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ABSTRACT. Karmarkar’s projective transformation algorithm for solving a linear program (LP)
is the first polynomial time algorithm which was published in 1984. This algorithm implemented in
Mathematica in this article has used a real parameter 0 < o < 1 whose value affects its convergence.
That is, for different values of «, the number of iterations required to obtain a desired accuracy
will be different. We study here if, for a given LP, there is an optimal « for which the number of
iterations will be minimum subject to the precision of the computer. Also we investigate how «

behaves from one LP to another.

1. INTRODUCTION

The exterior-point methods such as simplex methods [1,2,3] which are exponen-
tial-time in a worst case scenario [2] were the only methods which ruled the compu-
tational linear optimization scene for over three decades (up to mid-eighties). The
Karmarkar projective transformation algorithm (KA) [4] is the first polynomial time
interior-point method, published in 1984, that computes a solution to an LP in O(n*®)
operations. This publication brought resurgence in the research activities in linear
optimization. Since then there are several highly efficient polynomial-time algorithms
that are reported in literature [5,6] and are currently being used quite extensively.
However there still exists a scope to explore certain computational aspects in Kar-
markar algorithm and observe its computational potential at least for academic in-
terest. In this context we have studied the effect of the parameter a on the number

of iterations in KA.

2. CONVERSION FROM LP TO KLP
A standard LP (constraints in an equality form) or any LP whose constraints
are in an inequality form can be converted to the Karmarkar form of linear program
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(KLP) [8,9]. We provide the KLP for the following LP without derivation. For

derivation refer [8].
(1) Max z = c'w s.t. Az <b, x>0

where A = (a;;) is an m x n matrix, b = (b;) is an m-vector and ¢ = (¢;) and = = (z;)
are n-vectors.

Let €}, be an n-vector (1,1,...,1), Z;; the null matrix of order i x j, and I; the
identity matrix of order j. Then the symbolic KLP is
(2) Min. w = yYomionss, st. Ay=0, y >0, y=e,/nis feasible

where ¥y = (y1,¥2, - - - , Yams2n+s) and A is an (m+n+3) x (2m+2n+ 3) block matrix
given by

[ ¢t —b Zivm | Zixn 10 0 |de,, —cle, 1
A Zxm | Im Zosxn | Zmx1 | —=b | b— Ae, — e
A= | Z,xn | A Zosm | =Ly | Zox1 | —c | ¢ — Ale,, + e,
el et et el 1 —k|k—=02m+2n+1)
| el et el el 1 1 |1 |

where k is to be found/supplied such that the sum of the values of all the variables
< k.

Example (Symbolic KLP for a symbolic LP). Consider the LP where A = (a;;), is an
2 x 4 matrix, b = (by, bs), ¢ = (c1, 2, c3,¢4). Convert this LP to a KLP (Karmarkar
Form of Linear Program) in matrix-vector form.

Solution In this case we have that m = 2 and n = 4. Thus Karmarkar form (KLP)

for this case is Min y;5, s.t., Ay = 0,y > 0 where 4" = [y1, 0, -+ ,y15] and A is a
9 x 15 matrix given by

c1 co c3 cy | =b1 —=ba |0 O 0 0 0 0]0 0 by +by—c1—c2—c3—cy ]
a1l ai12 a1z a4 0 0Ol1 0 0 0 0 0[O0 | —by | —a11 —a12 —ai13 —aiqg +b1 — 1
as1 @22 a3 a24 0 0o(0 1 0 0 0 00| —by | —ag1 —ao2 —ag3 —agq +ba — 1
0 0 0 0| a1 a1 |0 O] —1 0 0 0]10| —c1 —a11 —ag1 +c1+1
A= 0 0 0 0|a2 an|0 0] 0 -1 0 o0|0]|-c —a12 —ags +ca + 1
0 0 0 0|az as|0 0] 0 0 -1 0|0/ —cs —a13 —as3 +c3 +1
0 0 0 O0|awu aul|0 0] 0 0 0 —1]|0]|-ca —a14 —asa +ca+1
1 1 1 1 1 11 1] 1 1 11| -k k—13

T 1 1 1 1 11 1] 1 1 1 11 1 1|
. . . 1 310

Example (Numerical KLP for a numerical LP). Consider a LP where A = 09 5 3 ] ,

then write the corresponding KLLP
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Solution. The corresponding KLP is
Min y35, s.t., Ay =0,y >0, y = ey5/15 is feasible

where w' = (Y15 Y25 U3, Yas Uss Ye» YT, Ys, Y9, Y105 Y11, Y12, Y13, Y14, Y15) and A is 9 x 15 ma-
trix given by

(2 2 9 71-1 -6{0 0 0 O 0 0]0 0|-13
131 0f 0 01 0f O O O 0J0] —=1| =5
025 3] 0 001 o 0 0 o0|0f -6] =5
0 0 0 O 1 010 0] -1 0 0 00| -2 2

A=100 0 0] 3 2|0 0] 0 -1 0 00| —-2| -2
0 0 0 O 1 510 0 0 0 -1 010 -9
0o o000, 0 300 0 0 0 =10 =7 5
1 1 11 1 111 1 1 1 1 111 -24 11
11 1 1 1 1 111 1 1 1 1 111 1 1 ]

3. KARMARKAR ALGORITHM

Consider the general form of KLP: Min z = c'z subject to Ax = 0, el = 1,
x >0, c = e,/n is feasible, minimal z-value = 0.
We assume that a feasible solution having a minimal z-value < € ( € is a small

positive value compared to the average element of A, b and ¢ ) is acceptable. The
KA is then as follows.

S1) Input A, b, ¢, m, n. Set n-vector e = [1 1...1]".
Ss) Set the feasible point (solution) 2° = e/n, the iterate k = 0.
Ss) If ¢'a® < € then stop else go to Step 4.

)

S,) Compute the new point (an n-vector) 3"+

(
(
(
( in the transfomed n-dimensional

unit simplex S (S is the set of points y satisfying e’y = 1, 2 > 0) given by

et

k+1 0 p t -+ - k
Yyt =2 -« where ¢, = (I, — P'(PP")* P) [diag (z")] c,
vn(n—1) 6| ’
. k
P = A [dlag <I )] ] , 0 < a< 1 a=0.251is known to ensure convergence.

P is the(m + 1) x n matrix whose last row €’ is a vector of 1s. (PP")" is the
pseudo-inverse of the matrix PP’

(Ss) Compute now a new point 2" in the original space using the Karmarkar Cen-
tring transformation to deterrnine the point corresponding to the point y**!:

= e%qq’ q = |diag (xk)] y**1. Increase k by 1 and return to Step 3.

A Mathematica version program for the KA is presented below for the reader to
readily check the algorithm for different kinds of LP including extreme ones and get a
feel of it. No effort has been made to make the program more efficient so as to differ
from the KA presented here. The inputs to this program are A, b, ¢, k (a parameter

that differs from problem to problem), m and n. At the end of this program we use
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Maximize command from Mathematica to compare with the one we obtain using KA.
In order to conserve space we have eliminated comments, indentations, and we have

written more than one statement per line.

"LP to KLP CONVERSION *; ClearAll["Global"]; LPEA = ({{1,2,1}, {—4, —2,3}}); LPEb = {1,2}; LP=c =
{-2,-7,2}; {m,n} = Dimensions[LPZA]; k = Input[]; KLPZA = Table[0, {i,3 + m + n}, {j,2m + 2n + 3}]; KLPEB =
Table[0, {4, 3+m+n}]|; KLPEC = Table[0, {7, 2n+2m+ 3}]; sumELPZA = Total[Transpose[LP=A]]|; sumEAE=Transpose =
Total[LPEA]; e = Table[1, {i, 2m + 2n + 3}]; For[i = 1,i<=(n), KLPZEA][[1,i]] = LPEc([[7]]; i++]; For[i =

(1),i<=(m), KLPEA[[1, 7 + 4]] = —LPZb[[i]}; i++]; Forli = (1),i<=(n), For[j = (1), j<=(m), KLPEA[[1 + 7, ] =
LPZA[[4, i]]; KLPEA[[1 + m + 4, n + j]] = LPEA[[f,]]; KLPZA[[1 + j,n + m + j]] = 1; KLPEA[[1 + m +4,2m +n +i]] =
—1;; j++]; i++]; KLPEA[[1, 2m + 2n + 3]] = Total[LP=b] — Total[LP=c]; For[: = (1), i<=(m), KLPEA[[1 +7,2m + 2n +

2)] = —LPEb][i]]; KLPEA[[1 + i, 2m + 2n + 3]] = —(sum=LPEA[[i]] + 1 + KLPEA[[1 + i, 2m + 2n + 2])); i++]; For[i =
(1), i<=(n), KLPEA[[1 + m + i, 2m + 2n + 2]] = —LPEc[[i]}; KLPEA[[1 + m + i, 2m + 2n + 3]] =
—(sumZAETranspose[[i]] — 1 + KLPZA[[1 4+ m + i,2m + 2n + 2]]);;i++]; KLPEA[[2 + m + n]] =

Table[1, {4, Dimensions[KLP=ZA][[2]]}]; KLPEA[[2+m+n, 2m+2n+2]] = —k; KLPEA[[2+m+n,2m+2n+3]] = —(2n+

2m + 1 —k); KLPEA[[3 + m + n]] = ¢; KLPEB[[3 + m + n]] = 1; KLPEC[[2n + 2m + 3]] = 1; Print[MatrixForm[KLPZA]];
"KARMARKAR PROCEDURE"; b = KLPZB; c = KLPEC; A = KLPZA; itern = 3000; {m, n} =

Dimensions[A]; e = Table[1, {i,n}]; x0 = e/n;x = x0; alp = 0.7; IM = IdentityMatrix[n]; eps =
0.00005(Total[Total[Abs[A]]] + Total[Abs[b]] 4+ Total[Abs[c]])/(mn + m + n);n2 = Sqrt[(n(n — 1))]; Q@ = {}; For[j =
(1),7 < (itern), If[(k + 1)c.z < eps, Print["eps = ", eps]; Print["Iteration no.", j]; Print["x=", z]; Break][]]; P =
Append[A.DiagonalMatrix[z], e]; cp = (IM — Transpose[P].Pseudolnverse[ P. Transpose[ P]]. P).DiagonalMatrix[z].c; y =
x0 — alpcp/(n2Norm[cp]); ¢ = DiagonalMatrix[z].y; z = q/(e.q); j++];xt =

(k + 1)z; Print[" The iteration No. is ", j|; Print["The true solution is: "]; Print["xt = ", Take[xt, Dimensions[LPZA][[2]]]];
Print["Obj. value =", Take[xt, Dimensions[LPZA][[2]]].LPZc]; Print[" The epsilon is: ", eps];

"SOLUTION WITH MATHEMATICA"; {m,n} = Dimensions[LPZA]; mx = Array[xx,n]; SS = {};aux =
LPZEA.mx; For[t = 1,4 < m,SS = Join[SS, {aux[[z]] < LPZb[[]]}]; i++]; For[i = 1,7 < n,SS = Join[SS, {xx[z] >

0}]; i++]; SS; Maximize[LPZc.mx, SS, mx]

4. NUMERICAL EXPERIMENTS: PARAMETER o VERSUS
NUMBER OF ITERATIONS

We have experimented with several distinct LPs including those with unique solu-
tion, infeasibility, multiple solutions, and unbounded solution. However, to conserve
space we have included the following typical numerical examples to illustrate how the

values of a influence the number of iterations for a specified accuracy.

1. Unique solution (i) Consider the LP Max z = 'z s.t. Az < b,z > 0, where

_2z _u o2 05 _19
3 3 3 3 9
A= -2 - 5 U 7| pto (929 _607 3071\ . (22 39 15 9 3l
- ° N o8 240 36 )07 T\ 37 4740 8 4
23 26 _19 28 _2
4 3 3 3 3
After using KA with k£ = 62, we have the following table which records the
value of o versus the number of iterations. Besides, we have included a graph
correspondig to this information.
4000 .
3000
a o1 Jo2 |03 |04 o5 |06 |07 |08 09 Zuy .
No. Tter | 16489 | 4108 | 1815 | 1014 | 642 | 443 | 323 | 248 | 195 1000 T .

0.2 0.4 0.a 0.8
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The optimal solution vector is
' = (0.000228791, 2.22513, 8.51096, 0.0000686293, 1.25354)and objective function
value is z = 0.504345. The exact solution according to Mathematica 6.0 is

L 932093 272645 1390827 51228
z = X =
653648’ 71225597 163412 7 7 40853

> ~ (0,2.2246,8.51117,0, 1.25396)

(ii) Consider the LP Max 2z = ¢’z s.t. Az < b,z > 0, where

57 23 13 4
- 4 -3 3 3
10 3 31 29 28013 5197 1267 25 22 25
A=| % -9 -3 g 2 u_( - e N
5 R ( 810 ° 240 15 )’ ¢ 5073 8
39 15 1 8 u
5 4 4 3 5
After using KA with £ = 64, we have the following table which records the
value of o versus the number of iterations. Besides, we have included a graph
correspondig to this information.
4000 .
3000
a |ox o2 |03 o4 |os5 |06 |07 |08]09 3 .
No. Tter | 16264 | 4050 | 1790 | 998 | 633 | 434 | 318 [ 230 | 193 1000 .

02z 04 06 08
The optimal solution vector is
xt = (0.000195737,5.86614, 6.67014,0.0000707261,4.25589) and objective function
value is z = —0.951884. The exact solution according to Mathematica 6.0 is

. 461603 2852989 1081361 = 46003
2= ——,
486360’ " 486360 " 162120 " 7 10808

) ~ (0,5.866,6.67013,0,4.25638)

We did more than 10 experiments for the unique solution case and oo = 0.9 was

the value which gave the best perfomance in terms of less number of iterations.
2. Infeasible LP Consider the LP Max z = c'z s.t. Az < b,z > 0, where

3 6 18 _g _29

2 5 2 5
21 17 23 27 823 209 25 14 25 7 19
A= -5 7 5 T -7 pt= (-2 2= 9 A s i
4 2 4 4 ) < 605157 O),C 45 37 3737 9

28 _g _1r 23 27

1 2 1 1

After using KA with k = 66, we have the following table:

15000
o lor Jo2 |03 |04 |05 |06 |07 |08 |09 1200
No.]ter| 18427| > 25000 |1604 |1175 |3323 \950 |352 |267 |209 200 e .l

00 02 04 06 D08

KA indicates the infeasibility of the LP. Mathematica 6.0 also indicates the
infeasibility. Notice that with a = 0.9 we get the minimum number of iterations.
3. Unbounded LP (i) Consider the LP Max z = ¢’z s.t. Ax < b,z > 0, where

3 _1 11 _ 22
4 2 2 3
203 753 3739 31 19 34
A: % % _% _% 7bt: T TS Y 1n 0 4o 7Ct: __a__7_a4
2 10" 48 6 2°5
8 37 14 _16
4 3 3
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After using KA with & = 52, we have the following table which records the
value of a versus the number of iterations. Besides, we have included a graph
correspondig to this information.

130000

a | 0.1 o2 |03 |oa |05 o6 |o7 |os [oo 000 .

No. Iter | > 200000 | 17547 | 88990 | 5704 | 14870 | 23615 | 7020 | 11002 | 455 70

02 04 06 03

ii) Consider the LP (taken from [1]) Max z = c'z s.t. Az < b,z > 0, where
(i)

2 —4 -1 1
A=|111 2 =3 |,0=(810,3),c=(3,2,—1,1)
1 -1 —4 1

After using KA with k£ = 32, we have the following table which records the
value of a versus the number of iterations. Besides, we have included a graph
correspondig to this information.

10000
o o1 |02 |03 |04 |os |o6 |07 |os |oo .l - 1 *
No. Tter \ 24879 | 6112 \ 4325 | 1561 | 7349 | 705 \ 1222 | 7303 | 1074 . ol

oo o0z 04 06 03

In both KA and Mathematica 6.0 the elements of the solution vector grow

indefinitely in magnitude. Thus the LPs are unbounded.
4. Multiple Solution LP (i) Consider the LP Max z = c'z s.t. Az < b,x > 0, where

|
[N}

—

©

9 3 19 19
5 4 4 3
s w5 m | (8 oss ey 05519 19
A= 288 § ’b<48’ 2w )Ty T T
_29 1 23 41 1
3 3 4 6 4
Using Mathematica 6.0 we find z* = 43/48 ~ 0.895833 and more than one
solution, for example:
. 3139201 120091 6927649 0) 4t — 4150045 7 7 3 56
P\ 432126 743212607 43212607 7/ 772\ 4608 51271287 64
After using KA with & = 60, we have the following table which records the
value of o versus the number of iterations. Besides, we have included a graph
correspondig to this information.
4000 ]
a lo1 Jo2 |03 Joa |05 |06 |07 ]os |09 300 .
No. iter | 16227 | 4053 | 1797 | 1008 | 644 | 444 | 323 | 250 | 193 1000 " e

In this case we arrive at the (approximate) solution

o' = (7.85132,4.79658, 0.656678,1.61743,1.76767), = = 0.898363
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(ii) Consider the LP Max z = cxst. Ax <b,x > 0, where

| 2 _u 1 13
4 2 9 2
| 2 3 19 1 8 ¢ (13319 2003\ , (27 11 1 13
A= 5222 T ’b_<24’126’ 0 )¢ \b T e
3 3 5 -7 -1

Using Mathematica 6.0 we find z* = 13/24 ~ 0.541667 and more than one
solution, for example:

ot 71592746 21437571 37579711 ‘ 281725 5 7 84321 1579
L \06239739 777 2079913 7 24958956 ) 24576 7 1287 20487 8192 ' 1024

9 =

After using KA with & = 60, we have the following table which records the
value of o versus the number of iterations. Besides, we have included a graph

correspondig to this information.

4000

o lo1 Jo2 o3 |oa |os5 |06 |07 |os |09 000

No. iter | 16157 | 4039 | 1794 | 1008 | 645 | 447 | 328 | 251 | 198 1007 s e
00 02 04 06 03

We arrive at the solution 2’ = (13.0829,8.76017,1.52122,9.59719,9.5756), z =
0.539584.

5. CONCLUSIONS

When we convert an LP to KLP the dimension of the m x n matrix A increases
to (m+n+3)x (2m+2n+3). If m = 15 and n = 25, then the matrix A in
LP would require 375 locations while the correspondig matrix A in KLP would be
needing 3569 locations. This implies that KLP requires nearly 10 times the locations
for this dimension. In general, we would be needing over 8 times the storage locations
in KLP for a given LP in an inequality form, where m is close to n. The following
table depicts the storage locations required by KA in terms of the size of given matrix
A.

n/m || 5 10 15 20 25 30 35 40
5 11.96

10 11.88 9.89

15 13.19 989 9.24

20 || 14.84 104 925 892

25 16.63 11.1  9.52 893 8.73

30 || 1849 11.9 992 91 874 8.61

35 20.39 1275 104  9.36 8.86 8.61 8.52

40 || 22.32 13.65 1092 9.69 9.04 87 852 8.46

In both simplex as well as Karmarkar methods the objective function value will be
monotonically decreasing with increasing number of iterations in general. But there
is one difference. In simplex method the basic variables will go on changing at each
iteration while it will not be so in KA. Further unlike simplex methods which produce
an optimal basic solution, KA could produce an optimal non-basic solution. So the

KA has the potential to allow us to detect basic variables after sufficient number of
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iterations (without completing all the iterations required to get the desired accuracy

of the solution vector).

The study of the effect of the parameter o on the number of iterations in KA is
certainly of academic interest. However this algorithm still has the potential to be
appropriately modified by some future researcher so that the modified version could

be competitive with the current efficient polynomial time interior point methods.

From the several examples that we have experimented on, we see that « for a
unique optimal solution case as well as a multiple solution case is close to 1, that min-
imizes the number of iterations assuming sufficiently large precision of the computer.
However, for infeasible and unbounded solution cases we have observed some kind of

irregular oscillations in the number of iterations.
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