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ABSTRACT. The applicability of differential game model is determined by the solvability of

differential game. As to noncooperative differential game model, its optimality condition is Boundary

Value Problems(BVPs) or Differential Algebraic Equations(DAEs). Thus, it is difficult to find

analytical solution to this model except for some special case. In this paper, numerical method

is developed to solve differential game models, and one iterative algorithm is given and discussed.

And the algorithm is used to solve differential game model coming from competition in business

competition. Numerical results are presented.
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1. INTRODUCTION

Optimal control theory is a mathematical optimization method for deriving con-

trol policies. The method is largely due to the work of Lev Pontryagin and Richard

Bellman. The abstract framework of optimal control goes as follows.

min J(u(t)) = h(x(T ), x(0)) +

∫ T

0

f(x(t), u(t), t)dt

subject to

(1)



























dx(t)
dt

= a(x(t), u(t), t)

u(t) ∈ Ω

b(x(t), u(t), t) ≤ 0 algebraic path constraints

φ(x(0), x(T )) boundary conditions

In above optimal control model, there is one decision maker, who would like

to optimize his objective function J by his control u(t) under constraints of some

ordinary differential system dx(t)
dt

. Above optimal control can be solved analytically

or numerically using Pontryagin’s maximum principle, or by solving the Hamilton-

Jacobi-Bellman equation. However, in some real dynamic system, there are more than

one decision maker, and each decision maker uses his own control to optimize his own
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objective function. In other words, in this system there exits competition. Game the-

ory is a mathematical tool to investigate competition, which originates from Dr. John

Nash. His game is called Matrix Game. In matrix game, the value of decision variable

is the choice of row or column. As to Matrix Game, existence of Nash Equilibrium

was solved, and Linear Programming was proved to be an efficient method to solve

for its equilibrium. The Nash Equilibrium is define by the following inequalities under

supposition that each decision maker wants to minimize his objective function:

(2)



















J1(u1, u
∗
2, · · · , u∗

n) ≥ J1(u
∗
1, u

∗
2, · · · , u∗

n)
...

Jn(u∗
1, u

∗
2, · · · , un) ≥ Jn(u∗

1, u
∗
2, · · · , u∗

n)

where Ji is competitor i’s objective value, ui is competitor i’s decision variable, and

(u∗
1, · · · , u∗

n) is Nash Equilibrium. From (2), Nash Equilibrium means if any competi-

tor deviates from equilibrium, then his objective value will be hurt.

Differential Game is a special Game model. Differential Game originated from

R. Isaacs [9] in his research report from RAND Corporation around 1945. The Dif-

ferential Game model is as follows:


















minu1
J1 = h1(x(T ), x(0)) +

∫ T

0
f1(x(t), u1(t), · · · , un(t), t)dt

...

minun
Jn = hn(x(T ), x(0)) +

∫ T

0
fn(x(t), u1(t), · · · , un(t), t)dt

subject to

(3)



















dx(t)
dt

= a(x(t), u1(t), · · · , un(t), t),

b(x(t), u1(t), · · · , un(t), t) ≤ 0 algebraic path constraints

φ(x(0), x(T )) boundary conditions

In the above model, competitor i has its objective functional Ji, and his decision

variable ui is a measurable function taking value from compact set Ω. All decision

variables are imbedded in the same dynamics, but each competitor tries to opti-

mize his own objective. The key assumption for above Differential Game is: 1) all

competitors make decisions at the same time; 2) the status of competitor is symmet-

ric/same, which means each competitor has the same full knowledge of the dynamics,

and knows the other competitors’ objective functions. The solution of above model

is defined as Nash Equilibrium, which is described by the set of inequalities (2). The

classical proofs of existence and optimality condition of Nash Equilibrium are from

Dr. Friedman [1], Dr. Berkovtiz, [6]. After the existence and optimality condition

is given, differential game is applied in many fields, such as economics, sociology,

military, etc. The first application in marketing is due to Lawrence Friedman [5].

In recent investigation of the application of differential game model in marketing,
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Gila E. Fruchter, Shlomo Kalish [4] focus on closed-loop control in a duopoly. In

Gary M. Ericson’s paper [3], he investigates a special method to solve closed-loop

control, but his method can be successful only if the form of objective function could

be guessed. Other typical papers are as follows: Dockner and Jorgessen[2]. Teng,

Jinn-Tsair, and Thompson[10]. Negash Medhin and Wan ([7], [8]).

Since the optimality condition for non-cooperative differential game is Differential

Algebraic Equation (DAE) or Boundary Value Problem (BVP), it is changeling to

solve it, especially when the dimension of problem is high. In this paper, we discuss the

optimality condition for differential game models, develop numerical methods to solve

optimality condition and models, and apply differential game model to competition

in business.

2. OPTIMALITY CONDITION AND NUMERICAL ALGORITHM

The solution of non-cooperative differential game model is defined by Nash Equi-

librium (1). Nash equilibrium is reached when there is no incentive for each competitor

to change his control any more. The Nash Equilibrium is called ‘optimal’ in the sense

that if one of the player deviates from the Nash equilibrium, his cost will increase.

In the application of differential games, there are two types of controls that are

commonly used: Open-loop and Closed-loop. Control u is called open-loop control if

u = u(t). Control u is called closed-loop if u = u(t,x(t)). Open-loop controls are

much easier to compute than closed loop controls, and the disadvantage in reality is

that the competitors choose their controls at the beginning of the game and comply

with their strategies in the game. The advantage of a closed-loop control is that the

players adjust their controls according to the state. The disadvantage of closed-loop

controls is that they are much more difficult to compute.

The necessary optimality condition for non-cooperative differential game model

comes from Pontryagin’s Minimum Principle. For open-loop control, the optimality

condition is given by following theorem([1], [6]).

Theorem 1. For an N-person differential game in fixed duration [0, T ], if

{u∗
i
(t), i ∈ N} provides an open-loop Nash equilibrium solution, and {x∗(t), 0 ≤ t ≤ T}

is the corresponding state trajectory, there exist N costate functions pi(·) : [0,T] → Rn,

i ∈ N, such that the following relations are satisfied:

dx∗

dt
= a(t, x∗, u∗

1, · · · , u∗
i , · · · , , u∗

N), x∗(0) = x0

u∗
i = argmin

ui∈Ωi

Hi(t, pi, x
∗, u∗

1, · · · , u∗
i−1,ui, u

∗
i+1 · · · , u∗

N)

dpi

dt
= −

∂Hi(t, pi, x
∗, u∗

1, · · · , u∗
i , · · · , u∗

N)

∂x
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pi(T ) =
∂hi(x

∗(T ))

∂x
, i ∈ N

where

Hi(t, pi, x, u1, · · · , uN) , fi(t, x, u1, · · · , uN) + pi · a(t, x, u1, · · · , uN)

For closed-loop control, the optimality condition is given by following theorem

([1]).

Theorem 2. For an N-person differential game in fixed duration [0, T ], if {u∗
i
(t,x(t)),

i ∈ N} provides an closed-loop Nash equilibrium solution, and {x∗(t), 0 ≤ t ≤ T} is

the corresponding state trajectory, there exist N costate functions pi(·) : [0,T] → Rn,

i ∈ N, such that the following relations are satisfied:]

dx∗

dt
= a(t, x∗, u∗

1, · · · , u∗
i , · · · , u∗

N), x∗(0) = x0

u∗
i = argminui∈Ωi

Hi(t, pi, x
∗, u∗

1, · · · , u∗
i−1,ui, u

∗
i+1 · · · , u∗

N)

dpi

dt
= −

∂Hi(t, pi, x
∗, u∗

1(x(t), t), · · · , u∗
i (x(t), t), · · · , u∗

N(x(t), t)

∂x

pi(T ) =
∂hi(x

∗(T ))

∂x
, i ∈ N

where

Hi(t, pi, x, u1, · · · , uN) , fi(t, x, u1, · · · , uN) + pi · a(t, x, u1, · · · , uN)

In above necessary optimality conditions for both open- and closed-loop, the

second equation is optimal control for each competitor. For example, competitor i’s

control ui minimizes his own hamiltonian Hi conditioning on all other competitors’

controls are optimal controls. The difference between open- and closed-loop control

is costate equations in closed-loop case are partial differential equation with the form

of ∂ui

∂x
.

The algorithm based on solving BVP or DAE needs the controls ui to be solvable

explicitly from optimality condition([7]). The design of the following algorithm does

not need this condition. It is an iterative algorithms. The idea of iterative algorithm

is based on Medhin and Wan ([8]). The process is as follows: first generating n

controls for n players separately; second, solve state equation forward; third, solve

for ∂ui

∂xj
, ∂vi

∂xj
, ∂Hi

∂xj
, ∂Hi

∂uj
for each mesh point; fourth, solve the costate system backward,

then evaluate objective values. Fifth, if stopping criteria are satisfied, then stop.

Otherwise, each player updates his control by steepest descent direction of his own

Hamiltonian, then repeat from the second step. This method has first order conver-

gence, but the advantage is that we do not need to guess the initial condition for

the state variable. Furthermore, this method can be used when the controls cannot

be solved for explicitly, which is especially useful for closed-loop control case, since
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we can use discretized control and state variable values to solve for ∂ui

∂xj
, ∂vi

∂xj
. The

following algorithm is set up using this process:

Algorithm:

1. Generate randomly a discrete approximation to control u1(t), · · · , un(t), v1(t), · · · ,

vn(t), t ∈ [0, T ], that is:

u1(t) = u1(tk), t ∈ [tk, tk+1), k = 1, 2, · · · , N
...

un(t) = un(tk), t ∈ [tk, tk+1), k = 1, 2, · · · , N

v1(t) = v1(tk), t ∈ [tk, tk+1), k = 1, 2, · · · , N
...

vn(t) = vn(tk), t ∈ [tk, tk+1), k = 1, 2, · · · , N

2. Integrate the state equation from 0 to T with initial condition xi(0) = xi0,

i = 1, · · · , n.

3. Calculate λij(T ), i = 1, · · · , n using xi(T ), i = 1, · · · , n and integrate the costate

equation backward.

4. Solve for ∂ui

∂xj
, ∂vi

∂xj
, ∂Hi

∂xj
, ∂Hi

∂uj
for each interval [tk, tk+1).

5. Use the discrete value of state and costate variables to evaluate objective values:

Ji(0), i = 1, · · · , n.

6. Generate a new piecewise constant control given by






































u1(tk+1) = u1(tk) − τ1
∂H1

∂u1

(tk), k = 1, 2, · · · , N

· · · · · ·

un(tk+1) = un(tk) − τn
∂Hn

∂un
(tk), k = 1, 2, · · · , N

v1(tk+1) = v1(tk) − δ1
∂H1

∂v1

(tk), k = 1, 2, · · · , N

· · · · · ·

vn(tk+1) = vn(tk) − δn
∂Hn

∂vn
(tk), k = 1, 2, · · · , N

where step length τi, δi will be chosen to decrease Hi, i = 1, · · · , n.

7. Use updated controls to repeat step 2 to step 5 to get Ji(1), i = 1, · · · , n.

8. If |Ji(k)−Ji(k−1)| < ǫ, for i = 1, · · · , n, then terminate the iterative procedure

and output the optimal controls and state equations.

If the stopping criterion is not satisfied, generate a new piecewise constant

control given by






































u1(tk+1) = u1(tk) − τ1
∂H1

∂u1

(tk), k = 1, 2, · · · , N

· · · · · ·

un(tk+1) = un(tk) − τn
∂Hn

∂un
(tk), k = 1, 2, · · · , N

v1(tk+1) = v1(tk) − δ1
∂H1

∂v1

(tk), k = 1, 2, · · · , N

· · · · · ·

vn(tk+1) = vn(tk) − δn
∂Hn

∂vn
(tk), k = 1, 2, · · · , N
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where step length τi, δi will be chosen to decrease Hi, i = 1, · · · , n. Then go back

to step 7.

3. MODELING

Detail modeling background can be found at [7], [8]. In a general life cycle of a

product, the market sale of some product will keep approximately constant for some

time. A non-cooperative model differential game will be set up for this time interval.

Thus, we assume that the total market sale is fixed. Furthermore, we suppose this is

an one-product market where n-companies are involved. The market managers will

use two kinds of controls: advertising and promotion, to compete for market share

and minimize cost. We use the index i = 1, 2, · · · , n to represent these n companies.

The main notations are as follows:

xi(t) Market share of company i at time t. Since we are in the middle stage of product

life-cycle, we impose
∑n

i xi(t) = 1.

ui(t) Control(advertising) of company i at time t.

vi(t) Control(promotion) of company i at time t.

ai Effectiveness of control-advertising of company i.

bi Effectiveness of control-promotion of company i.

ci(t) Interaction effectiveness of advertising and promotion.

δi Advertising cost parameter for company i.

γi Promotion cost parameter for company i.

ωi Company i’s weight of final market share.

p Price of this product.

The dynamics is as followings:

ẋi = gi(ui, vi)(1 − xi) − xi

n
∑

k=1,k 6=i

gk(uk, vk), i = 1, · · · , n

where gi is a function of (ui, vi). We interpret gi(ui, vi) as total effect of these two

controls. In our modeling, one assumption is when company i does not employ any

control, it still keeps a basic share of the market. Thus, we take the form of

gi(ui(t), vi(t)) = eaiui(t)+bivi(t) + ci(t)ui(t)vi(t).

In the numerical experiment, there are two companies. And supposing that company

2 is stronger than company 1, which means the effectiveness of control of company 2

is bigger than that of company 1, that is, a1 < a2, b1 < b2.

For performance, we will consider two objectives: one is profit, the other is market

share at the final time, so the objective functions are of the form:

min
ui,vi

Ji =

∫ T

t0

[
δi

2
u2

i (t) − (p −
γi

2
v2

i (t))xi(t)]dt − ωi

xi(T )
∑n

k=1 xk(T )
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Based on above dynamics, objective functions, and optimality condition (Theo-

rem 2), the explicit optimality condition is as follows:

ẋ17 = (ea1u1+b1v1 + c1u1v1) − x1

n
∑

k=1

(eakuk+bkvk + ckukvk)

· · · · · · · · · · · ·

ẋi = (eaiui+bivi + ciuivi) − xi

n
∑

k=1

(eakuk+bkvk + ckukvk)

· · · · · · · · · · · ·

ẋn = (eanun+bnvn + cnunvn) − xn

n
∑

k=1

(eakuk+bkvk + ckukvk)

−λ̇i1 =
∂Hi

∂x1
+

∑

j 6=i

∂Hi

∂uj

∂uj

∂x1
+

∑

j 6=i

∂Hi

∂vj

∂vj

∂x1

· · · · · · · · · · · ·

−λ̇ii =
∂Hi

∂xi

+
∑

j 6=i

∂Hi

∂uj

∂uj

∂xi

+
∑

j 6=i

∂Hi

∂vj

∂vj

∂xi

· · · · · · · · · · · ·

− ˙λin =
∂Hn

∂xn

+
∑

j 6=i

∂Hi

∂uj

∂uj

∂xn

+
∑

j 6=i

∂Hi

∂vj

∂vj

∂xn

where

∂Hi

∂xi

= −(p −
γi

2
vi) − λiiG

∂Hi

∂xj

= −λijG, for j 6= i

∂Hi

∂uj

= (aje
ajuj+bjvj + cjvj)

[

λij(1 − xj) −
∑

k 6=j

λikxk

]

∂Hi

∂vj

= (bje
ajuj+bjvj + cjuj)

[

λij(1 − xj) −
∑

k 6=j

λikxk

]

{

δi +

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

a2
i e

aiui+bivi

}

∂ui

∂xi

+

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

(aibie
aiui+bivi + ci)

∂vi

∂xi

= λii(aie
aiui+bivi + civi)

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

(aibie
aiui+bivi + ci)

∂ui

∂xi
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+

{

γixi +

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

b2
i e

aiui+bivi

}

∂vi

∂xi

= λii(bie
aiui+bivi + ciui) − γivi

{

δi +

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

a2
i e

aiui+bivi

}

∂ui

∂xj

+

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

(aibie
aiui+bivi + ci)

∂vi

∂xj

= λij(aie
aiui+bivi + civi)

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

(aibie
aiui+bivi + ci)

∂ui

∂xj

+

{

γixi +

[

λii(1 − xi) −
∑

k 6=i

λikxk

]

b2
i e

aiui+bivi

}

∂vi

∂xj

= λij(bie
aiui+bivi + ciui)

xi(0) = xi0

λij(T ) = ωi

xi(T )

(
∑n

k=1 xk(T ))2

λii(T ) = −ωi

∑n

k=1,k 6=i xk(T )

(
∑n

k=1 xk(T ))2

j 6= i, i = 1, 2, · · · , n

In the above Differential Algebraic Equations, we can not solve controls ui, vi explic-

itly, but it can be solved by our iterative algorithm efficiently. Numerical results are

in Figure 1. The upper left graph is for objective function values. We can see that

the algorithm was searching for the equilibrium for objective values, and converging.

The upper right graph are optimal controls-advertising for these two players. The

lower left graph are optimal controls-promotion for these two players. The lower right

graph are sale trajectories.

4. CONCLUSION

Many real competition can be described and modeled as non-cooperative differ-

ential game. But the applicability of this model depends on its solvability. Based on

the properties of optimality for differential game model, which is BVP or DAE, it is

difficult to solve it analytically. In this paper, an iterative algorithm is developed to

solve this model. Compared with other algorithms, the advantage of this algorithm is

that it can be used for general differential game model. It does not need controls to
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be solved explicitly from optimality condition. But the disadvantage of this algorithm

is that it just has first-order convergence.
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