are connected via at most 3 switches. Inter-processor com-

munication is via the MPI library specification.

Because the mesh is only piecewise uniform, the linear system arising from the

difference problem on a given subdomain may be nonsymmetric. Therefore, we solve

all linear systems with the restarted GMRES(m) algorithm from [8]. Convergence

is accelerated by the point Jacobi preconditioner. As suggested by the convergence

estimate (5) and confirmed by the serial computations of balanced and unbalanced

domain decompositions in [2], the latter require fewer iterations for convergence.

However, in order to balance the computational load of the main subdomains, one

would need to divide the larger boundary layer subdomains across several processors.

Thus, the algorithmic advantage would be at least partially offset by the need for inter-

processor communication during the solution of the main subdomain linear problems.

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 259

Therefore, our implementation is at the first level. That is, each subdomain is wholly

assigned to a processor and we do not parallelize GMRES. We henceforth consider

only balanced domain decompositions.

Suppose we have an M × L decomposition and P processors. Assuming that

M ≥ 4 and L ≥ 4, there are ML/16 main subdomains in each of the four corners

[0, σx]× [0, σy], [1−σx, 1]× [0, σy], [0, σx]× [1−σy , 1] and [1−σx, 1]× [1−σy, 1]. Thus,

there are ML/4 main subdomains in which the respective x- and y-mesh spacings are

hxµ and hyµ. Let us denote this class by F-F (fine-fine). Next, in each of the regions

[σx, 1−σx]×[0, σy], [σx, 1−σx]×[1−σy , 1], [0, σx]×[σy , 1−σy] and [1−σx, 1]×[σy, 1−σy],

there are ML/8 main subdomains in which the respective x- and y- mesh spacings are

either hxµ and hy or hx and hyµ. In the numerical experiments of the next section we

take Nx=Ny and hence these ML/2 subdomains are equivalent. We label this class

F-C (fine-coarse). Finally, the region [σx, 1 − σx] × [σy, 1 − σy] is covered by ML/4

main subdomains in which the respective x- and y-mesh spacings are hx and hy. We

denote this class C-C (coarse-coarse).

The linear difference problem on ωh
m,l may be written in the form

[
−µ2(D2

x + D2
y) + τ−1 + c∗

]
Z

(n)
m,l = −G(n−1)(P, t), P ∈ ωh

m,l.

If the mesh ωh
m,l is uniform in each direction, then the rows of the coefficient matrix

−µ2(D2
x+D2

y) have entries which sum to zero (excepting those rows which correspond

to mesh points adjacent to ∂ωh
m,l). Strict diagonal dominance of the coefficient ma-

trix in the linear difference problem is assured by the positive parameters τ−1 and

c∗ and the relative contribution of these parameters increases with the subdomain

mesh spacing. Therefore, the GMRES workload is least for the C-C subdomains and

greatest for the F-F subdomains.

In order to balance the load of Step 1 of the algorithm, we divide each class equally

among the processors. If P divides ML/4, each processor is assigned ML/(4P) main

subdomains of class F-F, ML/(2P) main subdomains of class F-C and ML/(4P) main

subdomains of class C-C. If P does not divide ML/4 then load balancing requires

second level parallelization and we do not implement the M ×L decomposition on P

processors. Similar considerations apply to decompositions in which M or L is equal

to one, except that there are at most two classes of main subdomain. The vertical

interfacial subdomains are shared as equally as possible among the P processors

{0, 1, . . . , P − 1}: θ
h

m 7→ mod (m − 1, P). The assignment of horizontal interfacial

subdomains is similar: ϑ
h

l 7→ mod (l − 1, P).

Consider the distribution of an 8 × 4 decomposition on four processors, shown

schematically in Figure 1. During Step 1 of the algorithm, each processor solves over

its assigned main subdomains and this workload is balanced. During Step 2, each

processor solves over its assigned vertical interfacial subdomains. In contrast to the

260 M. HARDY AND I. BOGLAEV

other processors which each have two, Processor 3 has only one vertical interfacial

subdomain and so is idle for approximately half of Step 2. In Step 3, Processors 0,1,2

each solve over their assigned horizontal interfacial subdomain while Processor 3

remains idle. This idle time results in a loss of computational efficiency.

Another overhead of any parallel implementation is that of inter-processor com-

munication. Before each of the algorithm’s three steps, data must be transferred be-

tween subdomains. In Figure 1 we have indicated the data which must be transferred

from Processor 0 to Processor 1 before the latter can solve over its main subdomains.

From the left-most vertical interfacial subdomain on Processor 0, we must transfer

the three blocks of data a, b and c to main subdomains on Processor 1. From the

horizontal interfacial subdomain on Processor 0, we must transfer the three blocks

of data d, e and f to Processor 1. In order to minimize the inter-processor commu-

nication, the data blocks a–f are buffered and sent as one message. This saving in

communication comes at the relatively small (local) cost of composing the message

on Processor 0 and decomposing the received message on Processor 1.

0

σy

1 − σy

1

0 σx 1 − σx 1

0 1 2 3 0 1 2

0

1

2

F-F

0

F-F

1

F-C

0

F-C

1

F-C

2

F-C

3

F-F

2

F-F

3

F-C

0

F-C

2

C-C

0

C-C

1

C-C

2

C-C

3

F-C

0

F-C

2

F-C

1

F-C

3

C-C

0

C-C

1

C-C

2

C-C

3

F-C

1

F-C

3

F-F

0

F-F

1

F-C

0

F-C

1

F-C

2

F-C

3

F-F

2

F-F

3

a

b

c

d e
f

Figure 1. A schematic of an 8×4 decomposition and the assignment

of the subdomains to four processors {0, 1, 2, 3}. The mesh spacing

classes of the main subdomains are also indicated. The six blocks of

data a–f must be transferred from Processor 0 to Processor 1 before

Step 1 of the algorithm.

5. NUMERICAL EXPERIMENTS

We now apply the algorithm to the reaction-diffusion problem

−µ2(uxx + uyy) + ut = −
u − 4

5 − u
,

(x, y, t) ∈ ω × (0, 1], ω = {0 < x < 1, 0 < y < 1},

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 261

u(ω, 0) = 0, u(∂ω, 0) = 1, u(∂ω, t) = 1, t ∈ (0, 1],

which models the biological Michaelis-Menten process without inhibition [4]. The

steady state solution to the reduced problem (µ = 0) is ur = 4. For µ ≪ 1 the

problem is singularly perturbed and the steady state solution increases sharply from

u = 1 on ∂ω to u = 4 on the interior. The solution to the parabolic problem

approaches this steady state with time.

For the test problem we solve the nonlinear difference scheme (2) by the domain

decomposition algorithm. With the mesh (3), (4), we take Nx = Ny = N . We fix the

perturbation parameter µ = 10−3, take N = 256, 512 or 1024 and τ = 0.1 or 0.05.

Given up to 16 processors, we are interested in the execution time of the algorithm

under various domain decompositions. We suppose that {M, L} ⊂ {1, 4, 8, 16, 32} and

that the interfacial subdomains are chosen to be either all minimal or all maximal.

For the minimal interfacial subdomains the number of mesh points in the x- and y-

directions is three, and for the maximal interfacial subdomains the numbers of mesh

points in the x- and y-directions are N/M − 2 and N/L − 2, respectively, (it means

that the maximal interfacial subdomains do not overlap each other).

The numerical solution at t0 = 0 is simply given by the initial-boundary con-

ditions V (ωh, t0) = 0, V (∂ωh, t0) = 1. The mesh function V (0)(P, t1) defined by

V (0)(P, t1) = V (P, t0), P ∈ ωh is clearly a lower solution with respect to V (P, t0).

We initiate the algorithm with V (0)(P, t1) and thus generate a sequence of lower so-

lutions. At each time level tk, we define a converged solution V (P, tk) = V (n∗)(P, tk)

with n∗ = n∗(tk) minimal subject to ‖V (n∗)(tk) − V (n∗−1)(tk)‖ωh < δ, where δ is

a specified tolerance. At the next time level, tk+1, we require an initial iterate

that is a lower solution with respect to V (P, tk). Since the boundary condition

and function f(u) = (u − 4)/(5 − u) are independent of time, we may choose

V (0)(P, tk+1) = V (P, tk), P ∈ ωh. Indeed, since V (0)(P, t1) = V (P, t0) ≤ V (P, t1),

on time level t2 with V (0)(P, t2) = V (P, t1), we have

LV (0)(P, t2) + f(P, V (0)(P, t2)) − τ−1V (P, t1) ≤

LV (P, t1) + f(P, V (P, t1)) − τ−1V (P, t0) ≤ 0,

where P ∈ ωh and V (0)(P, t2) = g(P), P ∈ ∂ωh. Thus, V (0)(P, t2) = V (P, t1) is

a lower solution, and by induction on k, we prove the required result. Now, from

Theorem 1, it follows by induction on k that the mesh function V (P, tk+1) defined by

V (ωh, tk+1) = 4, V (∂ωh, tk+1) = 1 is an upper solution with respect to V (P, tk) and

thus our computed mesh functions satisfy

0 ≤ V (n)(P, tk) ≤ 4, P ∈ ωh, 0 ≤ n ≤ n∗, 0 ≤ k ≤ Nτ ,

and hence we may suppose that fu = 1/(5 − u)2 is bounded below and above by

c∗ = 1/25 and c∗ = 1, respectively. We take as our convergence tolerance δ = 10−5.

262 M. HARDY AND I. BOGLAEV

We list in Table 1 average convergence iteration counts for the M × L domain

decomposition algorithm. Each major cell of the table corresponds to a choice of

N and τ and within each major cell we give the results corresponding to twenty-five

M×L decompositions with minimal interfacial subdomains. We mention that domain

decomposition does not increase the iteration count if the interfacial subdomains are

chosen maximally. Because the final simulation time is t = 1, the average is over 10

time steps for τ = 0.1 and 20 time steps for τ = 0.05. For a given decomposition, the

average iteration count is smaller for τ = 0.05 than for τ = 0.1. This simply reflects

the smaller change in solution between time steps.

τ 0.10 0.05

N L\M 1 4 8 16 32 1 4 8 16 32

1 5.00 6.00 7.60 7.60 7.70 4.00 5.00 6.00 6.00 6.00

4 6.00 6.00 7.60 7.60 8.00 5.00 5.00 6.00 6.00 6.00

256 8 7.60 7.60 9.00 9.00 9.00 6.00 6.00 6.00 6.00 6.00

16 7.60 7.60 9.00 9.00 9.00 6.00 6.00 6.00 6.00 6.00

32 7.70 7.70 9.00 9.00 9.00 6.00 6.00 6.00 6.00 6.00

1 5.00 7.00 11.0011.0011.00 4.05 5.65 8.00 8.00 8.00

4 7.00 7.00 11.0011.0011.00 5.65 6.00 8.00 8.00 8.00

512 8 11.0011.0013.0013.0013.00 8.00 8.00 9.00 9.00 9.00

16 11.0011.0013.0013.0013.00 8.00 8.00 9.00 9.00 9.00

32 11.0011.0013.0013.0013.00 8.00 8.00 9.00 9.00 9.00

1 5.00 10.0018.1018.1018.10 4.05 7.00 12.2012.2012.20

4 10.0010.0018.1018.1018.10 7.00 7.00 12.2012.2012.20

1024 8 18.1018.1023.0023.0023.0012.2012.2015.0015.0015.00

16 18.1018.1023.0023.0023.0012.2012.2015.0015.0015.00

32 18.1018.1023.0023.0023.0012.2012.2015.0015.0015.00

Table 1. The average convergence iteration count for various τ , N

and M × L decompositions with minimal interfacial subdomains.

In Tables 2 and 3 we give the execution times of the algorithm for τ = 0.1 and

τ = 0.05, respectively. Where there is some choice for the interfacial subdomains,

results corresponding to minimal and maximal interfacial subdomains are given above

and below the line, respectively.

Consider first the serial implementation corresponding to P = 1. For N = 256

and τ = 0.1, the execution time of the undecomposed algorithm (M = 1, L = 1)

is 19.59 seconds. If one chooses the interfacial subdomains minimally, then domain

decomposition reduces the serial execution time. The execution time is minimized to

4.77 seconds by the 4 × 32 decomposition with minimal interfacial subdomains. For

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 263

N 256 512 1024

P L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

1 20
18
25

17
19

14
16

7.1
7.9

160
197
238

289
258

246
228

160
149

997
1968
1681

3061
1863

2938
1950

2765
1869

4 18
25

9.2
28

6.3
23

5.5
22

5.3
17

198
239

134
286

145
285

131
269

68
206

1966
1679

1525
2128

2623
2303

2263
2309

1454
2030

1 8 17
19

6.2
23

6.6
21

6.5
20

6.0
15

289
257

144
285

158
302

108
272

62
219

3069
1863

2630
2303

3002
2393

2072
2275

1741
2164

16 14
16

5.3
22

6.4
20

6.4
19

6.1
14

247
227

129
268

109
272

68
248

60
208

2944
1958

2259
2288

2071
2265

1877
2299

1226
2140

32 6.6
7.8

4.8
17

5.7
15

6.0
14

5.8
9.9

156
148

71
204

60
219

60
206

54

166
2763
1870

1449
2031

1733
2164

1217
2136

692

1979

1 ∗ 12
19

10
12

7.7
9.7

4.0
4.7

∗ 127
174

189
172

152
144

89
86

∗ 1262
1206

1958
1252

1886
1283

1755
1208

4 12
19

5.3
23

3.5
17

2.9
16

3.0
13

128
174

83
222

81
204

71
188

35
146

1269
1201

973
1603

1685
1654

1379
1607

797
1398

2 8 10
12

3.5
18

3.5
14

3.6
13

3.5
10

189
171

81
206

86
201

56
177

31
140

1955
1255

1678
1654

1825
1630

1134
1505

911
1427

16 7.8
9.5

3.0
16

3.5
13

3.6
11

3.7
8.7

153
144

70
189

55
178

35
156

31
125

1883
1288

1382
1611

1132
1510

987
1488

633
1383

32 3.8
4.2

2.8
13

3.3
9.8

3.5
8.8

3.7
6.2

86
87

36
145

31
138

31
124

28

95
1762
1205

794
1400

912
1429

631
1381

351

1289

1 ∗ ∗ 5.4
7.2

4.9
5.3

2.1
2.7

∗ ∗ 111
113

89
84

48
47

∗ ∗ 1135
659

1127
657

1062
617

4 ∗ 2.9
14

2.1
10

1.8
9.2

1.8
7.7

∗ 47
136

44
134

37
113

20
86

∗ 560
857

1006
888

811
852

436
739

4 8 5.4
7.2

2.1
11

2.1
9.0

2.0
8.0

2.3
6.5

110
113

43
135

45
140

29
117

16
93

1131
661

1005
887

1058
880

623
800

484
753

16 5.3
5.4

1.9
9.2

2.2
7.6

2.4
6.6

2.7
5.4

89
84

37
113

29
115

18
93

17
73

1137
657

808
846

621
798

522
780

331
717

32 2.1
2.6

1.9
7.9

1.9
6.4

2.3
5.2

2.4
3.9

48
47

19
86

17
92

17
73

16

54
1060
617

439
737

491
750

334
715

184

661

1 ∗ ∗ ∗ 2.3
2.9

1.2
1.3

∗ ∗ ∗ 45
45

25
24

∗ ∗ ∗ 606
398

548
367

4 ∗ ∗ 1.3
8.1

1.2
7.7

1.1
6.8

∗ ∗ 23
98

19
86

11
70

∗ ∗ 509
710

408
667

226
587

8 8 ∗ 1.3
8.1

1.4
4.8

1.4
4.3

1.3
3.5

∗ 22
98

23
79

16
65

8.9
52

∗ 506
701

537
552

313
487

245
455

16 2.3
2.9

1.5
7.5

1.4
4.5

1.4
3.9

1.8
3.4

44
45

19
86

16
65

9.9
52

9.1
41

612
398

406
647

313
491

265
457

168
425

32 1.2
1.3

1.2
6.8

1.4
3.3

1.6
3.0

2.2
2.7

25
24

11
70

9.4
51

9.5
40

9.3
29

548
367

231
580

255
465

176
427

97

395

1 ∗ ∗ ∗ ∗ 1.0
1.4

∗ ∗ ∗ ∗ 15
14

∗ ∗ ∗ ∗ 290
185

4 ∗ ∗ ∗ 1.2
6.7

1.1
6.4

∗ ∗ ∗ 11
74

7.1
64

∗ ∗ ∗ 207
552

120
483

16 8 ∗ ∗ 1.7
4.8

1.4
3.7

1.2
3.3

∗ ∗ 13
75

9.6
53

7.0
45

∗ ∗ 270
533

162
397

128
358

16 ∗ 1.5
7.4

1.4
4.2

1.4
2.6

1.6
2.3

∗ 11
73

9.7
53

6.3
32

6.3
24

∗ 205
531

160
397

136
287

88
244

32 1.0
0.9

1.2
6.5

1.5
3.5

1.5
2.8

2.9
3.1

14
14

7.2
63

6.3
44

6.5
24

6.9
17

290
186

119
467

133
357

91
246

51

201

Table 2. The execution time of the algorithm on an M × L decom-

position with P processors. Each simulation comprises ten time steps

with τ = 0.1. Results corresponding to minimal and maximal interfa-

cial subdomains are given above and below the line, respectively. A ∗

indicates that it is not possible to balance the computational load of

Step 1 at the first level of parallelization. For each choice of N and P ,

the minimum execution time is given in bold type.

N = 256 and τ = 0.05, the serial execution time of the undecomposed algorithm is

20.39 seconds. Again, if one chooses minimal interfacial subdomains, the execution

264 M. HARDY AND I. BOGLAEV

N 256 512 1024

P L\M 1 4 8 16 32 1 4 8 16 32 1 4 8 16 32

1 20
20
26

18
22

15
18

8.3
9.4

160
206
247

276
262

240
239

164
163

1297
1964
1959

2982
2130

2914
2200

2790
2127

4 20
26

11
30

7.5
25

7.1
24

6.5
19

205
246

143
308

138
299

122
281

65
219

1959
1958

1591
2554

2678
2717

2339
2681

1545
2405

1 8 18
22

7.3
25

6.9
24

7.0
22

6.7
18

277
262

136
298

144
303

85
273

62
229

2979
2129

2671
2714

2990
2775

2079
2619

1795
2512

16 15
17

6.9
23

6.8
22

7.0
22

7.0
16

239
236

121
285

86
272

65
260

61
221

2897
2211

2343
2684

2073
2614

1903
2629

1266
2454

32 7.7
8.6

6.1
19

6.4
18

6.8
17

6.7
12

163
160

61
221

60
227

60
221

57

184
2789
2121

1537
2422

1784
2522

1261
2456

724

2297

1 ∗ 14
20

12
14

8.9
11

4.5
5.6

∗ 132
181

182
174

151
149

98
95

∗ 1253
1416

1907
1416

1861
1446

1787
1373

4 14
20

6.4
24

4.2
20

3.8
18

3.8
15

133
180

90
240

82
214

69
196

32
156

1260
1419

1016
1971

1708
1945

1424
1892

845
1683

2 8 11
14

4.1
19

3.7
16

3.8
14

3.9
12

182
174

81
216

79
201

48
179

32
145

1909
1419

1707
1953

1831
1861

1133
1708

935
1620

16 8.9
11

3.8
18

3.8
14

3.9
13

4.2
10

159
149

68
201

43
180

34
166

32
137

1862
1452

1436
1892

1131
1705

996
1689

656
1569

32 4.4
5.2

3.4
14

3.6
12

4.0
11

4.2
7.8

96
93

32
157

31
145

31
134

30

106
1785
1375

842
1681

941
1642

654
1583

368

1491

1 ∗ ∗ 6.1
8.0

4.6
5.7

2.4
3.0

∗ ∗ 106
117

86
88

51
53

∗ ∗ 1088
788

1119
736

1065
701

4 ∗ 3.4
14

2.2
13

2.1
10

2.2
9.2

∗ 51
149

43
144

36
121

18
95

∗ 585
1057

1020
1091

833
1006

463
894

4 8 6.4
8.0

2.4
12

2.3
11

2.3
9.5

2.5
8.3

107
117

43
144

41
144

23
121

17
100

1090
788

1016
1086

1065
1085

621
954

498
909

16 4.5
5.6

2.2
10

2.2
8.7

2.3
7.5

2.8
6.2

85
88

35
122

23
120

18
101

17
81

1111
734

830
997

620
944

529
878

341
815

32 2.4
2.9

2.5
8.6

2.4
7.4

2.6
6.3

2.8
4.8

51
52

17
94

17
98

17
80

16

62
1061
700

465
885

502
902

349
816

193

766

1 ∗ ∗ ∗ 2.7
3.2

1.5
1.6

∗ ∗ ∗ 43
47

26
28

∗ ∗ ∗ 586
464

548
418

4 ∗ ∗ 1.6
9.3

1.5
8.7

1.3
8.0

∗ ∗ 23
104

18
93

9.6
78

∗ ∗ 516
820

420
791

238
696

8 8 ∗ 1.5
9.5

1.6
5.6

1.5
5.0

1.5
4.3

∗ 23
103

21
79

13
66

9.1
54

∗ 513
827

539
639

317
580

252
527

16 2.5
3.2

1.8
8.3

1.6
5.3

1.6
4.6

2.3
4.0

44
47

19
92

13
65

9.8
56

9.4
45

590
465

420
790

313
584

266
566

174
507

32 1.4
1.5

1.8
7.6

1.6
4.2

1.9
4.0

2.4
3.3

26
27

10
77

9.3
53

9.8
44

9.7
33

547
416

239
697

261
535

183
511

100

452

1 ∗ ∗ ∗ ∗ 1.4
1.2

∗ ∗ ∗ ∗ 16
16

∗ ∗ ∗ ∗ 285
221

4 ∗ ∗ ∗ 1.4
7.5

1.3
7.3

∗ ∗ ∗ 11
79

7.3
73

∗ ∗ ∗ 216
631

125
582

16 8 ∗ ∗ 1.6
5.6

1.4
4.2

1.5
3.9

∗ ∗ 12
73

8.9
53

7.1
47

∗ ∗ 271
613

169
453

134
425

16 ∗ 1.8
8.3

1.6
4.8

1.5
3.1

1.8
2.9

∗ 10
79

8.7
53

6.5
34

6.5
26

∗ 213
640

162
456

137
324

95
287

32 1.4
1.3

1.6
7.4

1.7
4.0

2.1
3.4

2.8
3.6

16
16

7.7
70

7.4
45

6.4
26

7.3
20

284
219

123
585

133
423

95
290

53

252

Table 3. The execution time of the algorithm on an M ×L decompo-

sition with P processors. Each simulation comprises twenty time steps

with τ = 0.05. Results corresponding to minimal and maximal inter-

facial subdomains are given above and below the line, respectively. A

∗ indicates that it is not possible to balance the computational load of

Step 1 at the first level of parallelization. For each choice of N and P ,

the minimum execution time is given in bold type.

time is reduced by domain decomposition and is minimized to 6.12 seconds on the

4×32 decomposition with minimal interfacial subdomains. Similarly, for N ≥ 512 and

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 265

each τ , it is evident from Tables 2 and 3 that the algorithm’s serial execution is fastest

on the 32× 32 decomposition with minimal interfacial subdomains. Clearly, we have

a notion of serial speedup, which derives purely from the domain decomposition. For

P ≥ 2 our parallel implementation exploits the natural parallelism of the algorithm

at Steps 1-3. Consider now the problem with N = 512 and τ = 0.1. For three M ×L

decompositions and each value of P , we give in Table 4 the execution time, number

of inter-process subdomain data transfers per global iteration (Steps 1 through 4 of

the algorithm) and the total number of MPI messages per global iteration by which

this data is transmitted. The serial code (P = 1) executes fastest on the 32 × 32

decomposition. For P ≤ 4, the number of MPI communications is the same for

all three listed decompositions. Therefore, we see that the 32 × 32 decomposition

allows for the fastest execution on P ≤ 4 processors. For P ≥ 8 we find that the

number of MPI communications necessitated by the 32 × 8 or 8 × 32 decomposition

is significantly less than that by the 32 × 32 decomposition. As a result, we observe

that the 32 × 32 decomposition does not minimize the execution time when P ≥ 8.

On the other hand, if N increases to 1024, the linear algebra arising from the 32× 32

decomposition becomes increasingly significant and the communication overhead is

increasingly justified. Thus, we see from Tables 2 and 3 that the 32 × 32, minimal

interfacial subdomain decomposition minimizes the execution time for any number of

processors when N = 1024.

P 32 × 32 32 × 8 8 × 32

1 54.16 0 0 62.16 0 0 59.88 0 0

2 28.08 4928 6 31.41 1160 6 31.08 1160 6

4 15.58 6400 36 16.44 1740 36 17.26 1620 36

8 9.29 7136 168 8.93 1968 161 9.36 1786 161

16 6.88 9008 720 7.01 2212 489 6.26 2118 502

Table 4. For three M×L decompositions and five values of P , a triple

giving the execution time, number of inter-process subdomain transfers

per global iteration and number of MPI messages per global iteration.

The problem has N = 512 and τ = 0.1.

For each combination of τ , N , and P , we define the parallel speedup of our

implementation with reference to the optimal domain decomposition. Let T (τ, N, P)

be the minimal execution time over all domain decompositions on P processors. Thus,

T (τ, N, P) is the smallest number in the major cell of Tables 2 and 3 corresponding

to τ , N and P . We define the parallel speedup on P processors as the ratio

S(τ, N, P) =
T (τ, N, 1)

T (τ, N, P)
.

266 M. HARDY AND I. BOGLAEV

In Figure 2 we show the parallel speedup as a function of P for τ = 0.1 and the

three values of N . The corresponding graph for τ = 0.05 is shown in Figure 3. It is

evident from these graphs that the parallel scale-up of the algorithm improves as the

number of mesh points is increased.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

P
ar

al
le

l S
pe

ed
up

 (
T

(0
.1

,N
,1

)
/ T

(0
.1

,N
,P

))

Number of Processors (P)

N = 256
N = 512
N = 1024
Ideal

Figure 2. The parallel speedup S(τ = 0.1, N, P) as a function of

number of processors P for three values of N and τ = 0.1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16P
ar

al
le

l S
pe

ed
up

 (
T

(0
.0

5,
N

,1
)

/ T
(0

.0
5,

N
,P

))

Number of Processors (P)

N = 256
N = 512
N = 1024
Ideal

Figure 3. The parallel speedup S(τ = 0.05, N, P) as a function of

number of processors P for three values of N and τ = 0.05.

PARALLEL MONOTONE DOMAIN DECOMPOSITION ALGORITHMS 267

6. CONCLUSION

We have described the domain decomposition algorithm from [2] for singularly

perturbed reaction-diffusion problems of parabolic type. A parallel implementation

of the algorithm on a distributed memory cluster has been discussed.

From numerical experiments with a model test problem, we have found that

if one chooses the interfacial subdomains maximally then the convergence iteration

count remains at the undecomposed value. However, our measurements of wall time

have shown that the algorithm executes fastest when the interfacial subdomains are

chosen minimally. We have observed that domain decomposition can reduce the

serial execution time of the algorithm. We have thus measured parallel speedup

on P processors with reference to the best decomposition for P processors. The

parallel scale-up of the algorithm improves as the number of mesh points is increased.

With N = 1024 and τ = 0.1 or 0.05, the parallel speedup on 16 processors is 13.6,

corresponding to a parallel efficiency of 85.0

If one choose the interfacial subdomains minimally, then the domain decomposi-

tion algorithm reduces the serial execution time of the undecomposed algorithm. The

parallel domain decomposition algorithm executes fastest with the minimal interfacial

subdomains. When the number of mesh points increases, then the 32 × 32, minimal

interfacial subdomain decomposition minimizes the parallel execution time for any

number of processors.

REFERENCES

[1] I. Boglaev, Monotone iterative algorithms for a nonlinear singularly perturbed parabolic prob-

lem, J. Comput. Appl. Math. 172, 313–335 (2004).

[2] I. Boglaev, M.P. Hardy, Monotone box-domain decomposition algorithms for nonlinear singu-

larly perturbed reaction-diffusion problems, Adv. Difference Equ. Vol. 2006, Article ID 70325,

38 pages (2006)// DOI:10.1155/ADE/2006/70325.

[3] I. Boglaev, M.P. Hardy, Uniform convergence of a weighted average scheme for a nonlinear

reaction-diffusion problem, J. Comput. Appl. Math. 200, 705–721 (2007).

[4] E. Bohl, Finite Modelle gewöhnlicher Randwertaufgaben, Teubner, Stuttgart (1981).

[5] M.P. Hardy, I. Boglaev, Parallel implementation of a monotone domain decomposition algorithm

for nonlinear reaction-diffusion problems, ANZIAM J. 46, C290–C303 (2005).

[6] J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation

Problems, World Scientific, Singapore (1996).

[7] C.V. Pao, Finite difference reaction diffusion equations with nonlinear boundary conditions,

Numer. Meth. Part. Diff. Eqs. 11, 355–374 (1995).

[8] Y. Saad, M.H. Schultz, A generalized minimal residual method for solving nonsymmetric linear

systems, SIAM J. Sci. Stat. Comput. 7, 856–869 (1986).

