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ANALYSIS OF STOCHASTIC ATTRACTORS FOR POPULATION

DYNAMICAL SYSTEMS WITH ENVIRONMENTAL NOISE
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ABSTRACT. We study stochastic attractors of nonlinear dynamical systems modeling population

dynamics. For the approximation of probabilistic characteristics of these attractors, constructive

computational methods based on stochastic sensitivity functions technique are suggested. Applica-

tions of these methods for analysis of the noise-induced effects in a model of population dynamics are

demonstrated. The critical value of parameter corresponding to supersensitive limit cycle is found.

For this value of parameter, a new noise-induced phenomenon of qualitative changes of stochastic

oscillations is shown.
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1. STOCHASTIC SENSITIVITY OF ATTRACTORS

For many dynamical processes, a basic mathematical model is the non-linear

deterministic system

(1.1) ẋ = f(x).

Here x is n-vector, f(x) is n-vector function. Suppose that the system (1.1) has an

exponentially stable attractor. A classical analysis of local stability of attractor is

based on the linear approximation system and corresponding Lyapunov exponents.

A system of stochastic differential equations (in Ito’s or Stratonovich’s sense)

(1.2) ẋ = f(x) + εσ(x)ẇ,

is a traditional mathematical model allowing to study quantitative description of

results of external disturbances. Here w(t) is a n-dimensional Wiener process, σ(x)

is n× n-matrix function of disturbances with intensity ε. The random trajectories of

forced system (1.2) leave a deterministic attractor and form a corresponding stochastic

attractor with stationary probabilistic distribution ρ(x, ε).

The detailed description of random distribution ρ(x, ε) is given by stationary

Kolmogorov-Fokker-Planck (KFP) equation. In a common case, an analytical re-

search of this equation is a very difficult problem. Under these circumstances asymp-

totics based on quasipotential v(x) = − limε→0 ε2 log ρ(x, ε) are actively used [1].
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For small noise, one can write an approximation of ρ(x, ε) as follows ρ(x, ε) ≈

K · exp (−v(x)/ε2) . In the stability analysis, we need a good approximation of the

quasipotential in a small neighborhood of a deterministic attractor.

We shall consider two types of attractors: equilibria and limit cycles.

2. STOCHASTIC EQUILIBRIUM

Let a system (1.1) has an exponentially stable equilibrium x̄. A standard quanti-

tative characteristics for the equilibrium stability is Lyapunov exponent λ = max
i

Reλi,

where λi are eigenvalues of the matrix F = ∂f

∂x
(x̄).

Under the random disturbances, a probability distribution of the stochastic states

of system (1.2) are arranged around deterministic equilibrium x̄ and form a corre-

sponding stochastic equilibrium. In this case, the following quadratic approximation

v(x) ≈ 1
2
(x− x̄, W−1(x− x̄)) is used. It allows to present an asymptotics of stationary

distribution in Gaussian form

ρ(x, ε) ≈ K · exp

(

−
(x − x̄, W−1(x − x̄))

2ε2

)

with the covariance matrix ε2W . For the exponentially stable equilibrium x̄, the

matrix W is a unique solution of matrix equation

(2.1) FW + WF⊤ = −S, F =
∂f

∂x
(x̄), S = GG⊤, G = σ(x̄).

This matrix W is a stochastic sensitivity function (SSF) of the equilibrium x̄.

3. STOCHASTIC CYCLE

Now consider a case when the system (1.1) has a T -periodic solution x = ξ(t) with

an exponentially stable phase curve γ (limit cycle). Under the random disturbances,

stochastic trajectories of system (1.2) form a stochastic cycle around the deterministic

curve γ.

Let Πt be a hyperplane that is orthogonal to cycle γ at the point ξ(t) (0 6 t 6

T ). Consider a random variable Xt. Random values Xt are points of intersection

of random trajectories with the hyperplane Πt in a neighborhood of ξ(t). For the

stochastic cycle, a random value Xt has a probabilistic distribution ρt(x, ε). For small

noise, with the help of corresponding quadratic approximation of quasipotential, the

following Gaussian asymptotics can be obtained [2]

ρt(x, ε) = K · exp

(

−
(x − ξ(t))⊤W+(t)(x − ξ(t))

2ε2

)

.

Here mt = ξ(t) is a mean value and D(t, ε) = ε2W (t) is a covariance matrix.

The matrix function W (t) is a solution of boundary value problem

(3.1) Ẇ = F (t)W + WF⊤(t) + P (t)S(t)P (t), W (0) = W (T ), W (t)r(t) ≡ 0.
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Here S(t) = σ(ξ(t))σ⊤(ξ(t)), F (t) =
∂f

∂x
(ξ(t)), r(t) = f(ξ(t)), P (t) = Pr(t), where

Pr = I − rr⊤/r⊤r is a projection matrix onto the subspace orthogonal to the vector

r 6= 0.

This matrix function W (t) is a stochastic sensitivity function of the cycle γ.

4. SENSITIVITY ANALYSIS OF 2D-CYCLES

For the case n = 2, the projection matrix is given by P (t) = p(t)p⊤(t), where

p(t) is a normalized vector orthogonal to f(ξ(t)). As a result the matrix W (t) can

be written [3] as W (t) = µ(t)P (t). Here µ(t) > 0 is T -periodic scalar stochastic

sensitivity function (SSF). This scalar function is governed by the equation

µ̇ = a(t)µ + b(t)

with T -periodic coefficients a(t) = p⊤(t)(F⊤(t) + F (t))p(t), b(t) = p⊤(t)S(t)p(t). The

explicit formula for solution µ(t) is given by following:

µ(t) = g(t)(c+h(t)), g(t) = exp

(
∫ t

0

a(s)ds

)

, h(t) =

∫ t

0

b(s)

g(s)
ds, c =

g(T )h(T )

1 − g(T )
.

The value M = maxµ(t), t ∈ [0, T ] plays an important role in the analysis of stochas-

tic cycle. We shall consider M as a sensitivity factor of a cycle γ response to random

disturbances.

5. STOCHASTIC MODEL OF POPULATION DYNAMICS

Consider a stochastically forced system

(5.1)
ẋ =

r

ε
x(1 − x) −

a2x2

ε(1 + b2x2)
y + σẇ1

ẏ =
a2x2

1 + b2x2
y − my + σẇ2,

where wi(t) are independent Wiener processes, σ is a noise intensity. For σ = 0,

this system is a well-known deterministic Truscott-Brindley model [4], [5] for the

prey-predator dynamics of phytoplankton x and zooplankton y.

For a2 > m(1 + b2), unforced system (σ = 0) has a nontrivial equilibrium x̄ =
√

m

a2 − b2m
, ȳ =

r

m
x̄(1 − x̄). We study stochastic system (5.1) for the fixed set of

parameters ε = 0.01, r = m = 1, b = 7 and a ∈ [7.1, 10]. For 7.1 ≤ a ≤ 10, this

system demonstrates Hopf bifurcation at the points a1 = 7.345 and a2 = 8.975. In

the intervals [7.1, a1) and (a2, 10] the equilibrium x̄, ȳ is stable. In the interval (a1, a2)

this equilibrium is unstable and deterministic system has a stable limit cycle. Note

that a transition zone from stable equilibria to limit cycles of maximal amplitudes is

very narrow. One can see it in Fig. 1, where extremal values of variable x (Fig. 1a)
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and a variable y (Fig. 1b) are plotted for considered attractors. Lyapunov exponents

for limit cycles are plotted in Fig. 5.
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Fig. 1. Attractors of deterministic system

The random trajectories of stochastically forced model leave the deterministic

attractor and form corresponding stochastic attractor around it. Results of a direct

numerical simulation of the stochastic system (5.1) are plotted in Fig. 2.
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Fig. 2. Stochastic attractors for a) σ = 0.001, b) σ = 0.01

Here random states of stochastic attractors (grey color) and deterministic attrac-

tors (black color) are presented for two values of noise intensity σ = 0.001 (Fig. 2a)

and σ = 0.01 (Fig. 2b).

Consider stochastic attractors for a ∈ (a2, 10). A dispersion of random states on

this interval is non-uniform. As a parameter a tends to a2, the dispersion grows. This

feature can be explained with the help of SSF. In Fig. 3, values w11(a) and w22(a) of

the SSF matrix W (a) for equilibria x̄(a), ȳ(a) are shown. As one can see, these values

essentially grow near bifurcation point a2.
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Fig. 3. Stochastic sensitivity of equilibria Fig. 4. Noise-induced oscillations. Stochastic

attractors for σ = 0.002:

a = 9 (upper), a = 9.3 (lower)
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High level of stochastic sensitivity can cause noise-induced transitions from sto-

chastic equilibria to stochastic oscillations with high amplitude. This phenomenon

is observed in model (5.1). In Fig. 4, stochastic attractors generated by noise with

intensity σ = 0.002 for values a = 9.0 and a = 9.3 are compared. For a = 9.3,

random states are concentrated near deterministic equilibrium. For a = 9.0, one can

see stochastic oscillations of high amplitude. Similar noise-induced oscillations are

observed for sufficiently large zone from the right of a2 (see Fig. 2).

Consider a zone of limit cycles a1 < a < a2. In Fig. 6, the sensitivity factor

M(a) is plotted. We can see an essential overfall of stochastic sensitivity values.

Maximum value of sensitivity factor M = 1.7 · 1010 corresponds to a∗ = 7.3486135.

Consider in detail an interval 7.3486 < a < 7.34863. We can see from Fig. 5 that

Lyapunov exponent λ monotonically decreases with growth a. It means an increase

of a stability degree of a cycle to disturbances of initial data. One should think

it should be accompanied by the appropriate decrease in the sensitivity of a cycle

to random disturbances. However, here the converse is observed. The value M

behaves absolutely otherwise (see Fig. 6). Here we have typical example of “sensitive

dependence to noise without sensitive dependence to initial conditions” [6].
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Fig. 5. Lyapunov exponent for deterministic cycles Fig. 6. Sensitivity factor for stochastic cycles

On the considered interval the function M(a) is not monotonic. Its graph has

sharp high peak. As a result the function M(a) has an essential overfall of values. We

compare the stochastic cycles of model (5.1) for values a close to a∗. For three values of

parameter, a = 7.3486, a∗ = 7.3486135, a = 7.34863 in Fig. 7 our results for ε = 10−8

are demonstrated. As we see the model (5.1) with a∗ (Fig. 7b) is supersensitive. For

small background stochastic disturbances the burst of response amplitude is shown.

Unexpected noise-induced effects for the supersensitive cycle with parameter a∗

are demonstrated in Fig. 8. Here stochastic attractors are plotted for different values

of noise intensity. For σ = 10−9 we observe a stochastic cycle with small dispersion

(see Fig. 8a). For σ = 10−8 a bottom part of the stochastic cycle is essentially washed

out (see Fig. 8b). In Figs. 8c,d,e σ = 10−7, 10−6, 10−5 we observe a splitting of a

single stochastic cycle into two coexisting stochastic cycles of different amplitude. As
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Fig. 7. Stochastic attractors for σ = 10−8: a) a = 7.3486, b) a = 7.3486135, c) a = 7.34863

parameter σ grows, a smaller cycle vanishes (see Figs. 8f,g,h). In Fig. 8h for σ = 10−2

we observe a single stochastic cycle.
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Fig. 8. Noise-induced transitions:

σ = 10−9 (a), 10−8 (b), 10−7 (c), 10−6 (d), 10−5 (e), 10−4 (f), 10−3 (g), 10−2 (h).

Corresponding noise-induced transitions between two regimes of oscillations for

solutions x(t) are presented in Fig. 9. For noise intensity σ = 10−6 oscillations of

two fixed amplitudes are clearly observed. Here we have an example of noise-induced

intermittency.
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Fig. 9. Noise-induced intermittency: a) σ = 0, b) σ = 10−7, c) σ = 10−6, d) σ = 10−3.
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Large value of sensitivity factor imply new noise-induced phenomena for this

stochastic population model.

Thus, the stochastic sensitivity function technique is a useful analytical tool for

the prediction of new noise-induced response for stochastically forced nonlinear dy-

namical models.
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