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ABSTRACT:  In this paper we introduce the notion of levelwise convergence of sequence of fuzzy 

random variables. We derive equivalent conditions for left quasi uniform convergence of fuzzy random 

variables. Conditions are obtained for eventually equi-right continuity for the sequence of fuzzy 

random variables. A necessary and sufficient condition is obtained under which for a sequence of fuzzy 

random variables {Xn} satisfying lim n   
L

,n
X


 = V and lim n  

U

,n
X


 = W where V and W 

are the pair of random variables for   [0,1] that determines a fuzzy random variable.  
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1. INTRODUCTION 

 The theory of fuzzy random variables is a natural extension of general real valued 
random variables or random vectors. The notion of fuzzy random variable was introduced by 
Kwakernaak [1,4] and Puri and Ralescu [2]. In order to make fuzzy random variables relevant 
to statistical analysis for imprecise data we introduce a variety of notions on convergence of 

fuzzy random variables. Since the -level set of a closed fuzzy number is a compact interval, 

inorder to make the end points of the -level set of a  fuzzy random variable to be the random 
variables the concept of strong measurability is introduced for fuzzy  random variables. In this 
paper the concept of level wise convergence of sequence of fuzzy random variables, is 
introduced. Equivalent conditions for left quasi uniform convergence of fuzzy random 
variables are introduced. conditions are obtained for eventually equi-left continuity and 
eventually equi-right continuity of fuzzy random variables. A necessary and sufficient 
condition is obtained under which for a sequence of  fuzzy random variables {Xn} satisfying 

lim n  
L

,n
X


 = V and lim n  

U

,n
X


 = W where V and W are the pair of random 

variables for   [0,1] that determines a fuzzy random variables.  

 In section 2, basic definitions and results about fuzzy numbers and fuzzy random 

variables are recalled. In section 3, the concepts of level wise convergence of sequence of 

fuzzy random variables, and the equivalent conditions which manifest the left quasi uniform 

convergence of fuzzy random variables are disclosed. In this section conditions are obtained 

for eventually equi-left continuity and eventually equi-right continuity for the sequence of 

fuzzy random variables. A necessary and sufficient conditions is obtained for the existence of 

fuzzy random variables interms of convergence of fuzzy random variables.  

 

2. PRELIMINARIES 

 
 In this section, we introduce some basic concepts for fuzzy numbers and fuzzy 
random variables.  
 
Definition : 2.1 
 Let R be the real number field, N the set of all positive integers and F(R) denote the 
set of all fuzzy subsets of R. A fuzzy set u on R is called a fuzzy number if it has the 
following properties.  
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1. u is normal, i.e., there exists an x0  R such that u(x0) =1  

2. u is convex, i.e., u(x + (1)y)  min {u(x), u(y)} for x, y  R and  [0,1]. 

3. u is upper semi continuous  

4. u0 = cl {x  R; u (x) > 0} is a compact set,  

A real number r can be regarded as a fuzzy number r~ defined as  

   r~ (t) = 













rt0

rtfi1
 

 If u  F(R), then u is a fuzzy number if and only if u is a non-empty bounded and 

closed interval for each   [0,1].  

 We denote u = 








UL u,u ,    [0,1].  

Let E be the set of all fuzzy numbers. A partial ordering  in E is defined as  

 u  v iff 
Lu

 

Lv


, 
Uu

 

Uv


 for all   (0,1] 

where u = 








UL u,u  and  

 v =  








UL v,v  

 Give a real number x, we can induce a fuzzy number x~  with membership function 

)r(
x~

  < 1 for r  x. We call x~  as the fuzzy real number induced by the real number x. let 

FR be a set of all fuzzy real numbers induced by the real number system R. We define the 

relation ~ on FR as 
1x~ ~ 

2x~  iff 
1x~  and 

2x~  are induced by the same real number x. Then ~ is 

an equivalence relation inducing the equivalence classes [ x~ ]={ a~ ; a~  ~ x~ }. The quotient 

set FR/~ is the set of all equivalence classes then the cardinality of FR/~ is equal to the 

cardinality of the real number system R. We call FR/~ as fuzzy real number system. In 

practice we take only one element x~ from each equivalence class [ x~ ] to form the fuzzy real 

number system (FR/~)R, that is  

 (FR/~)R = { x~ ; x~   [ x~ ], x~ is the only element from [ x~ ]} 

Definition : 2.2 [2] 

 Let (X, M) be a measurable space and (R,B) be a Borel measurable space. Let P(R) 

denote the power set of R, and f : X  P(R) be a set valued function. Then f is called 

measurable if and only if {(x,y) ; yf(x)} is a measurable subset of M x B.  

Definition : 2.3 

 f
~

(x) is called a fuzzy valued function of f
~

 : X  E. If f
~

is a fuzzy valued function 

then 


f
~

(x) is the -level set of the fuzzy number f
~

(x); xX. f
~

is called measurable if 


f
~

is 

measurable for each , (0,1]. 

 Let Ecl denote the set of all closed fuzzy numbers. f
~

(x) is called closed fuzzy- 

valued function if f : X  Ecl and we have  


f
~

(x) = 








)x(f),x(f UL
 for any x  X.  

Definition : 2.4 [5] 

 Let f
~

(x) be a closed fuzzy valued function, f
~

(x) is called strongly measurable if 

one of the following conditions is satisfied.  

1)  
Lf

~


(x) and 
Uf

~


(x) are measurable for all  (0,1] 
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2) )x(f
~

 is measurable and one of 
Lf

~


(x) and 
Uf

~


(x) is measurable for all .  

Definition : 2.5 [5] 

 Let (FR/~)R be a fuzzy real number system and X
~

 :   (FR/~)R be a closed fuzzy 

valued function. Then X
~

 is called a fuzzy random variables if X
~

 is strongly measurable.  

Theorem : 2.1 [5] 

 Let (FR/~)R be a fuzzy real number system and X
~

:   (FR/~)R be a closed fuzzy 

valued function. X
~

is a fuzzy random variable if and only if 
LX

~


 and 
UX

~


 are random 

variables for all .  

Theorem : 2.2 [6] 

 Let u be a fuzzy number and u = 








UL u,u  then the following conditions are 

satisfied.  

1. 
Lu  is a bounded left continuous non-decreasing function on (0,1].  

2. 
UU


 is bounded left continuous non-increasing function on (0,1]. 

3. 
Lu


and 
UU


 are right continuous at  = 0  

4. 
L

1
U   

U

1
u  

Conversely  of  the pair of functions () and () satisfies conditions (1)-(4) then there 

exists a unique fuzzy number u such that u = [(), ()] for each  [0,1].  

 

3. CONVERGENCE OF FUZZY RANDOM VARIABLES 

 

 In this section we introduce various notions of convergence of fuzzy random 

variables.  

Definition : 3.1 

 Let {
n

X
~

} be a sequence of fuzzy random variables and X
~

 be a fuzzy random 

variable. We say {
n

X
~

} level converges to X
~

 denoted as 
n

X
~


l

X
~

 if 
n

lim  
L

,n
X


 = 

LX


 and lim  n  
U

,n
X
~


 = 

UX   for all  [0,1].  

Definition : 3.2 

 A sequence of fuzzy random variables Xm() : [a,b]  R (m = 1,2,....) is said to 

converge left quasi uniformly to X() at 0  (a,b) if for any  > 0, there exist  > 0 ( < 0) 

and m0  N such that )(X)(X UU

,m



 <  for each   (0,1] and   (0  , 0]. 

Definition : 3.3 

 A sequence of fuzzy random variables Xm() : [a, b] R (m = 1,2...) is said to 

converge right quasi uniformly to X() at 0  [a,b) if for any >0 there exist  > 0,  > 0 

and m0  N   

)(X)(X UU

,m



 <  for each   (0,1] and   [0, 0 + ) 

Theorem : 3.1 

 Let {Xn} be a sequence of fuzzy random variables. Then the following two 

statements are equivalent 

(a) infr< supn 
U

r,n
X  = supn

U

,n
X


  

(b)  The sequence of functions 
















1m

U

,n
Xmn1max  
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Converges left quasi uniformly to supn 
U

,n
X


 at   (0,1].  

Proof (a)  (b) 

 By stipulation of (a) for any > 0, there exists r0  (0, ) such that supn 
U

r,n 0
X < supn 

U

,n
X


+ . So there exists m0  N  such that supn 

U

r,n 0
X <

U

,m0
X


+ . 

Thus when r  (r0, ] we have  

 
mn1

max


 
U

r,n
X   supn 

U

r,n
X   supn 

U

r,n 0
X  

    
U

,m0
X


+   

U

r,m0
X  +   

    
mn1

max


U

r,n
X  +    m  m0. 

This establishes (b) 

(b)  (a) since 
U

,n
X


is non-increasing about , we have  

 supn 
U

,n
X


  

r
inf supn 

U

r,n
X  

By stipulation of (b) for any  > 0, there exist m0 N and  > 0 ( < ) such that  

 supn 
U

r,n
X  < 

0mn1
max



U

r,n
X +       (1) 

for r  (  , ].  

 Since max 1  n  m0 
U

,n
X


 is non-increasing and left continuous, we have  

 infr< max1 n  m0
 

U

r,n
X  = max1nm0

 
U

,n
X


  

then it follows from (3.1) that  

         
r

inf  
n

sup  
U

r,n
X   max1nm0

 
U

,n
X


 +    supn 

U

,n
X


+   

This establishes (a)  

Definition : 3.4 

 Let {Xn} be a sequence of fuzzy random variables defined as [a,b] and 0  [a,b]. 

{Xn} is said to be eventually equi-left continuous at 0 if for any  > 0 there exists N   and 

 > 0  such that  

 
U

,n

U

,n 0
XX


   when ever   (0  , 0] and n  N.  

Definition : 3.5 

 Let {Xn} be  a sequence of fuzzy random variables defined on [a,b] and 0  (a,b]. 

{Xn} is said to be eventually equi-right continuous at 0 if for any  > 0 there exists N   

and  > 0 such that  

 
L

,n

L

,n 0
XX


 <  whenever   [0, 0+) and n  N.  

Theorem : 3.2 

 Let {Xn} be a sequence of fuzzy random variables and X be a fuzzy random 

variables. If limn 
L

,n
X


 = 

LX


 (limn 
U

,n
X


 = 

UX


) for each   (0,1], then {
L

,n
X


} (resp 

{
L

,n
X


}) is eventually equi-left continuous at  (0,1]. Further more if limn 

L

0,n
u  = 

L

0
u  

(limn 
U

0,n
u  = 

U

0
u ) then {

L

,n
u


} (resp {

U

,n
u


}) is equally equi right continuous at  = 0.  

Proof  

 Suppose that limn 
L

,n
X


 = 

LX


 for each   (0,]  

Since 
LX


 is left continuous at   (0,1] for any  > 0 there exists 0<1<  
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LL XX


  < 
3

  for all   (1, ]      (2) 

Taking 0 <  <   1 we have      (1, ). 

Since limn 
L

,n
X


 = 

LX


and limn 
L

,n
X


 = 

LX

 there exists N   such that  

 
LL

,n
XX


 < 

3
 , 

LL

,n
XX


 < 

3
  for all n  N.    (3)  

L

,n
X


 and 

LX


 are non-decreasing for . It follows from (2) and (3) that  

 
L

,n
X


  

L

,n
X


  

L

,n
X


 < 

LX


 + 
3

  < 
LX


 + 

3
2    

whenever   (  , ]  

and n  N. so we have  

 0  
L

,n
X


 

L

,n
X


  

LX

 

L

,n
X


+ 

3
2  <   

whenever   (  , ] and n  N.  

 This shows that {
L

,n
X


} is eventually equi-left continuous at 0.   

 Furthermore, suppose limn
L

0,n
X  = 

L

0
X  

Since 
LX


 is right continuous at  = 0, for any   > 0 there exists 1 > 0 such that  

 0  
LX


  
L

0
X  < 

3
  for all   [0, 1)      (4) 

Take  = 
2

1
  

 Since limn 
L

0,n
X  = 

L

0
X  and  

 limn 
L

,n
X


 = 

LX


, there exists N   such that   

 
L

0

L

0,n
XX   < 

3
  

 
LL

,n
XX


  < 

3
  for all n N       (5) 

It follows from (4) and (5) that  

      0 
L

,n
X


  

L

0,n
X  < 

L

,n
X


  







 
3

XL

0
 < 

LX


+ 
3

   
L

0
X  + 

3
  <   

 whenever   [0, ) and n N. 

Therefore {
L

,n
X


} is eventually equi-right continuous at  = 0. Similarly we can prove the 

other results.  

Theorem : 3.6 

 Let {Xn} be a sequence of fuzzy random variables such that 
n

lim L

,n
X


= V and 

limn 
U

,n
X


 = w for each   [0,1]. Then the pair of functions V and W determine a fuzzy 

random variable if and only if the sequence of functions {
L

,n
X


} and {

U

,n
X


} are eventually 

equi-left continuous at each   (0,1] and eventually equi-right continuous at =0. 

 

Proof. Suppose that there exists a fuzzy random variable X such that  

 limn 
L

,n
X


 = V = 

LX


 limn 
U

,n
X


 = W = 

UX


 for all   [0,1] 
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By theorem 3.5 we know that {
L

,n
X


} and {

U

,n
X


} are eventually equi- left continuous at 

each   (0,1] and eventually right continuous at  = 0.  

 Conversely, since {
L

,n
X


} and {

U

,n
X


} are eventually equi-left continuous at each  

 (0,1] for any  > 0, there exists N   and  > 0 such that  

 0  
L

,n
X


  

L

,n
X


 < , 0  

U

,n
X


  

U

,n
X


<       (6) 

whenever   (  , ] and n  N.  

 Letting n   in (6) we obtain  

 0  V  V  , 0  W  W    whenever   (  , ] 

This shows that V and W are left continuous at   (0,1]. 

 Similarly by using the eventual equi-right continuity of {
L

,n
X


} and {

U

,n
X


} at  = 0  

it  can  be  proved that V and W are right continuous at  = 0.  

 It is easy to see that V is non-decreasing and W is non-increasing and V1  W1. This 

shows that V and W, satisfy the conditions (1)-(4) in theorem 2.2. Hence there exists a 

fuzzy random variable X, such that 
LX


=V and 
UX


 = W for each   [0,1]. This concludes 

the proof.  
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