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ABSTRACT. We employ the classical model building process to develop nonlinear stochastic

models for stock market. In this work, three different nonlinear stochastic models are presented.

Furthermore, under different data partitioning with equal and unequal intervals, a few modified

nonlinear models are developed. Empirical comparisons between the constructed models and GBM

(linear) models are also outlined.
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1. INTRODUCTION

In financial engineering, it is common to model a continuous time price process
described by the Itô-Doob type stochastic differential equation [1, 2, 3, 4, 13, 14]. A
general stochastic differential equation takes the form:

(1.1) dSt = µ(St, t)dt+ σ(St, t)dWt, St0 = S0.

Here, t ≥ t0,Wt is a Brownian motion, and St > 0,which is the price process [2, 5].
In our previous study [16], we initiate the usage of a classical modeling approach [14]
to develop modified Geometric Brownian motion models for the price movement of
individual stocks. GBM model is linear stochastic model, since the drift and volatility
terms in equation (1.1) are linear in terms of S.

In this paper, the classical modeling approach [14] is extended to develop nonlin-
ear stochastic models. In Section 2, three different nonlinear models are presented.
We explore the utilization of three nonlinear stochastic models under equal and un-
equal interval data partitioning with jumps in Section 3 and 4 respectively. In Section
5, by following empirical comparison techniques [6, 7], we compare the presented mod-
els with each other, and also compare with modified linear models [16].

In this work, three data sets selected from Fortune 500 companies and S&P 500
Index are used. The daily adjusted closing prices can be free download from the web
site http://finance.yahoo.com/.

2. NONLINEAR STOCHASTIC MODELS

There are several nonlinear stochastic differential equations that have been used
to describe asset price in the area of finance [2]. Our previous study [16] exhibits the
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Figure 1. Plot1
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Figure 2. Plot2
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Figure 3. Plot3
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Figure 4. Plot4

strong trend of nonlinearity. In fact, this nonlinearity is justified by following figures
and interpretations that are the representative of the entire data set. We recall [16]
that yt = µ− 1

2
σ2 + σεt. The residual is

yt − ŷt = lnSt − lnSt−1 − (µ̂− 1

2
σ̂2).

In Figure 1, we see that the residuals start out close to zero, then spread out. In
Figure 2, there are a lot of runs of many negative residuals in a row. In Figure 3,
we see there is a trend of the residuals. The residuals get bigger as time goes on.
And in Figure 2 and 4, we see the number of positive points is much different from
the number of negative points. All these indicate that the linear model is not good
enough to fit the data set. To build more precise models for competitive business,
where even a not large difference is important, in this work, we continue our classical
model building approach to develop nonlinear stochastic models.
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2.1. Nonlinear Stochastic Model 1 (Black-Karasinski Model). Black-Karasinski
stochastic model [12] that describes a short-term interest rate process, has the fol-
lowing form

(2.1) dSt = (αlnSt + β +
σ2

2
)Stdt+ σStdWt

where,α, β, and σ are parameters and Wt is Brownian motion. It is easy to check that
equation (2.1) satisfies the conditions for existence and uniqueness of solution [5]. We
note that the volatility function and drift function are linear and nonlinear, respec-
tively. In order to derive the regression equation, we use the following transformation
Vt = lnSt and apply Itô-Doob differential formula to obtain

dVt =
∂

∂St

(lnSt)dSt +
1

2

( ∂2
∂S2

t

(lnSt)
)
(dSt)

2

=
1

St

(
(αlnSt + β +

σ2

2
)Stdt+ σStdWt

)
− 1

2

1

S2
t

σ2S2
t (dWt)

2.

Then,

(2.2) dVt = (αVt + β)dt+ σdWt.

By using the Euler type discretization process [15], stochastic differential equation
(2.2) can be reduced to

(2.3) Vt − Vt−1 = (αVt−1 + β)∆t+ σ(Wt −Wt−1)

From εt = Wt −Wt−1 and ∆t = 1, equation (2.3) can be rewritten as

(2.4) Vt = (α + 1)Vt−1 + β + σεt

where α, β and σ are as defined in (2.1). By following applying the least square regres-
sion method [11] and using above cited data sets, we can estimate these parameters.

2.2. Nonlinear Stochastic Model 2. This nonlinear stochastic model 2 [14] is
described by the following Itô-Doob differential equation

(2.5) dSt = (αSt + βSN
t +

N

2
σ2S2N−1

t )dt+ σSN
t dWt

where α, β, σ and N are parameters; moreover 0 < N < 1.2, N 6= 1 , and Wt is
Brownian motion. It is easy to check that equation (2.5) satisfies the conditions for
existence and uniqueness of solution [5]. We note that the volatility and drift function
are nonlinear functions of S. In order to derive the regression equation, we use the

following transformation Vt =
S1−N
t

1−N and apply Itô-Doob differential formula to obtain

dVt =
∂

∂St

(
S1−N
t

1−N
)dSt +

1

2

( ∂2
∂S2

t

(
S1−N
t

1−N
)
)
(dSt)

2

= S−Nt

(
(αSt + βSN

t +
N

2
σ2S2N−1

t )dt+ σSN
t dWt

)
− N

2
S−N−1t σ2S2N

t (dWt)
2.

Then,

(2.6) dVt =
(
α(1−N)Vt + β

)
dt+ σdWt.
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Again by using the Euler type discretization process [15], stochastic differential equa-
tion (2.6) can be reduced to

(2.7) Vt − Vt−1 =
(
α(1−N)Vt−1 + β

)
∆t+ σ(Wt −Wt−1).

From εt = Wt −Wt−1 and ∆t = 1, equation (2.7) can be rewritten as

(2.8) Vt =
(
(1 + α(1−N))Vt−1 + β

)
+ σεt

where α, β,N and σ are as defined in (2.5). For given N , by applying the least
square regression method [11] and using above cited data sets, we can estimate these
parameters.

2.3. Nonlinear Stochastic Model 3. This nonlinear stochastic model 3 [14] is
described by the following Itô-Doob differential equation

(2.9) dSt = (αSt + βS2
t + σ2St)dt+ σStdWt

where,α, β, and σ are parameters and Wt is Brownian motion. It is easy to check that
equation (2.9) satisfies the conditions for existence and uniqueness of solution [5]. In
order to derive the regression equation, we use the following transformation Vt = −1

St

and apply Itô-Doob differential formula to obtain

dVt =
∂

∂St

(
−1

St

)dSt +
1

2

( ∂2
∂S2

t

(
−1

St

)
)
(dSt)

2

= S−2t

(
(αSt + βS2

t + σ2St)dt+ σStdWt

)
− 1

2
S−3t σ2S2

t (dWt)
2.

Then,

(2.10) dVt = (−αVt + β)dt− σVtdWt.

Again, the Euler type discretized version of (2.10) is as follows

(2.11) Vt − Vt−1 = (−αVt−1 + β)∆t− σVt−1(Wt −Wt−1)

From the definition of V, we note that yt = Vt−Vt−1

Vt−1
= St−1

St
− 1, εt = Wt −Wt−1 and

∆t = 1. With these notations, equation (2.11) can be rewritten as

(2.12) yt = (−α + β
1

Vt−1
)− σεt

Then, parameters α, β and σ can be estimated using least square regression method
[11].

3. NONLINEAR STOCHASTIC MODELS WITH EQUAL INTERVALS

Based upon our study of data partitioning [16], it is enough to consider a study
of monthly data partitioning with jumps.

Monthly Nonlinear Models 1,2 and 3 Suppose [0, t1), [t1, t2), [t2, t3), ..., [tm−1, tm)
represent the m monthly time intervals. Using monthly data partitioning with jumps,
the nonlinear models 1,2 and 3 take the following forms, respectively, for each t, ti−1 ≤
t < ti and i = 1, 2, ...,m

(3.1) dSMi
t =

(
αMilnSMi

t + βMi +
(σMi)2

2

)
SMi
t dt+ σMiSMi

t dWt,
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(3.2)

dSMi
t =

(
αMiSMi

t + βMi(SMi
t )N

Mi +
NMi

2
(σMi)2(SMi

t )2N
Mi−1)dt+ σMi(SMi

t )N
MidWt,

and

(3.3) dSMi
t =

(
αMiSMi

t + βMi(SMi
t )2 + (σMi)2SMi

t

)
dt+ σMiSMi

t dWt,

where, αMi , βMi , σMi and nMi , i = 1, 2, ...,m are parameters.
By following definition [8, 9, 14], the solution process of any one of the three models
(3.1) (3.2) and (3.3) can be described by
(3.4)

St =


S1(t, t0, S0), t0 ≤ t < t1, S0 = St0

φ1S2(t, t1, S1), t1 ≤ t < t2, S1 = limt→t−1
S1(t, t0, S0)

... ...

φm−1Sm(t, tm−1, Sm−1), tm−1 ≤ t < tm, Sm−1 = limt→t−n−1
Sm−1(t, tm−2, Sm−2)

S0 is the initial value of the stock price. φ1, φ2, ..., φm−1 are jumps and can be esti-
mated as

φ̂1 =
St1

limt→t−1
Ŝ1

, φ̂2 =
St2

limt→t−2
Ŝ2

, ..., ˆφm−1 =
Stm−1

limt→t−m−1

ˆSm−1
.

All estimations and results are summarized in Section 5.

4. NONLINEAR STOCHASTIC MODELS WITH UNEQUAL
INTERVALS

Under the monthly data partitioning approach, jumps are assumed to occur at
the end of each month. This is not always the case.

Let [0, t1), [t1, t2), [t2, t3), ..., [tk−1, tn) represent the n unequal time intervals. We
suppose the jumps are at time t1, t2, ..., tn−1. The given data set is decomposed into
n data subsets. The ith data subset is observed on the ith time interval [ti−1, ti) for
each i = 1, 2, ..., n.

Nonlinear Models 1,2 and 3 with Unequal Intervals By employing the
above described unequal interval data partitioning process with jumps, the nonlinear
models 1,2 and 3 take the following forms respectively, for each t, ti−1 ≤ t < ti and
i = 1, 2, ..., n

(4.1) dSIi
t =

(
αIilnSIi

t + βIi +
(σIi)2

2

)
SIi
t dt+ σIiSIi

t dWt,

(4.2) dSIi
t =

(
αIiSIi

t + βIi(SIi
t )N

Ii +
N Ii

2
(σIi)2(SIi

t )2N
Ii−1)dt+ σIi(SIi

t )N
IidWt,

and

(4.3) dSIi
t =

(
αIiSIi

t + βIi(SIi
t )2 + (σIi)2SIi

t

)
dt+ σIiSIi

t dWt,

where, αIi , βIi , σIi and N Ii , i = 1, 2, ..., n are parameters.
By following definition [8, 9, 14], the solution process of any one of the three models
(4.1) (4.2) and (4.3) can also be described in (3.4). All estimations and results are
summarized in Section 5.
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5. ESTIMATIONS AND RESULTS

In the following, by using the nonlinear models, equal and unequal time inter-
vals with jumps and solution representation, we outline an algorithm to develop the
nonlinear models for stock price process as follows:

i Equal Intervals: Divide the whole stock price process into monthly sub data sets.
ii Unequal Intervals: Divide the whole stock price process into sub data sets using

Unequal Interval data partitioning process.
• Compute the daily relative difference of all observations.
• Define the threshold such that the number of observation in time intervals is

not too large or too small. At this stage, suppose [0, t1), [t1, t2), ..., [tn−1, tn)
represent the n intervals.
• Divide the whole stock price data into sub data sets.

iii Assign values 0 ≤ N ≤ 1.2.
iv Corresponding to 4 models (three nonlinear models and GBM model), we trans-

form the given observed data into corresponding modeling transformations:

V Non1
t = lnSt

V Non2
t =

S1−N
t

1−N

yNon3
t =

St−1

St

− 1

yGBM
t = lnSt

v For every interval, run linear regression to estimate parameters for nonlinear 1, 2,
3 and GBM models, respectively.

vi Compute the jump coefficients by applying

φ̂i =
Sti

limt→t−i
Ŝt

, i = 1, 2, 3, ...

vii For every interval, compute the residual for each model.
viii Compute the basic statistic of the models.

All the Estimations and results are summarized as follows.

The first data set of stock X is collected over 31
2

years, and selected from Fortune
500 companies. There are 848 observations. The least square estimation method [11]
is used to estimate the parameters of linear and nonlinear stochastic models. Due to
the large data set, our presented prediction results are limited to the part of data set
300 - 600 observations. This segment of sub data set is good representative of the
overall data set. Figures 5-8 are the predictions of Stock X. Table 1 contains the basic
statistics of linear and nonlinear models with equal and unequal data partitioning.
More details will appear in [10].

From Table 1 we can see that overall, the Nonlinear Model 1 with Unequal Interval
has less variance among all Models (Monthly and Unequal Intervals) . With Monthly
data partitioning, Nonlinear Model 3 with Jumps has the least mean and variance of
residual. With Unequal Interval data partitioning, all Nonlinear Models 1, 2 and 3
have less mean and variance of residual than GBM (linear) model.
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Figure 5. Prediction of Stock X for the Observations. 300 - 600 Using
Nonlinear Model 1
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Figure 6. Prediction of Stock X for the Observations. 300 - 600 Using
Nonlinear Model 2

Table 1. Basic Statistics for Models of Stock X

r̄ S2
r Sr No. of Intervals

Monthly GBM -1.22683 207.3278 14.3989 41

Monthly Nonlinear Model 1 -1.928296 141.1754 11.88173 41

Monthly Nonlinear Model 2 -2.090806 143.2248 11.96765 41

Monthly Nonlinear Model 3 -1.731151 139.2792 11.80166 41

Unequal Interval GBM -1.962899 258.1040 16.06562 39

Unequal Interval Model 1 -0.5315015 131.2354 11.4558 39

Unequal Interval Model 2 -0.6097021 131.3068 11.45892 39

Unequal Interval Model 3 -0.4023679 132.16 11.49609 39
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Figure 7. Prediction of Stock X for the Observations. 300 - 600 Using
Nonlinear Model 3
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Figure 8. Prediction of Stock X for the Observations. 300 - 600 Using
Three Nonlinear Models

The second data set we applied is the stock Y. It lasts more than 22 years and
has 5630 observations. It is also selected from Fortune 500 companies. Due to the
large data set, our prediction results are limited to the part of data set 5000 - 5300
observations. This segment of sub data set is good representative of the overall
data set. Figures 9-12 are the predictions of Stock Y for 5000 - 5300 observations.
Table 2 contains the basic statistics of linear and nonlinear models with different data
partitioning. Details will also appear in [10].

Table 2 shows overall basic statistics of Stock Y applying all Monthly and Unequal
Interval Nonlinear Models. With Monthly data partitioning, Nonlinear Model 2 has
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Figure 9. Prediction of Stock Y for the Observations. 5000 - 5300
Using Nonlinear Model 1
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Figure 10. Prediction of Stock Y for the Observations. 5000 - 5300
Using Nonlinear Model 2

the least mean and variance of residual. With Unequal Interval data partitioning,
all Nonlinear Models 1, 2 and 3 have less mean and variance of residual than GBM
model. Nonlinear Model 2 with Unequal Interval has the least mean and variance of
residual among all models, moreover it has less number of subintervals.

The third data set we applied is the S&P 500 Index. It lasts more than 59 years
and has 14844 observations, from1/1/1950 to 12/31/2008. Due to the large data set,
our prediction results are limited to the part of data set 14000-14300 observations.
This segment of sub data set is good representative of the overall data set. Figures
13-16 are the predictions of S&P 500 Index for 14000 - 14300 observations. Table
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Figure 11. Prediction of Stock Y for the Observations. 5000 - 5300
Using Nonlinear Model 3
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Figure 12. Prediction of Stock Y for the Observations. 5000 - 5300
Using Three Nonlinear Models

3 contains the basic statistics of linear and nonlinear models with different data
partitioning. More details will appear in [10].

Table 3 shows overall basic statistics of S&P 500 Index applying all Monthly
and Unequal Interval Nonlinear Models. With Monthly data partitioning, Nonlinear
Model 2 has the least mean and variance of residual. With Unequal Interval data
partitioning, all Nonlinear Models 1, 2 and 3 have less mean and variance of residual
than GBM model. Nonlinear Model 2 with Unequal Interval has the least mean and
the variance of residual among all models, moreover the least variance of residual and
the Number of Intervals.
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Table 2. Basic Statistics for Models of Stock Y

r̄ S2
r Sr No. of Intervals

Monthly GBM -0.00982612 1.206479 1.098399 268

Monthly Nonlinear Model 1 0.02006753 1.469688 1.212307 268

Monthly Nonlinear Model 2 -0.002057085 1.155363 1.074878 268

Monthly Nonlinear Model 3 0.02663191 1.295051 1.138003 268

Unequal Interval GBM -0.01248156 1.199703 1.095310 256

Unequal Interval Model 1 -0.004257979 0.6064698 0.7787617 256

Unequal Interval Model 2 -0.01147757 0.6033852 0.7767788 256

Unequal Interval Model 3 0.006576893 0.6125127 0.7826319 256
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Figure 13. Prediction of S&P 500 Index for the Observations. 14000
- 14300 Using Nonlinear Model 1

Table 3. Basic Statistics for Models of S&P500 Index

r̄ S2
r Sr No. of Intervals

Monthly GBM 58.30902 486.4579 22.05579 708

Monthly Nonlinear Model 1 4.027517 281.7153 16.78438 708

Monthly Nonlinear Model 2 4.084275 281.7003 16.78393 708

Monthly Nonlinear Model 3 4.274907 282.7780 16.81600 708

Unequal Interval GBM 2.471564 210.2159 14.49882 570

Unequal Interval Model 1 0.6186245 79.46592 8.914366 570

Unequal Interval Model 2 0.5835638 78.5180 8.861039 570

Unequal Interval Model 3 0.6590607 79.5725 8.920342 570

All results are summarized in Table 4 with regard to Stock X, Y and S&P 500
Index. The Table 4 shows that nonlinear model 2 ranks No.1 in both monthly and
unequal interval data partitioning of 2 out 3 data sets.
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Figure 14. Prediction of S&P 500 Index for the Observations. 14000
- 14300 Using Nonlinear Model 2
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Figure 15. Prediction of S&P 500 Index for the Observations. 14000
- 14300 Using Nonlinear Model 3

Table 4. Summary of Results

Monthly Interval Unequal Interval

Stock Rank1 Rank2 Rank3 Rank4 Rank1 Rank2 Rank3 Rank4

X Non.3 Non.1 Non.2 GBM Non.1 Non.2 Non.3 GBM

Y Non.2 GBM Non.3 Non.1 Non.2 Non.1 Non.3 GBM

S&P 500 Non.2 Non.1 Non.3 GBM Non.2 Non.1 Non.3 GBM
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Figure 16. Prediction of S&P 500 Index for the Observations. 14000
- 14300 Using Three Nonlinear Models

6. CONCLUSIONS AND FUTURE WORK

In this work, we presented three nonlinear stochastic models. By using classical
model building process [16], we developed the modified version of nonlinear stochastic
models using equal and unequal data partitioning with jumps. Based on our study,
we draw a few important conclusions.

i For monthly data partitioning, all three nonlinear models are better than GBM
model for stock X and S&P 500 Index, and for Stock Y, nonlinear model 2 is
better than GBM model and nonlinear models 1 and 3.

ii For unequal interval data partitioning, and for all three stock data sets, all non-
linear models are better than GBM model .

iii The unequal data partitioning approach is superior than the monthly data parti-
tioning.

iv For both equal and unequal data partitioning, the nonlinear model 2 is the best
for stock Y and S&P 500 Index, and nonlinear model 1 is best for stock X.

So far, we focused our attention to build stochastic models to fit the data sets.
The important problem in modeling is to predict the future stock market price. The
study of this problem is under our current investigation, and it will be published
elsewhere.
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