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ABSTRACT. A brief summary is given of a numerical procedure for solving the Vlasov-Maxwell-

Fokker-Planck system in two spatial dimensions with periodic boundary conditions. A complete

development of this work is given in [S. Wollman, Numerical approximation of the Vlasov-Maxwell-

Fokker-Planck system in two dimensions, preprint]. The system of equations under consideration

is a model for the time evolution of a collisional plasma in the presence of a self consistent electro-

magnetic field. The numerical method is a type of deterministic particle method and generalizes the

numerical procedure of [S. Wollman, E. Ozizmir, Numerical approximation of the Vlasov-Poisson-

Fokker-Planck system in two dimensions, J. Comput. Phys. 228 (2009) 6629–6669] to the case where

a non constant, internally consistent, magnetic field is included. The problem of the long time

asymptotic behavior of solutions is addressed.

Key words: collisional plasma, two dimensional Vlasov-Maxwell-Fokker-Planck system, determin-

istic particle method
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1. INTRODUCTION

A numerical method is developed for approximating the Vlasov-Maxwell-Fokker-

Planck system in two spatial dimensions with periodic boundary conditions, [9]. A

brief summary of this work is given here. Let x = (x1, x2), v = (v1, v2), (x, v) ∈ R4

and t is time. For this two dimensional model the magnetic field acts in a direction

perpendicular to the x1, x2 plane. The electromagnetic force, E + v × B, can be un-

derstood in terms of its reduction from a three dimensional space. Let v = (v1, v2, v3)

and

E(x, t) = (E1(x1, x2, t), E2(x1, x2, t), 0), B(x, t) = (0, 0, b(x1, x2, t)).

Then

E + v ×B = (E1(x, t) + v2b(x, t), E2(x, t)− v1b(x, t), 0).

Let

∇x = (
∂

∂x1
,
∂

∂x2
), ∇v = (

∂

∂v1
,
∂

∂v2
), ∇2

x =
∂2

∂x21
+

∂2

∂x22
.

Received April 15, 2010 1061-5369 $15.00 2010 c©Dynamic Publishers, Inc.



462 S. WOLLMAN

In computing the solution to Maxwell’s equations it is convenient to introduce the

scalar potential, φ(x, t), and the vector potential, A(x, t) = (A1(x, t), A2(x, t)). The

electric field is then computed as

E(x, t) = (E1, E2) = −∇xφ−
∂A

∂t
=

(
− ∂φ

∂x1
− ∂A1

∂t
,− ∂φ

∂x2
− ∂A2

∂t

)
.

The component of the magnetic field perpendicular to the plane of x1, x2 is

b(x, t) =
∂A2

∂x1
− ∂A1

∂x2
.

To define the problem with the periodic boundary conditions let the set A ∈ R4

be

A = {(x, v)/0 ≤ x1, x2 ≤ L, −∞ < v1, v2 <∞}.

Then for (x, v) ∈ A and t ∈ [0, T ] the system to be solved is

(1.1)
∂f

∂t
+ v · ∇xf + (E1 + v2b, E2 − v1b) · ∇vf = ∇v · (βvf + q∇vf),

f(x, v, 0) = f0(x, v),

f(0, x2, v, t) = f(L, x2, v, t), f(x1, 0, v, t) = f(x1, L, v, t).

lim
|v|→∞

f(x, v, t) = 0.

For the solution f(x, v, t) to (1.1) the charge density ρ(x, t) is defined by

(1.2) ρ(x, t) =

∫ ∞
−∞

∫ ∞
−∞

fdv − h(x).

The function h(x) represents a fixed neutralizing background charge density. The

current density J(x, t) is given by

(1.3) J(x, t) = (J1, J2) =

∫ ∞
−∞

∫ ∞
−∞

vfdv =
(∫ ∞
−∞

∫ ∞
−∞

v1fdv,

∫ ∞
−∞

∫ ∞
−∞

v2fdv
)

The scalar potential φ is the solution to

(1.4)
∂2φ

∂t2
−∇2

xφ = ρ,

φ(x, 0) = φ0(x), φt(x, 0) = 0,

The function φ0(x) is the solution to

∇2
xφ0(x) = −ρ(x, 0), ρ(x, 0) =

∫
v

f0(x, v)dv − h(x).

The vector potential A = (A1, A2) is the solution to

(1.5)
∂2A

∂t2
−∇2

xA = J,

A(x, 0) = 0, At(x, 0) = 0.
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The equations (1.4) and (1.5) have periodic boundary conditions in x1 and x2. The

electric field E = (E1, E2) and magnetic field b in (1.1) are computed as

(1.6) E(x, t) = −∇xφ−
∂A

∂t
, b(x, t) =

∂A2

∂x1
− ∂A1

∂x2
.

With the given initial conditions for equations (1.4), (1.5) it can be proved that the

Lorentz condition for φ and A holds. That is

∂φ

∂t
+∇x · A = 0.

It then follows that the electric and magnetic field variables (1.6) are solutions to

Maxwell’s equations in 2-D given as

(1.7)
∂E1

∂t
=

∂b

∂x2
− J1(x, t),

(1.8)
∂E2

∂t
= − ∂b

∂x1
− J2(x, t),

(1.9)
∂b

∂t
= −∂E2

∂x1
+
∂E1

∂x2
,

(1.10)
∂E1

∂x1
+
∂E2

∂x2
= ρ(x, t).

such that

E(x, 0) = −∇xφ0(x), b(x, 0) = 0.

and with periodic boundary conditions.

The system comprised of the Vlasov-Fokker-Planck equation (1.1) and Maxwell’s

equations (1.7)–(1.10) with periodic boundary conditions will be referred to as VMFP.

This system represents the time evolution of a plasma in the presence of a self consis-

tent electromagnetic field and for which collisonal effects are included. The function

f(x, v, t) in (1.1) is the phase space distribution function for electrons. The function

h(x) in (1.2) is the density for a fixed background of heavy ions. The Fokker-Planck

equation of type (1.1) was initially derived by Chandrasekhar in connection with the

theory of Brownian motion, [3]. To briefly mention some other papers related to

the present work the problem of existence of solutions is considered in [4], [7]. The

numerical approximation of solutions is carried out in [5], [6]. An analysis of high

field asymptotics is done in [1].
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2. DESCRIPTION OF THE NUMERICAL METHOD

The numerical method is based on putting the Vlasov-Fokker-Planck equation

(1.1) into a form so that finite difference methods for parabolic type PDE’s can

be applied. This procedure is described in detail in [8] as relates to the Vlasov-

Poisson-Fokker-Planck system. The characteristic system associated with the first

order transport part of (1.1) is

dx1
dt

= v1,
dx2
dt

= v2, x1(0) = ξ1, x2(0) = ξ2

dv1
dt

= E1(x(t), t) + b(x(t), t)v2 − βv1, v1(0) = η1(2.1)

dv2
dt

= E2(x(t), t)− b(x(t), t)v1 − βv2, v2(0) = η2

Letting x = (x1, x2), ξ = (ξ1, ξ2), η = (η1, η2) the solution to (2.1) is written

(2.2) x(t) = x(ξ, η, t), v(t) = v(ξ, η, t).

Taking into account the periodicity the functions (2.2) define a transformation of A
onto A given by

(ξ, η)→ (x(ξ, η, t), v(ξ, η, t)).

The Jacobian of this transformation is ∂(x, v)/∂(ξ, η) = e−2βt 6= 0. Therefore the

transformation is invertible with the inverse transformation given by

(2.3) ξ = ξ(x, v, t), η = η(x, v, t).

A change of variables is made from (x, v) to (ξ, η), and equation (1.1) is then given

an expression in terms of f(ξ, η, t) that is the same as that preceding (2.4) in [8]. A

change of dependent variable f(ξ, η, t) = e2βtg(ξ, η, t) then leads to the equation for

g(ξ, η, t) given by

∂g

∂t
= q
[
c1
∂2g

∂ξ21
+ c2

∂2g

∂ξ22
+ c3

∂2g

∂η21
+ c4

∂2g

∂η22
+ 2
(
c5

∂2g

∂ξ1∂ξ2
+ . . .+ c10

∂2g

∂η1∂η2

)

(2.4) +c11
∂g

∂ξ1
+ c12

∂g

∂ξ2
+ c13

∂g

∂η1
+ c14

∂g

∂η2

]
, g(ξ, η, 0) = f0(ξ, η).

The coefficients ci = ci(ξ, η, t), i = 1, . . . , 14, are expressed in terms of first and

second partial derivatives with respect to ξ, η of the solution to (2.1).

To reduce the velocity space computation to a finite domain a further transfor-

mation of independent variables is made. Let η(u) = (η1, η2) where

(2.5) η1 = η1(u1) =
cu1√
1− u21

, η2 = η2(u2) =
cu2√
1− u22

, −1 < u1, u2 < 1

with c is a positive constant. Let

s1(u1) =
1

c
(1− u21)3/2, s2(u2) =

1

c
(1− u22)3/2.
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In terms of variables ξ1, ξ2, u1, u2, t the equation (2.4) is written as an initial, boundary

value problem for g(ξ, u, t) given as

∂g

∂t
= q
[
c1
∂2g

∂ξ21
+ c2

∂2g

∂ξ22
+ c3s1(u1)

∂

∂u1

(
s1(u1)

∂g

∂u1

)
+ c4s2(u2)

∂

∂u2

(
s2(u2)

∂g

∂u2

)
+2
(
c5

∂2g

∂ξ1∂ξ2
+ c6s1(u1)

∂2g

∂ξ1∂u1
+ . . .+ c10s1(u1)s2(u2)

∂2g

∂u1∂u2

)
(2.6) +c11

∂g

∂ξ1
+ c12

∂g

∂ξ2
+ c13s1(u1)

∂g

∂u1
+ c14s2(u2)

∂g

∂u2

]
,

g(ξ, u, 0) = f0(ξ, η(u)),

g(0, ξ2, u, t) = g(L, ξ2, u, t), g(ξ1, 0, u, t) = g(ξ1, L, u, t),

g(ξ,−1, u2, t) = g(ξ, 1, u2, t) = g(ξ, u1,−1, t) = g(ξ, u1, 1, t) = 0.

The coefficients in the PDE (2.6) are of the form ci = ci(ξ, η(u), t), i = 1, . . . , 14, and

are expressed in terms of the first and second partial derivatives with respect to ξ, η

of the functions x(ξ, η(u), t), v(ξ, η(u), t). These functions are solution to

dx1
dt

= v1,
dx2
dt

= v2, x1(0) = ξ1, x2(0) = ξ2,

dv1
dt

= E1(x(ξ, η(u), t), t) + b(x(ξ, η(u), t), t)v2 − βv1, v1(0) = η1(u1)(2.7)

dv2
dt

= E2(x(ξ, η(u), t), t)− b(x(ξ, η(u), t), t)v1 − βv2, v2(0) = η2(u2).

In terms of the solution to (2.6) the solution to (1.1) is

(2.8) f(x, v, t) = e2βtg(ξ(x, v, t), u(η(x, v, t)), t).

where (ξ(x, v, t), η(x, v, t)) is the inverse transformation (2.3) and u(η) = (u1(η1),

u2(η2)) is the inverse of (2.5). With the function f(x, v, t) given by (2.8) the charge

and current densities are obtained from (1.2), (1.3). The equations (1.4), (1.5) are

then solved for the scalar and vector potentials φ and A. The self consistent electro-

magnetic field is computed from (1.6).

The numerical method is a type of deterministic particle method in which the

Vlasov-Fokker-Planck equation (1.1) and wave equations (1.4), (1.5) are solved in

terms of a sequence of solutions to the PDE (2.6) and (1.4), (1.5). Given the time

interval [0, T ] let T1 be such that T/T1 = M an integer. The interval [0, T ] is divided

into subintervals [mT1, (m+1)T1] for m = 0, 1, . . . ,M−1. Let f(x, v, t) be the solution

to (1.1), (1.4), (1.5) for 0 ≤ t ≤ T . On the time interval mT1 ≤ t ≤ (m + 1)T1 let

t = t−mT1. Then

(2.9) f(x, v, t) = e2βtg(ξ(x, v, t), u(η(x, v, t)), t), t ∈ [0, T1]

and such that g(ξ, u, t) is the solution to (2.6), (1.4), (1.5) with g(ξ, u, 0) = f(ξ, η(u),

mT1). If m = 0 then f(x, v,mT1) = f0(x, v). If m > 0 then f(x, v,mT1) =
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e2βT1g(ξ(x, v, T1), u(η(x, v, T1)), T1) such that g(ξ, u, t) is the solution to (2.6), (1.4),

(1.5) for t ∈ [0, T1] with g(ξ, u, 0) = f(ξ, η(u), (m− 1)T1). The numerical approxima-

tion is a discretization of this procedure.

The numerical approximation proceeds in the following way:

1) On the time interval [mT1, (m + 1)T1] the path of a particle in phase space is

determined for t ∈ [0, T1] from the discrete approximation of the trajectory equation

(2.7).

2) The charge along the approximate trajectory is determined at each time step from

the solution to the PDE (2.6).

3) The equation (2.6) is approximated by a finite difference equation which is solved

on a fixed grid by either an iterative SOR algorithm or by a direct Douglas-Rachford

method.

4) The coefficients in (2.6) are obtained by approximating the first and second partial

derivatives with respect to ξ, η of the solution to the trajectory equations (2.7) and

following the procedure described in [8, Sections 3.2.4,3.2.5].

5) To approximate the field variables the charge and current densities are computed

on a fixed grid from the charge along approximate trajectories by a particle-in-cell

method. The solutions to the wave equations (1.4) and (1.5) are then approximated

at each time step by applying a discrete Fourier transform in the spatial variables,

integrating the resulting transformed equations exactly in time, applying a discrete

inverse Fourier transform.

6) Given the resulting approximations to the scalar and vector potentials the discrete

versions of the field expressions (1.6) are computed on the fixed grid for the elec-

tric and magnetic fields. The field at particle positions is obtained by applying the

particle-to-grid assignment function.

7) At time t = (m + 1)T1, t = T1 the solution along trajectories is interpolated onto

the fixed grid as initial data for the PDE (2.6). The solution to (2.6) for g is restarted,

and the particle computation is repeated for the time interval [(m+ 1)T1, (m+ 2)T1].

This regriding of the solution greatly improves the long term stability and accuracy

of the numerical method.

3. THE STEADY STATE SOLUTION

The Vlasov-Poisson-Fokker-Planck system in two dimensions with periodic bound-

ary conditions is given for (x, v) ∈ A and t ∈ [0, T ] as

(3.1)
∂f

∂t
+ v · ∇xf + E(x, t) · ∇vf = ∇v · (βvf + q∇vf),

f(x, v, 0) = f0(x, v),

f(0, x2, v, t) = f(L, x2, v, t), f(x1, 0, v, t) = f(x1, L, v, t).
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combined with

E(x, t) = −∇xφ

where

(3.2) ∇2
xφ = −ρ(x, t)

φ(0, x2, t) = φ(L, x2, t), φ(x1, 0, t) = φ(x1, L, t)

and

ρ(x, t) =

∫
f(x, v, t)dv − h(x).

This system, which will be referred to as VPFP, is a model for a collisional electrostatic

plasma. In [2] it is proved that the solution to the Vlasov-Poisson-Fokker-Planck

system converges to a time independent steady state solution as t → ∞. For the

above 2-D problem this steady state solution is given as

(3.3) fs(x, v) =
K

2πq/β

exp(− |v|
2/2+φ(x)
q/β

)( ∫ L
0

∫ L
0

exp(−φ(x)
q/β

)dx
)

where K =
∫
A f0(x, v)dv dx. The function φ(x) is the solution to

(3.4) ∇2
xφ = −

(
K

exp(−φ(x)
q/β

)∫ L
0

∫ L
0

exp(−φ(x)
q/β

)dx
− h(x)

)
with periodic boundary conditions in x1, x2. It is assumed that h(x) is such that∫ L
0

∫ L
0
h(x)dx = K. A determination is made that the solution to VMFP converges

to to this same steady state solution (3.3), (3.4) as t→∞.

In studying the time asymptotic behavior of the solutions to VMFP and VPFP

one makes use of the following integral quantities that are functions of time, t. The

electrostatic energy is

ese(t) =
1

2

∫ L

0

∫ L

0

|E(x, t)|2dx =
1

2

∫ L

0

∫ L

0

[(E1(x, t))
2 + (E2(x, t))

2]dx1dx2.

The magnetic energy is

emg(t) =
1

2

∫ L

0

∫ L

0

(b(x, t))2dx.

For the given distribution function f(x, v, t) the kinetic energy is

ke(t) =
1

2

∫
A
|v|2f(x, v, t)dv dx =

1

2

∫
A

(v21 + v22)f(x, v, t)dv dx.

The entropy of the system is

ent(t) = −
∫
A
f(x, v, t)ln(f(x, v, t))dv dx.
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The total energy of the system is U(t) = ke(t) + ese(t) + emg(t), and the free energy

is defined as

(3.5) FE(t) = U(t)− q/βent(t).

For VPFP the free energy has the expression given by (3.5) in which emg(t) = 0.

In [2] it is proved in the context of a 3-D initial value problem that the free energy

for the Vlasov-Poisson-Fokker-Planck system is a non increasing function of time, t,

that is bounded from below. This result in the context of the 2-D periodic boundary

value problem, VPFP, is given in [8, (4.3)] as

(3.6)
d
(
FE(t)

)
dt

= −β
∫
A

∣∣∣v√f + 2q/β∇v

√
f
∣∣∣2(t)dv dx.

Since d(FE)/dt ≤ 0 then FE(t) is non increasing. The proof that FE(t) is bounded

from below is proved for VPFP similarly as in [2]. It therefore follows that for VPFP

FE(t) converges to a limit as t→∞, and

(3.7) lim
t→∞

∫
A

∣∣∣v√f +
2q

β
∇v

√
f
∣∣∣2(t)dv dx = 0.

Given (3.7) a next step in the analysis is to determine that

(3.8) lim
t→∞
|v
√
f +

2q

β
∇v

√
f | = 0.

A version of this result is proved in [2] for the 3-D initial value problem and leads

to the conclusion that the solution to the Vlasov-Poisson-Fokker-Planck system in

three dimensions converges to the steady state solution [2, (2.14), (2.15)]. In [8] the

assumption is made that the analysis in [2] can be readily adapted to the 2-D periodic

problem and that a result of the type (3.8) holds for the solution to VPFP. Proceeding

with a development as in [2] it is determined that the solution to VPFP converges to

the steady state solution (3.3), (3.4).

For VMFP with b(x, t) 6= 0 then in (3.5) emg(t) 6= 0. It is proved in [9] that for

VMFP with emg(t) 6= 0 the quantity d(FE)/dt is given precisely by the expression

(3.6). Hence FE(t) is non increasing. That FE(t) is bounded from below is similarly

proved as in [2]. Thus for VMFP the quantity FE(t) converges to a limit, and the

expression (3.7) holds. However, because the v × B force in (1.1) is an unbounded

function of v the analysis in [2] cannot be directly adapted to the VMFP solution

to obtain a result equivalent to (3.8). If it is assumed that (3.8) holds then one can

continue the development similarly as in [2] and reach the conclusion that the solution

to VMFP converges to the steady state solution (3.3), (3.4) as t → ∞. Thus, the

analysis in [9] gives a good indication that the steady state solution for VMFP is the

same as that for VPFP but does not provide a complete proof. However, numerical

approximation supports the conclusion suggested here on the long time asymptotics

of VMFP. In [9] computations are done that apply the numerical method of Section 2
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and which demonstrate that the solution to VMFP converges to a steady state given

by (3.3), (3.4) as t gets large.
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