
Neural, Parallel, and Scientific Computations 18 (2010) 479-486

CONCISE ALGORITHM FOR LINEAR PROGRAMS IN MATLAB:

MONOTONIC CONVERGENCE, BASIC VARIABLES, BOUNDEDNESS

SYAMAL K. SEN AND SUJA RAMAKRISHNAN

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL

32901, United States

sksen@fit.edu, sramakrishna2009@fit.edu

ABSTRACT A physically concise polynomial-time iterative algorithm due to Barnes – a variation of

Karmarkar projective transformation algorithm – is presented in Matlab for linear programs

0,  xbAxtosubjectxcMin t
. The concerned monotonic convergence of the solution vector and

the consequent detection of basic variables are stated. The boundedness of the solution, multiple solutions,

and no solution (inconsistency) cases are discussed. The possibility of applying Aitken’s
2 -process to

accelerate convergence of the solution vector has been studied taking advantage of monotonic convergence.

The effect of degeneracy of the primal linear program and/or its dual on the uniqueness of the optimal

solution is mentioned. The foregoing algorithm is implemented in another way based on detection of basic

variables and then solving the resulting linear system involving only the basic variables mathematically

non-iteratively. The second way of implementation also includes optimality test and is coded in Matlab. It

results in less number of iterations and usually more accurate optimal solution. Numerical experiments are

carried out on these algorithms considering several typical linear programs and the Matlab implementation

of these algorithms is found to be useful for solving many real-world problems.

1. INTRODUCTION

A linear program 0,  xbAxtosubjectxcMin t reduces to just solving a linear system

mathematically non-iteratively once we know the basic variables that minimize the

objective function xc t . According to the fundamental theorem of linear programming, (i)

if there is a feasible solution then there is a basic feasible solution and (ii) if there is an

optimal feasible solution then there is an optimal basic feasible solution. Allowing the

non-basic variables zero and deleting the column vectors of the coefficient matrix A

corresponding to the non-basic variables we obtain a square nonsingular system

0,  xbBx . Solving this system will readily produce the optimal basic feasible

solution. The simplex method – an exterior method – computes only an optimal basic

feasible solution. It does not compute an optimal non-basic feasible solution as is often

produced by an interior method like the Karmarkar method and its variants [1-4]. An

interior point method could produce either an optimal basic feasible solution or an

optimal non-basic feasible solution, i.e., a solution that has more variables (with positive

values) than the number of basic variables which are positive. In a real world situation,

both have their scope. While the optimal solution need not be unique, the optimal value

of the objective function will always be unique.

 Here we present in Matlab a physically concise polynomial-time iterative algorithm

due to Barnes for linear programs (LP), which is a variation of Karmarkar projective

transformation algorithm. There are two ways of implementing the algorithm.

Received April 25, 2010 1061-5369 $15.00 © Dynamic Publishers, Inc

mailto:sksen@fit.edu
mailto:sramakrishna2009@fit.edu

480 S. K. SEN AND S.RAMAKRISHNAN

(i) One way is to continue the iterations for a sufficient number of times till we obtain the

optimal solution of the LP to a desired accuracy, and

(ii) The other way is to take advantage of the monotonic convergence of the solution

vector x ; after some iterations when we discover that the elements of x have started

converging, we discontinue the iteration, sieve out the basic variables, and solve the

resulting linear system (consisting of only basic variables) mathematically non-iteratively

to obtain the required optimal solution. To ensure that our sieving out of the basic

variables was correct we perform an optimality test for the computed solution of the LP.

In this procedure we can save significant number of iterations.

 In section 2 we present the concise Barnes algorithm to solve the LP completely

iteratively without making use of monotonic behavior of the successive solution vectors.

Also we include in this section the second way of implementation as well as the

concerned Matlab program. In this implementation, one may, however, obtain this basic

solution by solving the non-singular system iteratively too. All these are coded in Matlab

for the user to readily comprehend the procedure, modify the code easily if necessary,

and use the code just by copying, pasting, and then executing for a given numerical LP.

Section 3 comprises numerical examples while section 4 includes conclusions.

2 .BARNES ALGORITHM TO SOLVE LP AND DETECT BASIC VARIABLES

WITH OPTIMAL SOLUTION

Let the linear program (LP) be

0,  xbAxtosubjectxcMinimize t , (1)

where][ijaA  is a given nm numerical matrix of rank m , t

ncccc][21  is a

given numerical cost vector, t

mbbbb][21  is a specified numerical response

vector, and t

nxxxx][21  is the unknown solution vector to be determined.

Denote by ja the j th column of A . The Barnes algorithm [3, 4] is as follows.

Algorithm 1(Barnes algorithm)

S.1 Choose 00 x , i.e., select, for all the elements of the vector 0x , positive numerical

values such that bAx 0 .

S. 2 If the vector kx is known, then define the diagonal matrix

)(21

k

n

kk

k xxxdiagD  , and compute 01 kx using the formula

||)(||

)(
2

1

k

t

k

k

t

k
k

kk

AcD

AcD
rxx








 ,

where cADAAD k

t

kk

212
)( , k

k

t

ii

k

i

k

t

k

ac
k

acx

AcD
r

k
t

ii














)(

||)(||
min

0)(

 CONCISE ALGORITHM FOR LINEAR PROGRAMS IN MATLAB 481

For some 0k such that 0kr . For proof of the algorithm, see [3, 4]. The foregoing

algorithm converges to a solution of the LP (1). This convergence follows from the

following theorems.

Theorem 1 If the LP (1) has a bounded solution then the foregoing algorithm converges

to a solution of (1). For proof see [3, 4].

Theorem 2 Let 1 mn in LP (1). Then the sequence }{
k

ix converges monotonically,

where i is such that the deletion of the i the column from the matrix A produces a non-

singular matrix. For proof see [3, 4]. From Theorem 2 we can see that not only the non-

basic variable converges monotonically but also one more variable converges

monotonically. For the proof of the general case where 1 mn we need to consider all

possible combinations that grow exponentially with mn  . Although we have not proved

this mathematically, our numerical experiments within the precision of computation, did

not violate this for a general case.

 The second algorithm ─ a second way of implementation of Barnes algorithm ─ is a

combination of (i) partial Barnes algorithm (to detect basic variables taking advantage of

monotonic convergence) and (ii) non-iterative algorithm to compute the basic solution

along with its optimality test. This algorithm is as follows.

Algorithm 2 (partial Barnes algorithm + non-iterative linear system solver with optimality

test)

S.1 Follow the foregoing Barnes algorithm till the monotonic convergence of the solution

vector kx sets in.

S.2 Choose those variables
k

ix which tend to positive values and reject those which tend

to 0 along with their corresponding columns in the coefficient matrix A and also along

with their corresponding coefficients in the cost vector c . Call the resulting coefficient

matrix B , the resulting cost vector Bc , and the resulting (yet-to-be computed) solution

vector Bx .

S.3 Compute the (basic) solution vector Bx of the linear system bBxB  . Construct the

complete solution vector ox of the LP inserting appropriately 0 (the value of the non-

basic variables) in y .

 S.4 Test the optimality of the computed solution ox of the given LP

0,  xbAxtosubjectxcMinimize t as follows.

●Compute 1 Bcy
t

B

t (row vector).

●Compute jj

t

jj cpycz  (scalar), where thjp j  non-basic vector in A .

●If all 0 jj cz then the solution is optimal [5] else the monotonic convergence of the

solution vector in Barnes algorithm has not yet set in; continue further iterations of

Barnes algorithm till monotonic convergence is achieved. Redo Steps S.2, S.3, and S.4.

The precise iteration in which the monotonic convergence sets in is not known a priori.

Hence the test of optimality is required to be used to determine whether the solution is

482 S. K. SEN AND S.RAMAKRISHNAN

truly optimal or not. The computational complexity is marginally increased. This second

way of implementation (Algorithm 2) still remains polynomial-time.

Determination of Initial feasible solution Consider the LP (1). The initial feasible

solution 0x can be determined at least in two ways. One way is to append one artificial

variable each to an equation of the constraint linear system bAx  . Set nixi)1(1,0 

and mnnibx nii  )1(1 . The resulting solution vector x will have mn 

elements. The artificial variables are required to check inconsistency of the system

bAx  , 0x . This way is usually used in a simplex algorithm and enhances the

dimension of the system bAx  significantly needing at least 2m storage locations in a

computer.

 The other way is to append only one artificial variable 1nx to each of the equations

of the system bAx  and determine its coefficient so that the initial feasible solution x

will have each of the 1n elements equal to 1. This increases the need to have only m

storage locations plus one more in the cost vector c . We will consider the second way for

solving all our numerical LPs in both the implementations (algorithms) described here.

Detection of basic variables The monotonic convergence of the algorithms permits the

detection of both basic and non-basic variables in the LP (1). The following table depicts

the detection for different types of LPs.

Primal LP

1
 Dual LP Solution Type Procedure for Detection of Basic Variables

Non-

degenerate

Non-

degenerate

Unique After a sufficient number of iterations, the m

columns of A corresponding to m basic variables

which have larger values are chosen and the resulting

linear system with mm non-singular coefficient

matrix is solved. The remaining mn  non-basic

variables are set to 0.

Non-

degenerate

Degenerate Multiple having

mk  variables

positive (non-

zero)

If the algorithms converge to a solution with exactly

m variables non-zero then these are basic (not the

case, in general), else detection is hard [4].

Degenerate Non-

degenerate

Unique having

k < m variables

positive (non-

zero)

The basis here is not unique and may not be

detectable. The k variables (basic) will produce the

optimal solution allowing the remaining kn 

variables 0. After a sufficient number of iterations,

choose m columns that include the k columns and

solve the resulting mm system allowing the values

of arbitrary km  variables 0.

Degenerate Degenerate Multiple Detection is hard here too [4]. For details of detection

of basic variables in the foregoing two multiple

solution cases, see [4].

1
 If the LP 0,  xbAxtosubjectxcMinimize t

 is considered primal then its dual is

.0,  ycyAtosubjectybMaximize tt 

 CONCISE ALGORITHM FOR LINEAR PROGRAMS IN MATLAB 483

The Matlab Code We now present a Matlab program for the foregoing algorithms.

Although the Matlab program computes the optimal solution using entirely the Barnes

algorithm, one may stop continuing the iterations once the monotonic convergence sets in

and then detect those variables which tend to positive values different from numerical

zero [6]. These variables are basic variables while other variables that tend to 0 are non-

basic variables. We remove those columns from the coefficient matrix A , that

correspond to the non-basic variables. We also remove the non-basic variables from the

solution vector x (without changing the identity of the basic variables). The resulting

solution vector, also called x , is computed using the Matlab command bAx \ . This

computed solution vector along with the non-basic variables with values 0 constitutes the

required optimal solution if it passes the optimality test. The following Matlab program is

not completely automated and not completely general, One can make it so with some

programming effort. Unlike the main-frame computing era during mid and late 20
th

century when many users would be using a single physically large computer in batches,

one has one high speed computer (laptop/desktop) always at his disposal. Thus one can

inspect the outputs/results again and again and accordingly decide on the basic variables

instead of computer performing this task based on the code supplied/implemented by the

user. The Matlab program Barnes_4 below is self-explanatory, needs no formal

programming knowledge to follow, and can be easily modified by the user according to

his need.

function boolean = Barnes_4(A,b,c,epsilon,c1) %c1= parameter added to

%coeff. of artificial variable.
n1=n+1; m1=m+1; xk=zeros(n1,1); cf=c;
for j=1:m, A(j,n1)=b(j) - sum(A(j,:)); end;
c(n1)=sum(abs(c))+c1; for i=1:n1, xk(i)=1; end;
disp('The coefficient matrix A is ') , disp(A), disp('The rhs column

vector b is ') , disp(b')
disp('The cost vector c is ') , disp(c'), disp('The initial feasible

solution is '), disp(xk')
f=c'*xk; disp('The initial objective function value is '), disp(f)
xaitken(:,1)=xk; total=sum(xk); minimum=min(xk); ctr=1;
while (minimum>total*epsilon && ctr <= 2*n)
Dk=diag(xk); lambdak=(pinv(A*Dk^2*A')*A*Dk^2*c); beta=norm(Dk*(c-

A'*lambdak));
 for i=1:n1, psi(i) = c(i) - A(:,i)'*lambdak;
 if (abs(psi(i)) < 0.001*abs(c(i))), psi(i) = (c(i)^2-

(A(:,i)'*lambdak)^2)/(c(i)+A(:,i)'*lambdak); end;
 phi(i) = xk(i)*psi(i);
 end;
 j=1; for i=1:n1, if psi(i) > 0, del(j) = beta/phi(i); j=j+1; end;

end;
 Rk=0.9*min(del); xk=xk-((Rk*Dk^2*(c-A'*lambdak))/beta);
 display('Solution xk is '), disp(xk'), total=sum(xk);

minimum=min(xk); fi=f;
 f=c'*xk; xaitken(:,ctr+1)=xk;
 if xk(n1) > 0.3 * total, disp('The problem is not feasible');

break; end; ctr=ctr+1; end;
disp('The final solution is '), disp(xk'), disp('The objective function

value is '), disp(c'*xk)
for j = 1:n1
 if xaitken(j,ctr) - ((xaitken(j,ctr) - xaitken(j,ctr-

1))^2)/((xaitken(j,ctr) - 2*xaitken(j,ctr-1) + xaitken(j,ctr-2))) > 0

484 S. K. SEN AND S.RAMAKRISHNAN

 xaitken(j,ctr+1) = xaitken(j,ctr) - ((xaitken(j,ctr) -

xaitken(j,ctr-1))^2)/((xaitken(j,ctr) - 2*xaitken(j,ctr-1) +

xaitken(j,ctr-2)));
 else xaitken(j,ctr+1) = xk(j);
 end; end;
A*xaitken(:,ctr+1); xkaitken=xaitken(:,ctr+1); f=c'*xaitken(:,ctr+1);
disp('Aitkens delta-squared process results ')
disp('The final solution vector after applying Aitkens delta-squared

process is')
disp(xkaitken'),disp('Aitken Objective function value is '), disp(f)
bool = 1;
if xk(n1) > 0.001, disp('The problem is infeasible'), bool = 0; end;
if (abs((fi^2-f^2)/(fi+f)) > (0.02 * abs(f))), disp('Check solutions

for possible unboundedness'); end;
[X,Index]=sort(xk,'descend');
for i=1:m, Afinal(:,i)=A(:,Index(i)); cfinal(:,i)=c(Index(i),:); end;
if X(m1)>0.2*total/n1, disp('Check for possible multiple solutions'),

bool = 2; end;
% Algorithm 2 begins
if bool ~= 0,j=1; k=1;
 for i=1:n
 if xk(i) >= 0.2*total/n1,Ind(j,:)=i; B(:,j)=A(:,i);

cB(j)=c(i); j=j+1; else Ind1(k,:)=i; k=k+1; end; end
 x0=B\b; S = size(Ind); y=zeros(n,1); ctr=1;
 for j = 1:S(1), y(Ind(j,:))=x0(ctr); ctr=ctr+1; end
 if S(1) < n
 for k=1:n-S(1), Zk(k)=(cB*pinv(B))*A(:,Ind1(k,:)) -

c(Ind1(k,:)); end; end
 if(max(Zk) <= 0)
 disp('The optimal solution to the LP is '), disp(y')
 disp('Objective function value is '), disp(cf'*y)
 end; end

3. NUMERICAL EXAMPLES

We have considered several LPs ─ general, infeasible, Beale’s cycling, multiple solution,

near-multiple solution, unbounded solution, cost vector perturbed. To conserve space we

just provide one general LP and one multiple solution LP.

(i) General LP [7]

ixxxxxxxxxtosubjectxxxMin i  0,2324,12272 53214321321

The command for the Matlab program Barnes_4 is

>>Barnes_4([1 2 1 1 0;-4 -2 3 0 1],[1 2]',[2 7 -2 0 0]', 0.5*10^-7, 10)

After 11 iterations we obtain the solution ,0,0,8571.,0,1428. 54321  xxxxx

objective function (ofv) value is -1.4285. The exact solution of the LP is

7/10,0,0,7/6,0,7/1 54321  ofvxxxxx .

(ii) Multiple solution LP [4]

 CONCISE ALGORITHM FOR LINEAR PROGRAMS IN MATLAB 485

ixxxxxxxxxxtosubjectxxMin i  0,22,132,1222 52142132121

The command for the Matlab program Barnes_4 is

>> Barnes_4([2 -2 1 0 0;2 -3 0 1 0;2 1 0 0 1], [1 1 2]', [-2 -1 0 0 0]', 0.5*10^-7, 10)

After 10 iterations we get the solution (a non-basic variables)

2,2052.1,7289.,5763.,7118. 4321  ofvxxxx .

4. CONCLUSIONS

It is not necessary to know a priori whether the primal LP is degenerate or not. We exit at

some iteration based on the accuracy required or, equivalently, the relative error

permitted or, equivalently, the numerical zero defined in this context [6]. Call this exit

parameter  . One may choose  as)1/(]105.0[
1

1

7  




 nx
n

i

k

i . We have, however,

chosen  just as the foregoing expression without denominator)1(n , i.e., allowing the

denominator to be equal to 1. The iterations is continued till the value of any one of the

variables including the artificial variable is less than  or till a specified number of

iterations, chosen here as n2 , whichever is satisfied earlier. For near degenerate cases,

the precision of the computer comes into effect. The numerical zero or, equivalently, the

exit parameter  needs to be redefined as a smaller value and also the specified number

of iterations needs to be increased appropriately. It may, however, not be effective if the

precision of computation is not sufficiently large or, in other words, if the LP is too near-

degenerate (with respect to the precision).

 Error-free arithmetic such as the multiple modulus residue arithmetic and p-adic

arithmetic cannot be implemented in these algorithms since these involve not only

square-rooting operations but also no a priori known fixed number of arithmetic

operations [6, 8-10].

 Unlike the simplex algorithm (an exterior point method), Barnes algorithm (an

interior point method) ─ a variation of Karmarkar algorithm ─ may obtain a non-basic

optimal solution (more variables>0 than number of equations in bAx ).; see for

instance Example (ii): multiple solution LP.

 It can be seen that the Barnes algorithm needs much less number of iterations and

much less computer storage due to much smaller dimension of the LP (in Barnes method)

than those in Karmarkar algorithm.

 For infeasible LPs, the artificial variable will occur in the final solution as a positive

value. The infeasibility is, in fact, known from the value of the artificial variable, which

does not vanish indicating that the LP is inconsistent (and hence infeasible).

 For LPs with unbounded solution, the elements of the solution vector will become

very large in magnitude.

 Aitken’s 2 -process [7] does not seem to help much. However, we are in the process

of exploring complete potential of the 2 process.

486 S. K. SEN AND S.RAMAKRISHNAN

REFERENCES

1. S.K. Sen and Sagar Sen, Karmarkar form of linear program and algorithm:

Precise presentation, Proc. 45
th

International Congress of the Indian Society of

Theoretical and Applied Mathematics, Mepco Schlenk Engineering College,

Sivakasi, Tamil Nadu, India, Dec 26-29, 2000, 88-96.

2. N. Karmarkar, A new polynomial-time algorithm in linear programming,

Combinatorica, 4, 1984, 373-395.

3. E.R. Barnes, A variation of Karmarkar’s algorithm for solving linear

programming problems, Math. Program., 1986, 174-182.

4. V. Ch. Venkaiah, Variation of Karmarkar’s algorithm for linear programming: On

detection of basic variables, Ph. D. Thesis, Department of Applied Mathematics,

Indian Institute of Science, Bangalore, October, 1987.

5. H.A. Taha, Operations Research: An Introduction, Macmillan, New York, 1989.

6. V. Lakshmikantham and S.K. Sen, Computational Error and Complexity in

Science and Engineering, Elsevier, Amsterdam, 2005.

7. E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in

Science and Engineering, Affiliated East-West Press, New Delhi, 2007.

8. V. Lakshmikantham, S.K. Sen, and A. Mohanty, Error in error-free computation

for linear system, Neural, Parallel & Scientific Computations, 12, 2004, 113-122.

9. V. Lakshmikantham, S.K. Sen, A.K. Maulloo, and S. Sivasundaram, Solving

linear programming problems exactly, Applied Mathematics and Computation

(Elsevier Science Pub. Co., New York), 81, 1997, 69-87.

10. R.T. Gregory and E.V. Krishnamurthy, Methods and Applications of Error-free

Computation, Springer-Verlag, New York, 1984.

