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ABSTRACT: The main goal in analyzing microarray data is to determine the genes that are differentially 

expressed across two types of tissue samples or samples obtained under two experimental conditions. In 

this paper we propose a penalized normal mixture model (PMMM) to estimate the parameters within the 

framework of maximum likelihood. We penalized both the variance and the mixing proportion. The 

variance was penalized so that the log-likelihood will be bounded, while the mixing proportion was 

penalized so that we can apply the modified likelihood ratio to test for the number of components. 

Additionally, a weight function was introduced because the estimation method is sensitive to the presence 

of statistical outliers. Simulation study is conducted to demonstrate effectiveness of PMMM. Finally, the 

penalized method is applied to the rat data for genes in middle ear mucosa of rats with and without 

subacute pneumococcal middle ear infection.  

 

1. INTRODUCTION 

 

In recent years microarray technology has made it possible to simultaneously analyze 

thousands of genes. Although an enormous volume of data is being produced by microarray 

technologies [12, 18], one of the continuing challenges is how to analyze and interpret the large 

amounts of data.  The methods used for such analysis, including the method of identifying genes 

with fold changes are known to be unreliable because in such methods the statistical variability of 

the data is not properly addressed [4]. While various parametric methods and tests such as the 

two-sample t-test have been applied for microarray data analysis, strong parametric assumptions 

made in these methods as well as strong dependency on large sample sets restrict the reliability of 

such techniques in microarray problems. The nonparametric statistical methods, including the 

Empirical Bayes (EB) method [6], the significance analysis for microarray data (SAM), [21], and 

mixture model method (MMM) [7, 8, 13, 16] have been applied to microarray data analysis. It is 

claimed that the new extensions of the (MMM) are among the available methods producing 

biologically-meaningful results [16]. The major disadvantages of the (MMM), is that the 

maximum likelihood estimates of the proportion may approach the boundary point of the 

parameter space and the log-likelihood approaches   as the component variance approaches 0. 

In this work we extend the (MMM) by penalizing the mixing proportions, the component 

variances and implementing a weight function. The mixing proportion was penalized so that the 

modified likelihood ratio tests of [2, 3] for testing the number of components of the fitted normal 

mixture model can be applied. The variance was penalized so that log-likelihood is bounded 

resulting in the existence of the MLE's. Statistical outlier distort the estimation of the parameters, 

therefore a weight function which gives full weight to sample points in a neighborhood of each 

component mean, but automatically reduced weights to sample points not in that neighborhood 

was implemented. 

This paper is organized as follows. Section 2 describes the methodology, gives the model 

fitting algorithm. In section 3, we explain the proposed modifications. In section 4, the proposed 

method is applied to the rat data of [16], containing expression levels of 1176 genes of rats with 

and without pneumococcal middle ear infection, in addition to doing a simulation study. The 

results are compared to that of SAM. In section 5 we present concluding remarks. 

______________ 
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2 MMM METHOD 

We start this section with a brief review of the existing mixture method techniques [16]. 

Let ikY  be the expression level of gene i in array k ( 1 1 1 21,..., ; 1,..., , 1,...,i N k K K K K    ). 

Suppose that the first 1K  and the last 
2K  arrays are both obtained under two different conditions. 

A linear statistical model is ([16]) 

                               ik i i k ikY a b x                                                       (1) 

where 1kx   for 
11 k K   and 0kx   for 

1 1 21K k K K    , and ik are random errors 

with mean 0. We do not assume the homoscedastic variances. Hence 
i ia b  and 

ia  are the mean 

expression levels of gene i under the two conditions, respectively. For simplicity of the analysis 

we assume that both 1K  and 
2K  the number of replications for each experimental condition is 

even. Testing difference in the mean expression levels under the two conditions is equivalent to 

testing for the null hypothesis 

                      0 1: 0 versus : 0i iH b H b                                                       (2) 

The following t-statistic type scores iz  and iZ  are calculated from the data [16]. Define ia  to be 

a column vector containing random permutation of 1 / 2K : 1's and ib  to be a column vector 

containing random permutation of 2 / 2K : -1's. Let 
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sample variances. Since iz  and iZ  are not assumed to be normally distributed, the distribution 

function of 0f  and 1f  are estimated using mixture of normal distributions as opposed to using 

kernel density estimation. Therefore, 0f  and 1f   are estimated as: 
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where 
2( ; , )j j  .  denotes the normal density function with mean j    , variance 

2 0j   and 0 1j   denotes the mixing proportion such that 
1

1
p

jj



  (where 

0 orp g g ). Additionally, p   represents all unknown parameters 

2{( , , ) : 1,..., }j j j j p     in a p-component mixture model. Next, we describe how to fit the 

normal mixture model.  

 

Mixture model is usually fitted by maximum likelihood estimations using the 

expectation-maximization (EM) algorithm [5]. Given N observations 1,..., Nz z ,  maximize the 

log-likelihood 
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log ( ) log ( ; )

N
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L f z


                                     (7) 

to obtain the maximum likelihood estimate 
0g  for the distribution 0f . The EM algorithm can be 

used to compute 
0g  iteratively through the following steps. 
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Equation (8) the E-Step is the posterior probability that iz  belongs to the jth-component 

of the mixture. At convergence, we obtain the maximum likelihood estimate of 
0g . After 

finding the optimized 
0g  for different 0g 's the algorithm selects the sub-optimal 0g  

corresponding to the first local minimum of the AIC or BIC [9],  

0
0

2log ( ) 2 ,g gAIC L v   
 

0
0

2log ( ) log( ),g gBIC L v N     

where 
0gv  is the number of independent parameters in 

0g . Then the algorithm uses the resulting 

0g  as the number of normal functions to fit 0f . The same procedure can be applied to estimate 1f . 

As mentioned above, with the fixed number of normal functions, the parameters of 0f  and 1f  are 

iteratively updated for a number of iterations. When the iterations are terminated, the likelihood 

ratio of (12) is estimated based on the final estimations of 0f  and 1f .  

One of the problems with  this method is that the AIC and BIC may not agree with each 

other in some cases, therefore it often means that several models are reasonable and that no one 

can dominate the others. Therefore we seek other methods which are more reliable in the 

selection of 0g , the number of components, as in [2,3].  

In order to determine the statistical significance, we want to test for the null hypothesis 

0H  that Z is from 0f .
 Construct a likelihood ratio test (LRT) based on the following statistic, 

0 1( ) [ ( ) / ( )]LR Z f Z f Z .         (12) 

A large value of LR(Z) gives no evidence against 0H , whereas a too small value of LR(Z) leads 

to rejecting 0H . With the normal mixture model, it is possible to numerically determine the 

rejection region. For any given false positive rate (In the literature of microarray processing,  
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0.01   is often used as the genome wide significant level), we can use the bisection method 

[17] to solve 
0

( )
( )

LR z s
f z dz


   and obtain the suitable cut off point ( )s s  . Then the 

rejection region is ( ) { : ( ) }RR Z LR Z s   . This method of using the LRT in MMM is called 

as MMM-LRT, [16]. Similar to SAM [21], we can estimate the numbers of false positive (FP) 

and total positive (TP) directly. In MMM-LRT, for any given s, we have: 

( )

1

1
( ) ( : ( ) ), ( ) ( : ( ) )

B
b

i i

b

FP s n i LR z s TP s n i LR Z s
B 

     

Here ( )n i  represents the number of genes. Based on the estimated FP and TP, we can also 

calculate the false discovery rate as FDR = FP/TP ([1, 7,16, 21]). The existing approach used the 

AIC and/or BIC as a criteria for model selection but for the model selection we used the modified 

likelihood ratio test to test the hypotheses: a 2-component model (alternative hypothesis) vs. 1-

component (null hypothesis) and 3-component model (alternative hypothesis) vs. 2-component 

(null hypothesis), [2, 3]. Define  

 0 0

0 01 1 1
( ) ln ( ) ln( ).

N g g

N g j ij i ji j j
l z f z C g  

  
      

Below we present the theorems of Chen et al. [2, 3] to carry out these tests of hypothesis. 

Theorem 1 is the test for a 2-component model vs. 1-component, while Theorem 2 is the test for a 

3-component model vs. 2-component. 

Theorem 1 ([2]) If the regularity conditions hold, the asymptotic null distribution of the modified 

LRT statistics 

1 22{ ( , , ) (1/ 2, , )}n n nM l l       for testing a 2-component (alternative) vs. 1-component 

(null), is the mixture of 
2

1  and 
2

0  with equal weights, i.e.
2 2

0 1(1/ 2) (1/ 2) 
,
 
where 

2

0  is a 

degenerate distribution with all its mass at 0. 

 

Theorem 2 ([3]) If the regularity conditions hold, and the true distribution is a 2-component 

model. Then the asymptotic null distribution of the modified LRT statistics 

1 2 1 2 3 1 22{ ( , , , , ) ( , , )}n n nR l l          for testing a 3-component (alternative) vs. 2-

component (null), is the mixture of 
2 2 2

0 1 2((1/ 2) ( / 2 )) (1/ 2) ( / 2 ) ,          where 

1cos ( )  ,   is the correlation coefficient between the two components of the null 

hypothesis and 
2

0  is a degenerate distribution with all its mass at 0. 

 

Additionally since the model is sensitive to the presence of outlier, Tadjudin et al. [20] 

discussed how a weight function 
ij  given by 1  for  0 3ij ijd    , and 

3/   for  3<ij ij ijd d   , where ( ) /ij i j jd y     could assign each observation a measure 

of typicality for each component. 

3. PENALIZATION OF MMM MODEL 

We saw that the mixture model used unequal variances for each component. Keifer and 

Wolfowitz [11] showed that when applying mixture of normals with unequal variances in each 

component the likelihood approaches  as one of the variances approaches 0.  In order to see 

how well a homoscedastic mixture model fit a heteroscedastic data, we simulated mixture 

distributions from a sample of size N = 500 from 

~ 0.5 ( 4,1) 0.5 ( 8,2)Z y y   
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And fitted the simulated data with equal and unequal variances. The result is given in the figure 1, 

where the dotted and bold lines represent the heteroscedastic and homoscedastic models 

respectively. 

 

Figure 1: Histogram, heteroscedastic and homoscedastic fit for simulated data from the 

mixture 0.5 ( 4,1) 0.5 ( 8,2)y y   

Another 500 data is generated  from  and fitted and we got the result as: 

 

Figure 2: Histogram, heteroscedastic and homoscedastic fit for simulated data from the 

mixture 0.5 ( 4,1) 0.5 ( 8,1)y y   
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The model with unequal variances seems to be a better fit in the case where the simulated data 

with unequal variance was fitted with unequal variance method as oppose to when fitted using 

equal variance based method(Figure 2). However, there was no difference if we fitted normal 

mixture model with equal or unequal variances for the data that was simulated using equal 

variance (Figure 1). 

Another problem is that the maximum likelihood estimates of the proportions 
j  can be 

very close to the boundary point 0.  

To overcome these problems and to determine the distributions of 0f  and 1f  we 

maximize the penalized log-likelihood: 

    
1 1 1

log ( ) log ( ; ) log( ) log ( )
p pN

p i p j j

i j j

L f z C p h 
  

                   (13)  

(where 0 1 or f f f ) to obtain the maximum likelihood estimates p ( 0  or p g g ) of the 

unknown parameters  2( , , ) : 1,...,j j j j p    , where C > 0 is a constant.  The second and 

third terms on the right hand side of equation (13) are the penalty terms for the proportion (so that 

the modified likelihood test can be applied) and variance respectively. From [2] it was mentioned 

that an appropriate choice for C is log( )C M , when the parameter   in the kernel density is 

restricted to [ , ]M M . Furthermore, from simulation, we observe that the method is not sensitive 

to the value of C and the choice of C = log(M) works well.  

We will choose (.)h  such that 

(i) 
0

1
lim ( ) 0

N
h





 , for all N  so that the penalized MLE exists.   

In order to prove the consistency it is required that h also satisfied the following conditions: 

(ii) ( )h   is many-to-one from (0,1)  onto (0, ), 0G G  , 

(iii) h is strictly increasing in an open interval (0, )  of the origin which has a 

non-null measure, 

(iv) h is continuously differentiable on (0, ) . 

One such distribution that satisfy the aforementioned conditions on ( )jh   is the inverse gamma 

function, 
2( 1) 2

1
( ) exp{ }, 0, 0

( )
j

j j

h




 
  

  
   


. Hence for the further analysis, we 

assume that ( )h   has inverse gamma distribution.  It should be noted that similar analysis can be 

done for inverse chi-square penalty function, [14]. 

For 0  or p g g  component mixture model, parameters can be estimated using similar 

steps to (7) with (8), (9) and (10) modified, the EM algorithm computes p  by iterating steps 

[14]: for 1,...,j p , 
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Consistency and Asymptotic Normality 

Let 1,..., NY Y  be a random sample of size N from the mixture model with density given by (5), 

where the parameters    and let   denote the closure of set  . The likelihood function is 

unbounded on  , [14]. This was circumvented by adding a penalty term for the variance 

parameter. Let 
1

0( ( , ))H L y   with norm    . Under this norm, H  is a Banach space. 

Let HE  denotes the expectation in the space H.  Consider NL that is the extension of L  to  , 

i.e., 

0 0

k

1 0

1 1

0 if 0,  or 

( ,..., ) ( ) ( ) otherwise
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N C
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Now, we state the strong consistency of the penalized MLE by means of the following two 

Theorems. We will refer to [14] for the complete proofs of these results. 

 

Theorem 3:  Let S  be a closed subset of   such that 

0 j{ {1,.. } so that [0, )}S g       

and such that 0 S  . Then 

1

1 0

( ,..., )
( lim sup 0) 1

( ,..., )

N N

N S N N

L Y Y
P

L Y Y



 

  . 

 

Theorem 4. Let  1( ,..., )N NY Y     be a function of 1,..., NY Y   such that 

1

1

1 0

( ,..., )
0, ,..., ,

( ,..., )

NN N

N

N N

L Y Y
Y Y N

L Y Y





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Then 

0( lim ) 1N
N

P  


  . 

 

From the previous result, by considering 1  , we obtain the following corollary. 

 

Corollary 5. The penalized maximum likelihood estimator is strongly consistent, i.e. the point 

N   which maximizes NL  is such that 0N   a.s. 

 

For the speed of convergence of the penalized estimator, we have following result. 
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Theorem 6.  Assume that the parameters satisfy following condition 

( , ) ( , ) for , 1,...,k k m m k m k g        

 and the penalizing function is such that 
( )

( )

sh

h




 is bounded for 

01 01,2,3 and { ,..., }Ns       then 0( )NN    is asymptotically normal distributed 

with mean zero and covariance matrix 
1

0( )I  
, where the information matrix 

0 0
0

ln ( ) ln ( )
( ) [( )( ) ]T

HI E
   


 

 


 
. 

The distribution of f  is estimated exactly as was done in the previous section and we 

then compared 
0f  and 

1f  by likelihood ratio discussed in section 2. However, since the regularity 

conditions necessary for Theorems 1 and 2 do not satisfy for the PMMM model (13), therefore 

the asymptotic distribution is not chi-squared with degrees of freedom 2. The theoretical 

distribution of the penalized modified likelihood ratio statistic in the case of unequal variances for 

each component is an open problem. Instead we introduce the following simulation method based 

on a regression model as a function of (1/ )tN  given by 

, ,( ) (1/ ) ,t

PNs P t P tE z b N   

Where PNsz  is the 
thP  percentile of the 

ths subsample of size N . The simulation of the null 

distribution is done as follows. In the case of null hypothesis is that data comes from single 

normal distribution against the alternative that it is mixture of two heterogeneous normals, we 

simulated 500 replicates of the standard normal N(0, 1) of sample sizes 100, 250, 500, 750 and 

1000. Then we fitted 2-components normal mixture models for each of the sample sizes and 

calculated the penalized modified log likelihood ratio test (PMLRT) define as 

1 2 1 22{ln ( , , , , ) ln (1/ 2, , , , )NR L L           

A linear model was fitted using the 5 values of PMLRT to determine the degrees of freedom, and 

we obtained the degrees of freedom of the simulated chi-squared null distribution as 

                         
0.52.8 13.8f N                                    (14) 

Table 1 shows the mean, variance and percentiles of the PMLRT for the sample sizes 100, 250, 

500, 750 and 1000 for hypothesis. The percentiles in brackets are that of the chi-squared 

distribution with degrees of freedom given by (14) (which of course is a gamma distribution with 

mean 
1/ 21.4 6.9N   and second parameter 0.5), while those percentiles not in brackets are the 

ordered simulated percentiles of 

PMLRT. 

 

Table 1: Mean, variance and percentiles for the penalized modified likelihood, based 

on 500 replicates for each sample for testing the hypothesis a 1-component against 2- 

components. 
Sample size 100 250 500 750 1000 

Mean 4.07 3.89 3.50 3.15 3.19 

Variance 8.08 8.14 7.50 6.80 7.06 

Percentiles 

50% 3.30(3.53) 3.12(3.03) 2.88(2.78) 2.51(2.67) 2.49(2.60) 

75% 5.65(5.61) 5.24(4.97) 4.63(4.64) 4.07(4.50) 4.25(4.41) 

90% 8.11(8.05) 7.95(7.29) 7.00(6.90) 6.27(6.72) 6.88(6.62) 

95% 9.81(9.78) 9.31(8.95) 8.73(8.53) 7.96(8.33) 8.34(8.22) 
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For the testing of two components versus three components, similar simulation resulted in the 

linear regression model for the degrees of freedom as a function of N  being 
1/ 24.9 13.4f N    

And the corresponding results are given in Table 2. 

Table 2: Mean, variance and percentiles for the penalized modified likelihood, based 

on 500 replicates for each sample for testing the hypothesis 2-components against 3- 

components. 

 
Sample size 100 250 500 750 1000 

Mean 6.13 5.93 5.63 5.28 5.21 

Variance 12.03 12.13 11.85 10.84 10.63 

Percentiles 

50% 5.41(5.59) 5.19(5.10) 4.95(4.85) 4.66(4.74) 4.59(4.67) 

75% 8.07(8.13) 7.85(7.53) 7.38(7.23) 7.25(7.10) 7.19(7.02) 

90% 11.25(10.98) 10.73(10.29) 10.11(9.94) 9.82(9.79) 9.33(9.70) 

95% 12.88(12.95) 12.35(12.21) 11.97(11.84) 11.85(11.67) 11.72(11.57) 

   

 

4. DATA APPLICATION 

 

Simulation 

To mimic the real gene data, we generated data for N = 1176 genes under the following 

setup. We assume that 1 2K  ; 2 6K   and there are 200 differentially expressed (DE) genes. 

The data for the equally expressed (EE) genes are simulated from 
2

1 1( , )i iN    for 11,...,i K  

and 
2

2 2( , )i iN    for 1 1 21,...,i K K K   , where 1 1 ~ (0,2)i i N   and 1i  and 2i  are 

generated from Gamma(2; 4), respectively. Note that such generated 1i  and 2i  take different 

values for each gene and are also different between genes. The data for DE genes were generated 

similarly. However, in this case, 1i  and 2i  were generated from N(0; 2) separately. The 

standard deviations 1i  and 2i are generated the same way as in the EE gene case. 

In our method we fitted a 1, 2 and 3-component normal mixture model and calculated 

nM  and nR  as defined in Theorems 1 and 2 respectively, modified to ( )N pL   defined through 

(13).  

Table 3: MRLT for fitted normal mixture models of z and Z 

 
nM  nR  

0f  4.56 (P<0.01) 1.22 (P>0.05) 

f  6.78 (P<0.01) 1.06 (P>0.05) 

Table 3 displays the results and we therefore choose the 2-component normal mixture model for 

both 0f  and f which are stated below: 

2 2

0( ) 0.01 ( ; 0.287,0.05673 ) 0.99 ( ; 0.004558,0.40812 )f z z z      

2 2( ) 0.20 ( ; 2.442,0.43703 ) 0.80 ( ; 0.0062961,0.48583 ).f z z z    
 

 

Figure 3(a) shows the histograms of z  with the fitted normal mixture models, which shows 

strong agreement. Similar observation for Z  is shown in 3(b) with the dotted line being that of 

the fitted mixture model of 0f . Figure 4 illustrates the likelihood ratio statistic as a function of 

the Z  values. 
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Figure 3: Histogram of z  and Z  and fitted models for the simulated data 

 
Figure 4: The likelihood ratio statistic as a function of Z  value for the simulated data 

 

Table 4: Values of TP, FP and FDR from PMMM 
s MedianFP MeanFP TP FDR% 

0.07 0 0.069 196 0.00 

0.10 0 0.138 196 0.00 

0.15 0 0.310 196 0.00 

0.30 2 1.655 201 1.00 

0.35 3 3.828 203 1.48 

0.40 5 5.621 205 2.44 

0.45 14 13.931 210 6.67 

0.60 26 25.724 221 11.76 

0.70 43 43.207 231 18.61 

0.90 68 66.966 248 27.42 

1.00 104 103.517 270 38.52 

For our method the median number of FP were calculated from the null scores of B = 29 

permutations of the data set. For SAM, all the results were obtained from the R-package sam3.0. 

For the purpose of comparison, 
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Table 5: Values of TP, FP and FDR from SAM 

  Median FP Mean FP TP FDR% 

0.49 3.71 6.496 195 1.90 

0.47 4.64 6.496 197 2.36 

0.45 6.50 8.352 198 3.28 

0.43 7.42 10.208 200 3.71 

0.42 8.35 12.064 203 4.11 

0.37 11.14 14.848 206 5.41 

0.32 23.20 27.840 211 11.00 

0.28 33.41 40.832 221 15.12 

0.25 45.47 55.680 230 19.77 

0.20 69.60 82.592 246 28.29 

0.16 107.65 118.042 268 40.17 

 

the cut-off points s used in our method are specifically chosen to match the number of TP 

produced by sam3.0. It is seen from Tables 4 and 5 that our method outperform SAM. Figure 5 

displayed a graphical comparison of the numerical results presented in Tables 4 and 5. 

 
Figure 5: The values of FDR from PMMM method and SAM for the simulated data 

 

Real Data Example 

In this section, we apply the penalized modified likelihood method to the rat data of [15]. 

The data is from a study, that applied radioactively labeled DNA microarrays ([10]) to the mRNA 

analysis of 1,176 genes in middle ear mucosa of rats with and without subacute pneumococcal 

middle ear infection. The data consists of eight experiments: two DNA microarrays were run with 

controls while six were run with pneumococcal middle ear infection. The data was processed by 

first taking a natural logarithm transformation for all the observed gene expression levels so that 

the resulting data is less skewed. Then, for each microarray, we standardize the transformed gene 

expression levels by subtracting their mean and dividing by their standard deviation. 

 

Table 6: MRLT for fitted normal mixture models of z and Z 
 

nM  nR  

0f   3.19 (P < 0:01)  0.92 (P > 0:05) 

f  3.54 (P < 0:01)  1.16 (P > 0:05) 

 

From Table 6 we choose the 2-component normal mixture model for both 0f  and f which are 

stated below: 

0( ) 0.983 ( ;0.011,0.185) 0.017 ( ;0.297,0.069)f z z z    

( ) 0.958 ( ; 0.032,0.539) 0.042 ( ;0.246,0.004).f z z z     
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Table 7: Values of TP, FP and FDR from PMMM 
s MedianFP MeanFP TP FDR% 

0.07 0 0.03 94 0.00 

0.10 0 0.07 103 0.00 

0.15 0 0.28 113 0.00 

0.30 3 3.17 144 2.08 

0.35 8 8.75 168 4.76 

0.40 12 12.44 178 6.74 

0.45 29 27.86 215 13.49 

0.60 44 46.17 248 17.74 

0.70 65 65.96 288 22.57 

0.90 95 95.59 323 29.41 

1.00 134 133.83 368 36.41 

 

 
Figure 6: Histograms of z , Z , and fitted models for the rat data 

 

Figure 6(a) presented the histogram of z and the fitted 0f , which do not indicate strong 

discrepancy. The histogram of Z  and the fitted mixture model are shown in Figure 6(b) with 0f  

shown in the dotted line. The constructed LR statistics are plotted in Figure 7. It is not surprising 

to see as Z moves away from 0, LR(Z) decreases. 

 
Figure 7: The likelihood ratio curve for the rat data 
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Table 8: Values of TP, FP and FDR from SAM 

  Median FP Mean FP TP FDR% 

0.94 4.2 16.73 80 5.23 

0.88 9.1 23.71 101 8.97 

0.78 11.2 29.98 149 9.96 

0.68 19.5 45.32 149 13.10 

0.63 25.1 62.76 168 14.94 

0.58 34.2 76.70 198 17.26 

0.54 49.5 97.62 238 20.80 

0.50 57.2 109.47 259 22.08 

0.46 75.7 135.27 301 25.13 

0.42 93.1 167.35 336 27.70 

0.38 132.5 221.04 420 31.54 

 

 
Figure 8: The values of FDR from PMM method and SAM for the rat data 

 

Tables 7 and 8 report the results from our method and SAM. Figure 8 displays the FDR 

with respect to different values of TP. For 300TP  , the advantage of our method over SAM is 

obvious. For TP > 300, the FDR value of our method is higher than that of SAM. It is noteworthy 

that for this data set the number of genes that one wants to detect should be no greater than 300, 

hence the PMMM approach provides statistical significant results compared to that of SAM. 

 

 

5.  CONCLUSION 

In this paper we have proposed an improved method of determining the number of 

components of the distributions of the two t-statistic-type scores by applying the modified 

likelihood ratio test of [2,3]. We also implemented a penalty term for the variance so that the log-

likelihood will be bounded. We demonstrated that the testing procedure using our method has a 

higher power (or lower FDR) than that from the most popularly used method, SAM. Further 

details are available in [14].  
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