
Neural, Parallel, and Scientific Computations 18 (2010) 487-498

EXHAUSTIVE VERSUS RANDOMIZED SEARCHES FOR

NONLINEAR OPTIMIZATION IN 21
ST

 CENTURY COMPUTING:

SOLAR APPLICATION

SYAMAL K. SEN

1
 AND GHOLAM ALI SHAYKHIAN

2

1
Department of Mathematical Sciences, Florida Institute of Technology, 150 West

University Boulevard, Melbourne, FL 32901-6975, United States

sksen@fit.edu

2
National Aeronautics and Space Administration (NASA), Technical Integration Office

(IT-G), Information Technology (IT) Directorate, Kennedy Space Center, FL 32899,

United States
 ali.shaykhian@nasa.gov

ABSTRACT We present a simple multi-dimensional exhaustive search method to

obtain, in a reasonable time, the optimal solution of a nonlinear programming problem. It

is more relevant in the present day non-mainframe computing scenario where an

estimated 95% computing resources remains unutilized and computing speed touches

petaflops. While the processor speed is doubling every 18 months, the band width is

doubling every 12 months, and the hard disk space is doubling every 9 months. A

randomized search algorithm or, equivalently, an evolutionary search method is often

used instead of an exhaustive search algorithm. The reason is that a randomized approach

is usually polynomial-time, i.e., fast while an exhaustive search method is exponential-

time i.e., slow. We discuss the increasing importance of exhaustive search in optimization

with the steady increase of computing power for solving many real-world problems of

reasonable size. We also discuss the computational error and complexity of the search

algorithm focusing on the fact that no measuring device can usually measure a quantity

with an accuracy greater than 0.005%. We stress the fact that the quality of solution of

the exhaustive search – a deterministic method – is better than that of randomized search.

In 21
st
 century computing environment, exhaustive search cannot be left aside as an

untouchable and it is not always exponential. We also describe a possible application of

these algorithms in improving the efficiency of solar cells – a real hot topic – in the

current energy crisis. These algorithms could be excellent tools in the hands of

experimentalists and could save not only large amount of time needed for experiments

but also could validate the theory against experimental results fast.

1. INTRODUCTION

The computing scene has been changing rapidly since 1940’s. We have come a long way

since then. The processing speed, executable memory storage, hard disk space, as well as

band width are practically doubling every year. During 1946-53, the computing speed

was about 310 operations per sec, during 1953-59 and 1959-64, it was 4105 and

Received April 25, 2010 1061-5369 $15.00 © Dynamic Publishers, Inc

mailto:sksen@fit.edu
mailto:ali.shaykhian@nasa.gov

488 S. K. SEN AND G. A. SHAYKHIAN

5105 operations per sec, respectively. During 1964-69 and 1969-75, the computing

speed improved to 66 1020,10  operations per sec, respectively along with the incessant

innovations in silicon technology and architecture. During 1975-2010, the speed went on

doubling. Today it has reached over 100 teraflops (1412 1010100  floating-point

operations per sec) and touched the petaflops (1510 flops) [1]. During most part of

twentieth century, it was the main-frame (single) computer used by a large number of

users in queues having varying computing resources requirements, which was the

dominant factor. As this century was approaching to a close, the main-frame started

heading toward oblivion. Its place was being occupied by laptop/desktop computers.

Each individual started having his own computer. The dependence on the main frame

slowly vanished. Miniaturization, portability, and internet revolutionized the computing

scene to such an extent that the whole world will come to a halt if the computer halts.

Aircrafts will be grounded, banks will be non-functional, the government departments

will cease to function. Besides, we are now having an estimated over 95% computing

power unutilized and hence a waste unlike that of the main-frame days.

 This enormous computing power available to us has also affected the importance and

significance of an algorithm which was earlier considered too slow (exponential-time)

and so untouchable. The computer scientists by virtue of their computational complexity

study had suggested the user against using combinatorial/ exponential search methods

unless the problem is too small. In essence, they have advised against employing these

algorithms for real-world problems which are often not too small and also not often too

large. In this context, we look back and attempt to take a stock of the situation. We try to

use multi-dimensional exhaustive search and find out to which extent it is capable of

solving many physical problems, mainly optimization problems. We also compare these

search against randomized search to bring out the pros and cons of these two procedures.

 In section 2, we state the two types of general nonlinear optimization problems with

simple examples. We describe the exhaustive search method as well as a simple

randomized search algorithm for nonlinear optimization in this section along with their

computational complexities. We consider numerical examples involving simple

nonlinear optimization problems of the second type (a more general one) in section 3

while we discuss possible applications for maximizing the efficiency of a solar cell in

section 4. Section 5 comprises conclusions.

2. THE PROBLEMS AND THE METHODS

2.1 The problems The nonlinear optimization problems that we will discuss are stated in

two different types.

Type 1 Problem Compute nixi)1(1 to maximize),,,(21 nxxxf  subject to

iii x   , where niii)1(1,  are numerically specified and the function

),,,(21 nxxxf  are explicitly stated in a non-tabular form.

Type 2 Problem Compute nixi)1(1 to maximize),,,(21 nxxxf  subject to

mjxxxg jnj)1(1),,,(21   , iii x   ni)1(1 , where niii)1(1,  and

mjj)1(1,  are numerically specified, the functions mjxxxg nj)1(1),,,(21  and

),,,(21 nxxxf  are explicitly provided in a non-tabular form.

 EXHAUSTIVE VERSUS RANDOMIZED SEARCHES 489

 Type 2 problem is more general than Type 1 problem. So we will provide the search

methods for Type 2 problem.

2.2 The exhaustive search method The exhaustive search method for both the types of

problems divides/dissects the n dimensional space defined by iii x   ni)1(1 ,

i.e., n dimensional rectangular cuboid (n dimensional rectangular parallelepiped or

equivalently, n orthotope) – or simply called cuboid here – into an array of smaller

cuboids. Let nihi)1(1,  be the length of the i th side of the smaller cuboid. Then

nikh iiii)1(1/)(  , where ik is the number of equispaced divisions of the i th

side of the original cuboid. Thus we will have i

n

i
k

1
 points, viz.,

(n ,,, 21 ),),,,,(211 nh  ),,,,2(211 nh   ,),,,,(2111 nhk  

(nh  ,,, 221 ),),,,2,(221 nh   ,),,,,(2221 nhk  


(nn h ,,, 21 ),),2,,,(21 nn h  ,),,,,(21 nnn hk 

at which we compute the value of the function f . We reject those points and their

corresponding values of the function f at which one or more constraints

mjxxxg jnj)1(1),,,(21   have not been satisfied. We then choose that point out

of the remaining points for which the value of f has become maximum. This point is the

required approximate solution vector. Call it)1(x – the solution at the first iteration. In

order to improve the solution and compute the relative error bounds we repeat the process

by halving the length ih , i.e., by doubling the number equispaced divisions ik .

Consequently we get the improved vector)2(x – the solution at the second iteration. We

then obtain the relative error ||||/||||)2()1()2(xxx  in the solution vector)1(x . Thus, we

continue the process till we obtain the desired (relative) accuracy, say 4105.0  , in the

solution vector)(kx , i.e.

4)1()()1(105.0||||/||||   kkk xxx .

2.3 The randomized search method The randomized search algorithm for both the

types of problems considers the original cuboid D , generates uniformly distributed p

random points (n dimensional vectors) in the original domain

})1(1|{ nixxD iiii   . It computes the function f at these p points. As in

the exhaustive search method, we reject those points (out of these p points) and their

corresponding values of the function f at which one or more constraints

mjxxxg jnj)1(1),,,(21   have not been satisfied. We then choose that point out

of the remaining points for which the value of f has become maximum. This point is the

required approximate solution vector. Call it)1(x – the solution at the first iteration. To

improve the solution and compute the relative error bounds we repeat the process by

dividing the domain D into two domains 1D and 2D , where

})1(12/|{1 nixxD iiii   and })1(12/|{2 nixxD iiii   . In each

490 S. K. SEN AND G. A. SHAYKHIAN

of the two domains, the algorithm generates uniformly distributed p random points in

the same way as is done for the original domain. We reject as before those points (out of

these p2 points) and their corresponding values of the function f at which one or more

constraints mjxxxg jnj)1(1),,,(21   have not been satisfied. We then choose

that point ()2(x) out of the remaining points for which the value of f has become

maximum. Consequently we get the improved vector)2(x – the solution at the second

iteration. We then obtain the relative error ||||/||||)2()1()2(xxx  in the solution vector
)1(x . Each one of the domains 1D and 2D are again subdivided into two domains

resulting into four domains 22211211 ,;, DDDD . For each of the four domains, the

algorithm generates uniformly distributed p random points in each of these four

domains in the same way as is done for the original domain D . Thus we obtain p4

points. We reject as before those points (out of these p4 points) and their corresponding

values of the function f at which one or more constraints

mjxxxg jnj)1(1),,,(21   have not been satisfied. We then choose that point

()3(x) out of the remaining points for which the value of f has become maximum.

Consequently we get the improved vector)3(x – the solution at the third iteration. We

then obtain the relative error ||||/||||)3()2()3(xxx  in the solution vector)2(x . Thus we

continue the successive iterations in the same way as above till we obtain the desired

accuracy, say 4105.0  , in the solution vector)(kx , i.e.

4)1()()1(105.0||||/||||   kkk xxx .

The initial number of uniformly distributed random numbers p depends on the specified

problem and its dimension. The number p should be reasonably large so that the number

of iterations 1k is reasonably small compared to p .

3. NUMERICAL EXAMPLE

We illustrate both the methods using a simple two variable nonlinear optimization

problem

2121

2

2

2

121 382),(xxxxxxxxfMax 

subject to 2026 21  xx , 32,32 21  xx .

In exhaustive search, we arbitrarily choose 11 points on the 1x -axis, viz., 3)1.0(21 x

and 11 points on the 2x -axis, viz., 3)1.0(22 x . These constitute 121 pairs of points viz.,

)3,3(,),1.2,2(),2,2( . Each pair is simply called a point or a vector in the two

dimensional space. We evaluate the function),(21 xxf at each of these 121 points. Reject

those points that do not satisfy the inequality 2026 21  xx and compute the function

value for the remaining points and take the largest function value as our approximate

solution vector)1(x – the first iteration value. Using the following Matlab commands (in

one line)

EXHAUSTIVE VERSUS RANDOMIZED SEARCHES 491

i=1; for x1=2:.1:3, for x2=2:.1:3, f=-2*x1.^2-x2.^2+x1.*x2+8*x1+3*x2; if

(6*x1+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+1; end; end; end; H=[xx1' xx2'

h']; Hsort=sortrows(H, 3), a=size(Hsort); Hsort(a(1),:)

we get ,, 21 xx and the objective function value as]155.25.2[][21 fxx . Our
tx]5.25.2[)1( , where t denotes the transpose.

 If we now replace .1 in the first line of the Matlab commands by .05 in both the

places then we get]015.1565.245.2[][21 fxx . Our tx]65.245.2[)2( .

 If we now replace .05 in the first line of the Matlab commands by .025 in both the

places then we get]0163.15575.2475.2[][21 fxx . Our tx]575.2475.2[)3( .

 We continue in this way. When we use the corresponding value .00078125 in the

first line of the Matlab commands in both the places then we get

]0179.156078.24641.2[][21 fxx . Thus our tx]6078.24641.2[)8( . A true

solution is]0179.156071.24643.2[][21 fxx

 However, one needs to compute after each iteration starting from the second iteration

the relative error in the solution vector and proceed until the condition on the relative

error in the solution vector)(kx , viz., 4)1()()1(105.0||||/||||   kkk xxx is satisfied.

This satisfaction would imply that the solution vector was correct up to at least 4

significant digits.

 We are not presenting here an efficient
1
 Matlab code nor are we computing the

relative errors after each iteration for the foregoing computations. We are just attempting

to show that the algorithm is the simplest and produces the best quality solution. It is,

though exponential, has an important role to play in 21
st
 century computing environment

for solving numerous practical problems including those connected with laboratory

experiments. In this century, the processor speed is doubling every 18 months, band

width is doubling every 12 months, and hard disk space is doubling every 9 months.

Currently the processing speed is of the order of teraflops (1210 floating-point operations

per sec) and has touched petaflops (1510 floating point operations per sec). In fact, the

time for such experiments can be drastically reduced with the aid of such models. There

are certain areas that involve truly large optimization problems for which the exhaustive

search can be tractable only when the bounds iii x   are very sharp/narrow. While

performing numerical experiments consciously, we do gain significant insight into the

problem and consequently could reduce the size of each bound on an element of the

solution vector. Such a reduction will enable the exhaustive search find a solution in an

acceptable time frame. In fact one has, unlike the main-frame computing days, a

complete computer (laptop/desktop) in one’s disposal all the time and it is much more

powerful compared to those during the 20
th

 century computing devices.

 In randomized search we generate arbitrarily 100p uniformly distributed pseudo-

random numbers, simply called random numbers, for each element of the solution vector

x in each of the intervals iii x   2,1i . The Matlab rand generates a pseudo-

1
 It can be easily seen that the Matlab code used here computes the function f at half of the points again

and again at each successive iteration. This can be avoided while writing an efficient Matlab code.

Consequently significant computing time can be saved.

492 S. K. SEN AND G. A. SHAYKHIAN

random number ir in]1,0[
2
. To generate a random number ix in],[ii  from ir , we

compute 2,1)( irx iiiii  .Thus using Matlab rand, we will generate

100001002  pairs of points or, simply points),(21 xx . We evaluate the function

),(21 xxf at each of these 10000 points. Reject those points that do not satisfy the

inequality 2026 21  xx and compute the function value for the remaining points and

take the largest function value as our approximate solution vector)1(x – the first iteration

value. Using the following Matlab commands (in one line)

>> i=1; for j=1:100, for k=1:100, x1=1+rand; x2=1+rand; f=-2*x1.^2-

x2.^2+x1.*x2+8*x1+3*x2; if (6*x1+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+1;

end; end; end; H=[xx1' xx2' h']; Hsort=sortrows(H, 3); a=size(Hsort); Hsort(a(1),:)

we get ,, 21 xx and the objective function value as]9939.1329970.1[][21 fxx .

Our tx]29970.1[)1( . It can be seen that the rand command produces different values

every time it is run. This is because of the seed for generation of random numbers, which

would be different for every new run. By executing the foregoing commands for the

second time we have obtained]9806.139914.19947.1[][21 fxx . Our
tx]9914.19947.1[)1( .

 However, if we now replace 100 in the first line of the Matlab commands by 200 in

both the places then we get]9847.139920.19963.1[][21 fxx . Our
tx]9920.19963.1[)2( . We can see that the solution is not improved. Instead it has

deteriorated in spite of generating more random numbers. Such a behavior is quite

expected when we use rand that generates pseudo-random numbers. However, we may

replace pseudo-random number generator rand by a quasi-random number generator [2-

4] since quasi-random numbers are more uniformly distributed with less discrepancy.

 If we replace 100 by 1000 (in both the places in the foregoing first line of the Matlab

codes) which is significantly much larger, then we should expect an improvement in the

solution. The slightly improved solution is]9974.139981.19996.1[][21 fxx

which is far from satisfactory. Also, the computing time to evaluate the function f 10

million times besides checking the validity of the inequality 2026 21  xx is enormous

(over 2 hours) in a 2005 desktop computer.

 However, instead of increasing the number of random numbers, one can divide the

domain iii x   2,1i into sub-domains appropriately (not necessarily as

mentioned in section 2.3). We evaluate the function),(21 xxf at all the 100 pairs of

random points in each of these sub-domains. . Reject those points that do not satisfy the

inequality 2026 21  xx and retain the remaining points and take that point for which

the function value is the largest as our approximate solution in a sub-domain. Having

obtained the point corresponding to the largest function value in each domain, we choose

the largest of all these values. The vector (point) corresponding to this largest value will

2
 We have not seen Matlab rand producing exactly 0 and exactly 1 while generating random numbers.

Strictly speaking it generates random numbers in)1,0(. However, for our purpose, this does not pose any

problem.

EXHAUSTIVE VERSUS RANDOMIZED SEARCHES 493

be an approximate optimal solution. One can still further subdivide keeping the required

random numbers unchanged and continue till a desired accuracy is achieved.

 Both the foregoing methods are exponential, the exhaustive search method is

deterministic and produce better solution at every successive iteration unlike the

randomized search. The genetic algorithms/ evolutionary approaches are always based on

the use of a large number of random numbers and are usually polynomial-time. One may

certainly go for such an algorithm for obtaining an optimal solution. We are here

concerned with scientists/engineers/students who are not well-versed with such

algorithms and yet desire to use modeling as an aid to their physical/chemical

experiments. The foregoing simple procedures needs no formal knowledge on their part

and are easy to program in a high level language such as Matlab/Mathematica.

4. APPLICATION IN MAXIMIZING SOLAR DEVICE EFFICIENCY

Solar devices, particularly solar cells, have not yet become sufficiently competitive and

are yet to occupy a significant place among widely used energy sources such as those

from fossil fuel (coal, natural gas, diesel, mineral oil). Fossil fuel is the primary source of

energy for the world It is increasingly becoming more expensive and straining the

economy of most countries of the world while exploration is continuing in obtaining

energy from sources such as the sun and the wind and making it competitive. The energy

produced from the sun and the wind is increasingly enhanced for our use and it is

becoming gradually cheaper. The initial investment is a major hurdle while the later

expenditure in producing energy from the sun (or the wind) is significantly low. A

situation will crop up in not-so-distant future when the increasing cost of the energy from

fossil fuel will be comparable to the decreasing cost of energy from the sun. At that time

the solar energy which is available in abundance and is clean (pollution-free) will

increasingly start replacing the conventional energy produced by fossil fuel. Currently,

many solar energy centers are engaged in maximizing the usage of solar energy available

in abundance. Theoretically one can use up to 40% of the energy obtained from the sun

while currently we are able to utilize around 15 to 20% of the available solar energy.

Hence there is a scope to improve the efficiency of solar devices.

 While solar laboratory facilities are increasingly improved and utilized to enhance the

effective availability of solar energy, computer modeling can be added along with these

facilities to determine the best/optimal values of the concerned parameters fast. Thus

such a modeling will cut down the time of experiments with many parameters drastically.

In fact, in an experiment, we change only one parameter and observe its effect on another

parameter while the rest of the parameters are kept fixed/unchanged. This is because we,

the common human beings, are not able to comprehend precisely the effect of

simultaneous change of several parameters in an experiment on other parameters.

Computer modeling, on the other hand, is capable of doing this job fast and accurately for

the experimentalists since the processing speed of the computer has crossed teraflops and

has touched petaflops (1510 floating-point operations per second) by the end of the first

decade of 21
st
 century [1]. This speed is over one thousand folds larger than that during

the last decade of 20
th

 century. We present here two forms of global mathematical models

for the efficiency of solar cells [5, 6]. Both the models conform to those presented in

section 2.1. Hence these can be solved by the exhaustive search method (the simplest

possible method).

494 S. K. SEN AND G. A. SHAYKHIAN

Model 1: A single multivariate efficiency function model We need to identify the

parameters and their optimal achievable values that allow us to increase the efficiency to

the maximum possible extent. So far we have identified most of the parameters that

contribute to the efficiency. In other words, the efficiency has been found to be the

function of the following parameters as described in terms of the notations presented

below [5, 6].

Notations

pR parallel resistance ( for an ideal device)

SR series resistance (0 for an ideal device)

J current density flowing in the device

scJ short-circuit current

0J reverse saturation current of the diode

 LJ current generated by light

LJ reverse current associated with photo-excitation

 voltage = forward current device voltage

oc open-circuit voltage

A area through which current flows

A ideality factor

 1A if the transport process is diffusion

 2A if the transport process is recombination

I total current = JA (This A is the area unlike the foregoing A which

 can be identified from the context)

 efficiency

qE semiconductor band gap

ff fil factor

radP total radiation power incident on the cell

The efficiency  is a function of variables/parameters mocm qTkAJ  ,,,,,, and possibly

,,,,,,, 0 energyphotonabsorptionRRJJJ psL also. Some of the foregoing parameters

appear to be related.

Brief partial sketch of the optimization problem

|}})/(|ln)/({)[/1(

),,,,,,,,,,,,,(

AkTqqAkTJP

energyphotonabsorptionRRJJJqTkAJMaximize

mocmrad

psoLmocm









subject to

 7766

55443322

11

,

,,,

).(max













m

oc

m

q

TkA

densitycurrentpossibleJ

EXHAUSTIVE VERSUS RANDOMIZED SEARCHES 495



10109988 ,,   oL JJJ

)(|1)/(|ln)/(0 1 valuepositivesmallAkTqqAkT mocm  

)(|1)/(|ln)/(0 20 valuesmalleappropriatanotherJJqAkT Loc  

Photon energy versus optical absorption curve provides another inequality

J curve provides yet another inequality


All variables 0 .

Having compiled all the available inequalities, We insert the minimum and maximum

attainable values ii  , . These values could be obtained from the laboratory experiments

or from literature depicting experimental results. An evolutionary method may be devised

to solve the optimization problem. This solution will enable us to determine the best

combination of the concerned (attainable) parameter values that will maximize the

efficiency of the solar cell. In fact, since there are numerous possible combinations (as it

is a combinatorial problem), laboratory experimentation to explore all possible

combination is intractable. Through the use of a personal computer which executes over

one billion floating-point operations per second (FLOPS), we should be able to get the

solution (i.e., the desired optimal parameter values) in a matter of minutes. These values

will readily help the laboratory experimentation thus allowing the experimentalists to

save significant time on experimentation taking only two parameters at a time while

keeping others fixed. Unfortunately the actual situation is not as simple as depicted by the

foregoing multivariable efficiency function model. For if it is so, then modeling alone

would have saved the enormous trouble of highly time consuming experimentation.

 Some of the critical issues for thin film solar cell models are number of layers, band

discontinuities, band gaps, and charge in deep bulk states as well as in deep interface

states. These need to be appropriately taken care of.

Model 2: Nonlinear programming model involving all possible/available relations We

have seen many relations  equations and inequalities  involving thin film pv devices

including their concerned materials/compounds. The concerned nonlinear program [6] in

a general form can be written as

.)1(1,

)/.,.(

)1(1,),,,(

),,,(

21

21

njx

ustoavailablefarsosinequationequationspossibleallei

miorxxxfor

tosubjectxxxefficiencyMaximize

jjj

inii

n















5. Conclusions

We have described two possible models, viz., Model 1: A single multivariate efficiency

function model and Model 2: Nonlinear programming model involving all

possible/available relations. The efficiency function in Model 2 is chosen as the function

same as in Model 1 or a better one which is (so far) available or developed. Model 2 is

definitely better than Model 1 in terms of providing realistic values of the parameters that

go to enhance/maximize the efficiency. But computationally it is more involved. If there

496 S. K. SEN AND G. A. SHAYKHIAN

is any inconsistency among the relations (equations and inequalities), it would not be

possible to get a solution that satisfies all the relations. In such a situation, it is necessary

to check and correct the mathematical model for the human mistake committed in

modeling. The physical model derived from the material universe is assumed to be

errorless (although it need not be).

 One important computational aspect is that equality relationships in physical

quantities cannot, in general, exist. This is because of the fact that exact physical

quantities cannot be exactly represented nor can these be exactly measured. A measuring

device is not, in general, more accurate than 0.005% [7]. Consequently we represent

almost all equations in terms of inequalities. Even the parameters/variables affecting the

efficiency are expressed in the model in terms of their realistic, possibly narrow, bounds

as has been done in the first model.

 The nonlinear program not being able to/produce a solution implies that the nonlinear

program model needs to be corrected/modified based on determining the contradictory

inequation(s)/bounds in the model as stated earlier. Such a contradiction (inconsistency)

could creep in always due to human mistakes/measuring device errors (accuracy

%)005.0 .

 The later model (Model 2) is certainly not the final model that is the perfect/best one

and that can never be improved. Our increasing knowledge about the physics of the solar

cell will definitely result in a superior cell in course of time. Thus modeling will continue

rather indefinitely in the realm of thin film pv devices. Although the current success of

such a modeling is low in terms of aiding the experimentalists as well as reducing the

cost and time of experiments, a day will come when we are much better informed through

past mistakes/failures. Consequently modeling, we believe, will be the dominant tool in

solar cell efficiency arena. However, the later form of the model (Model 2), we believe, is

completely general. Only the improvement will occur in the efficiency function and all

the two sets of inequalities. While the modeling along with the laboratory experimental

activities helps us to gain increasingly deeper insight, the general model will continue to

improve in its contents but not in its form [5, 6]. In fact, the models proposed are not

static but dynamic in their contents.

 The foregoing two models are essentially the ones which can be solved using the

methods described in section 2. Specifically, the best method is the exhaustive search

described in section 2.2. It can be seen that the way we have presented the method

involves computation of the function(s) at the same points again and again. Hence the

presented exhaustive search is crude and can be made more efficient by omitting the

concerned repetitions. Such omissions need some additional programming effort and is

recommended definitely for reasonably large problems. However, for not too large a

problem, the exhaustive search described in section 2.2 is not only too easy to be readily

coded but also will produce the required optimal solution in an acceptable time frame.

 Many models have been proposed in literature [8-28]. All these have varying degree

of advantages and scope and are tractable. The exhaustive search for both Models 1 and

2, on the other hand, is the most easily followed and simplest for coding in, say, Matlab

by scientists/engineers/students who do not have formal programming knowledge. It is

capable of producing the most accurate solution within the precision of computation, but

it is exponential-time and intractable if the posed modeling problem is very large. A

randomized algorithm based on the usage of quasi-random numbers will not be able to

produce as good a solution as the one produced by the exhaustive search. Further we will

not be able to deterministically/precisely ascertain, within reasonably narrow bounds, the

EXHAUSTIVE VERSUS RANDOMIZED SEARCHES 497

quality (relative error bounds) of the solution in a randomized algorithm,

probabilistically, this can be determined though.

 However, due to the availability of enormous computing power touching petaflops [1]

in the current (first) decade of 21
st
 century (see also sections 1 and 3), the exponential-

time exhaustive search is not altogether untouchable if the posed real-world modeling

problem is not very large. In fact we do have many small as well as large real-world

problems for which we have not tried exhaustive search consciously possibly thinking

about its combinatorial computational (exponential) complexity. Now it is slowly

entering into the realm of computation not only because of ever increasing computing

power [7] but also because of (i) availability of individual computer (lap-top/desktop)

and (ii) non-utilization of an estimated 95% computing resources (power) unlike main-

frame era in mid-/late 20
th

 century.

REFERENCES

1. Chidanand Rajghatta (2007). The Times of India, TNN, India hosts world’s fourth fastest

supercomputer, The Times of India Daily News Paper, reported on November 13, 2007 at 2143

hours Indian Standard Time from Washington.

2. S.K. Sen, T. Samanta and A. Reese (2006). Quasi- versus pseudo-random generators:

discrepancy, complexity and integration-error based comparison, International Journal of

Innovative Computing, Information and Control, 2, No. 3, pp. 621-651, June 2006.

3. V. Lakshmikantham, S.K. Sen, and T. Samanta (2005). Comparing random number generators

using Monte Carlo integration, International Journal of Innovative Computing, Information and

Control, 1, No. 2, pp. 143-165, June 2005.

4. S.K. Sen and G.A. Shaykhian (2007). Scope of various random number generators in ant

system approach for TSP Paper AC2007-458, 2007 ASEE (American Society for Engineering

Education) Proc. Annual Conference & Exposition, Hilton Howaii Village, Honolulu, Howaii,

June 24-27, 2007, 1-25.

5. S.K. Sen(2007). Efficiency of solar cell: scope of modeling in experimental environment (an

invited talk), Fifth International Conference on Dynamic Systems and Applications (mat 30-June

02, 2007), Atlanta, Georgia (supported by Florida Solar Energy Center award/grant # 211064).

6. S.K. Sen (2009). How modeling can attract experimentalists to improve solar cell’s efficiency:

Divide-and-conquer approach, Nonlinear Analysis, 10.1016/j.na.2008.10.058, October, 2008, 71

(2009), 196-211.

7. V. Lakshmikantham and S.K. Sen (2005): Computational Error and Complexity in Science and

Engineering, Elsevier, Amsterdam.

8. Schwarz, R., Gray J., Turner, G. Kanani, D., and Ullal, H. (1984). Numerical modeling of

nIp  hydrogenated thin film silicon cells, Conference Record, 17
th
 IEEE Photovoltaic

Specialists Conference, Kissimmee, Florida, May, 1984, 369-373.

9. Dimmer, B., Dittrich, H., Menner, R., and Schock, H.W. (1987). Performance and

optimization of heterojunctions based on Cu(Ga,In)Se2, Conference Record, 19
th
 IEEE

Photovoltaic Specialists Conference, New Orleans, May 1987, 1454-1460.

10. Basore, P.(1990). Numerical modeling of textured silicon solar cells using PC-ID, IEEE

Trans. Elecron Devices, 37, 2, 337.

11. Gray, J.L. (1991). ADEPT: A general purpose device simulator for modeling solar

cells in one, two and three dimensions, Conference Record, 22
nd

 IEEE Photovoltaic

Specialists Conference, Las Vegas, NV, 1991, 436-438.

12. Lee, Y.J. and Gray, J.L. (1993). Numerical modeling of polycrystalline CdTe and

CIS solar cells, Conference Record, 23
rd

 IEEE Photovoltaic Specialists Conference,

Luisville, May 1993, 586-591.

498 S. K. SEN AND G. A. SHAYKHIAN

13. Lee, Y.J. and Gray J.L. (1994). Numerical modeling of the temperature and illumination

intensity dependent performance of CIS solar cells, Proceedings of the 12
th
 European

Photovoltaic Solar Energy Conference, Amsterdam, April 1994, 1561-1564.

14. Gray, J.L. (1996). Interpretation of capacitance-voltage characteristics in thin film solar cells

using a detailed numerical model, Conference Record, 25th IEEE Photovoltaic Specialists

Conference, Washington D.C., April 1996, 905-908.

15. Niemegeers, A. and Burgelman, M. (1996). Numerical modeling of ac-characteristics of CdTe

and CIS solar cells, Conference Record, 25th IEEE Photovoltaic Specialists Conference,

Washington D.C., April 1996, 901-904.

16. Clugston, D. and basore, P. (1997). PCID version 5: 32-bit solar cell modeling on personal

computers, Conference Record, 26th IEEE Photovoltaic Specialists Conference, Anaheim,

17. Burgelman, M., Nollet, P., Degrave, S. and Beier, J. (2000). Modeling the crossover of the I-

V characteristics of thin film CdTe solar cells, Conference Record, 28th IEEE Photovoltaic

Specialists Conference, Anchorage, September 2000, 551-554.

18. Fahrenbruch, A. (2000). Modeling results for CdS/CdTe solar cells, Technical Report, March

2000, Colorado State University.

19. Burgelman, M., Nollet, P., Degrave, S.(2000). Modeling polycrystalline semiconductor solar

cells, Thin Solid Films, 361-362, 527-532.

20. Grasso, C., Ernst, K., Konenkamp, R. Burgelman, M., Lux-Steiner, M-C. (2001).

Photoelectrical characterization and modeling of the eta-solar cell, Proceedings of the 17
th

European Photovoltaic Conference, Munich, October 2001, 211-214.

21. Klenk, R. (2001). Characterization and modeling of chalcopyrite solar cells, Thin Solid Films,

387, 135-140.

22. Dullweber, T., Hanna, G., Rau, U. and Schock, H.W. (2001). A new approach to high-

efficiency solar cells by band gap grading in Cu(In, Ga)Se2 chalcopyrite semiconductors, Solar

Energy Materials and Solar Cells, 67, 145-150.

23. Fahrenbruch, A. (2002). Comparison of experimental data with AMPS modeling of the

effects of CdS layer thickness on the CdS/CdTe solar cell, Conference Record, 29th IEEE

Photovoltaic Specialists Conference, New Orleans, May 2002, 551-554.

24. Huang, C.H., Li, S.S. and Anderson, T.J. (2002). Device modeling and simulation of CIS-

based solar cells, Conference Record, 29th IEEE Photovoltaic Specialists Conference, New

Orleans, May 2002, 748-751.

25. Burgelman, M. and Grasso, C.(2003). Flatband solar cells: a model for solid-state nano-

structured solar cells, Presented at the 3
rd

 World Conference of Photovoltaic Energy

Conversion, Osaka, May 2003.

26. Gloeckler, M., Fahrenbruch, A.L. and Sites, J.R. (2003). Numerical modeling of CIGS and

CdTe solar cells: Setting the baseline, 3
rd

 World Conference of Photovoltaic Energy Conversion,

Osaka, May 2003.

27. Bube, R. H. (1998). Photovoltaic Materials, Imperial College Press, London.

28. Burgelman, M. Verschraegen, J., Degrave, S., and Nollet, P. (2004). Modeling thin-film pv

devices, Prog. Photovolt: Res. Appl. 12, 143-153.

