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ABSTRACT We present a simple multi-dimensional exhaustive search method to 

obtain, in a reasonable time, the optimal solution of a nonlinear programming problem. It 

is more relevant in the present day non-mainframe computing scenario where an 

estimated 95% computing resources remains unutilized and computing speed touches 

petaflops. While the processor speed is doubling every 18 months, the band width is 

doubling every 12 months, and the hard disk space is doubling every 9 months. A 

randomized search algorithm or, equivalently, an evolutionary search method is often 

used instead of an exhaustive search algorithm. The reason is that a randomized approach 

is usually polynomial-time, i.e., fast while an exhaustive search method is exponential-

time i.e., slow. We discuss the increasing importance of exhaustive search in optimization 

with the steady increase of computing power for solving many real-world problems of 

reasonable size. We also discuss the computational error and complexity of the search 

algorithm focusing on the fact that no measuring device can usually measure a quantity 

with an accuracy greater than 0.005%. We stress the fact that the quality of solution of 

the exhaustive search – a deterministic method – is better than that of randomized search. 

In 21
st
 century computing environment, exhaustive search cannot be left aside as an 

untouchable and it is not always exponential. We also describe a possible application of 

these algorithms in improving the efficiency of solar cells – a real hot topic – in the 

current energy crisis. These algorithms could be excellent tools in the hands of 

experimentalists and could save not only large amount of time needed for experiments 

but also could validate the theory against experimental results fast.  

 

1. INTRODUCTION 

 

The  computing scene has been changing rapidly since 1940’s. We have come a long way 

since then. The processing speed, executable memory storage, hard disk space, as well as 

band width are practically doubling every year. During 1946-53, the computing speed 

was  about 310   operations per sec,  during 1953-59  and 1959-64,  it  was 4105   and  
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5105  operations per sec, respectively. During 1964-69 and 1969-75, the computing 

speed improved to 66 1020,10   operations per sec, respectively along with the incessant 

innovations in silicon technology and architecture. During 1975-2010, the speed went on 

doubling. Today it has reached over 100 teraflops ( 1412 1010100   floating-point 

operations per sec) and touched the petaflops ( 1510  flops) [1]. During most part of 

twentieth century, it was the main-frame (single) computer used by a large number of 

users in queues having varying computing resources requirements, which was the 

dominant factor. As this century was approaching to a close, the main-frame started 

heading toward oblivion. Its place was being occupied by laptop/desktop computers. 

Each individual started having his own computer. The dependence on the main frame 

slowly vanished. Miniaturization, portability, and internet revolutionized the computing 

scene to such an extent that the whole world will come to a halt if the computer halts. 

Aircrafts will be grounded, banks will be non-functional, the government departments 

will cease to function. Besides, we are now having an estimated over 95% computing 

power unutilized and hence a waste unlike that of the main-frame days.  

      This enormous computing power available to us has also affected the importance and 

significance of an algorithm which was earlier considered too slow (exponential-time) 

and so untouchable. The computer scientists by virtue of their computational complexity 

study had suggested the user against using combinatorial/ exponential search methods 

unless the problem is too small. In essence, they have advised against employing these 

algorithms for real-world problems which are often not too small and also not often too 

large. In this context, we look back and attempt to take a stock of the situation. We try to 

use multi-dimensional exhaustive search and find out to which extent it is capable of 

solving many physical problems, mainly optimization problems. We also compare these 

search against randomized search to bring out the pros and cons of these two procedures. 

      In section 2, we state the two types of general nonlinear optimization problems with 

simple examples. We describe the exhaustive search method as well as a simple 

randomized search algorithm for nonlinear optimization in this section along with their 

computational complexities.  We consider numerical examples involving simple 

nonlinear optimization problems of the second type (a more general one) in section 3 

while we discuss possible applications for maximizing the efficiency of a solar cell in 

section 4. Section 5 comprises conclusions. 

 

2. THE PROBLEMS AND THE METHODS 

 

2.1 The problems The nonlinear optimization problems that we will discuss are stated in 

two different types. 

 

Type 1 Problem  Compute nixi )1(1  to maximize ),,,( 21 nxxxf   subject to 

iii x   , where niii )1(1,   are numerically specified and the function 

),,,( 21 nxxxf   are explicitly stated in a non-tabular form. 

 

Type 2 Problem Compute nixi )1(1  to maximize ),,,( 21 nxxxf   subject to 

mjxxxg jnj )1(1),,,( 21   ,  iii x     ni )1(1 , where niii )1(1,   and 

mjj )1(1,   are numerically specified, the functions mjxxxg nj )1(1),,,( 21   and 

),,,( 21 nxxxf   are explicitly provided in a non-tabular form. 
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      Type 2 problem is more general than Type 1 problem. So we will provide the search 

methods for Type 2 problem. 

 

2.2 The exhaustive search method  The exhaustive search method for both the types of 

problems divides/dissects the n dimensional space defined by iii x     ni )1(1 , 

i.e.,  n dimensional rectangular cuboid ( n dimensional rectangular parallelepiped or 

equivalently, n orthotope ) – or simply called cuboid here – into  an array of smaller 

cuboids. Let nihi )1(1,  be the length of the i th side of the smaller cuboid. Then 

nikh iiii )1(1/)(   , where ik  is the number of equispaced divisions of the i th 

side of the original cuboid. Thus we will have i

n

i
k

1
  points, viz.,  

( n ,,, 21  ), ),,,,( 211 nh   ),,,,2( 211 nh   ,  ),,,,( 2111 nhk    

( nh  ,,, 221  ), ),,,2,( 221 nh   , ),,,,( 2221 nhk    

  
( nn h ,,, 21  ), ),2,,,( 21 nn h  , ),,,,( 21 nnn hk   

 

at which we compute the value of the function f . We reject those points and their 

corresponding values of the function f  at which one or more constraints 

mjxxxg jnj )1(1),,,( 21    have not been satisfied. We then choose that point out 

of the remaining points for which the value of f has become maximum. This point is the 

required approximate solution vector. Call it )1(x – the solution at the first iteration. In 

order to improve the solution and compute the relative error bounds we repeat the process 

by halving the length ih , i.e., by doubling the number equispaced divisions ik . 

Consequently we get the improved vector )2(x – the solution at the second iteration. We 

then obtain the relative error ||||/|||| )2()1()2( xxx   in the solution vector )1(x . Thus, we 

continue the process till we obtain the desired (relative) accuracy, say 4105.0  , in the 

solution vector )(kx , i.e.   

 
4)1()()1( 105.0||||/||||   kkk xxx . 

 

2.3 The randomized search method The randomized search algorithm for both the 

types of problems considers the original cuboid D , generates uniformly distributed p  

random points ( n dimensional vectors) in the original domain 

})1(1|{ nixxD iiii   . It computes the function f  at these p  points. As in 

the exhaustive search method, we reject those points (out of these p  points) and their 

corresponding values of the function f  at which one or more constraints 

mjxxxg jnj )1(1),,,( 21    have not been satisfied. We then choose that point out 

of the remaining points for which the value of f has become maximum. This point is the 

required approximate solution vector. Call it )1(x – the solution at the first iteration. To 

improve the solution and compute the relative error bounds we repeat the process by 

dividing the domain D  into two domains 1D  and 2D , where 

})1(12/|{1 nixxD iiii    and })1(12/|{2 nixxD iiii   . In each  
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of the two domains, the algorithm generates uniformly distributed  p  random points  in 

the same way as is done for the original domain. We reject as before those points (out of 

these p2  points) and their corresponding values of the function f  at which  one or more 

constraints mjxxxg jnj )1(1),,,( 21    have not been satisfied. We then choose 

that point  ( )2(x ) out of the remaining points for which the value of f  has become 

maximum. Consequently we get the improved vector )2(x  – the solution at the second 

iteration. We then obtain the relative error ||||/|||| )2()1()2( xxx   in the solution vector 
)1(x . Each one of the domains 1D  and 2D  are again subdivided into two domains 

resulting into four domains 22211211 ,;, DDDD . For each of the four domains, the 

algorithm generates uniformly distributed  p  random points in each of these four 

domains in the same way as is done for the original domain D . Thus we obtain p4  

points. We reject as before those points (out of these p4  points) and their corresponding 

values of the function f  at which one or more constraints 

mjxxxg jnj )1(1),,,( 21    have not been satisfied. We then choose that point  

( )3(x ) out of the remaining points for which the value of f  has become maximum. 

Consequently we get the improved vector )3(x  – the solution at the third iteration. We 

then obtain the relative error ||||/|||| )3()2()3( xxx   in the solution vector )2(x . Thus we 

continue the successive iterations in the same way as above till we obtain the desired 

accuracy, say 4105.0  , in the solution vector )(kx , i.e.   

 
4)1()()1( 105.0||||/||||   kkk xxx . 

 

The initial number of uniformly distributed random numbers p  depends on the specified 

problem and its dimension. The number p  should be reasonably large so that the number 

of iterations 1k  is reasonably small compared to p .  

 

3. NUMERICAL EXAMPLE 

 

We illustrate both the methods using a simple two variable nonlinear optimization 

problem  

 

2121

2

2

2

121 382),( xxxxxxxxfMax    

subject to 2026 21  xx ,  32,32 21  xx . 

In exhaustive search, we arbitrarily choose 11 points on the 1x -axis, viz., 3)1.0(21 x  

and 11 points on the 2x -axis, viz., 3)1.0(22 x . These constitute 121 pairs of points viz., 

)3,3(,),1.2,2(),2,2(  . Each pair is simply called a point or a vector in the two 

dimensional space. We evaluate the function ),( 21 xxf  at each of these 121 points. Reject 

those points that do not satisfy the inequality 2026 21  xx and compute the function 

value for the remaining points and take the largest function value as our approximate 

solution vector )1(x  –  the first iteration value. Using the following Matlab commands (in 

one line) 

 



EXHAUSTIVE VERSUS RANDOMIZED SEARCHES             491  

 

i=1; for x1=2:.1:3, for x2=2:.1:3, f=-2*x1.^2-x2.^2+x1.*x2+8*x1+3*x2; if 

(6*x1+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+1; end; end; end; H=[xx1' xx2' 

h']; Hsort=sortrows(H, 3), a=size(Hsort); Hsort(a(1),:) 

 

we get ,, 21 xx and the objective function value as ]155.25.2[][ 21 fxx . Our 
tx ]5.25.2[)1(  , where t denotes the transpose.  

      If we now replace .1 in the first line of the Matlab commands by .05 in both the 

places then we get  ]015.1565.245.2[][ 21 fxx . Our tx ]65.245.2[)2(  . 

            If we now replace .05 in the first line of the Matlab commands by .025 in both the 

places then we get  ]0163.15575.2475.2[][ 21 fxx . Our tx ]575.2475.2[)3(  . 

      We continue in this way. When we use the corresponding value .00078125  in the 

first line of the Matlab commands in both the places then we get  

]0179.156078.24641.2[][ 21 fxx . Thus our tx ]6078.24641.2[)8(  . A true 

solution is ]0179.156071.24643.2[][ 21 fxx  

      However, one needs to compute after each iteration starting from the second iteration 

the relative error in the solution vector and proceed until the condition on the relative 

error in the solution vector )(kx , viz.,  4)1()()1( 105.0||||/||||   kkk xxx  is satisfied. 

This satisfaction would imply that the solution vector was correct up to at least 4 

significant digits. 

      We are not presenting here an efficient
1
 Matlab code nor are we computing the 

relative errors after each iteration for the foregoing computations. We are just attempting 

to show that the algorithm is the simplest and produces the best quality solution. It is, 

though exponential, has an important role to play in 21
st
 century computing environment 

for solving numerous practical problems including those connected with laboratory 

experiments. In this century, the processor speed is doubling every 18 months, band 

width is doubling every 12 months, and hard disk space is doubling every 9 months. 

Currently the processing speed is of the order of teraflops ( 1210  floating-point operations 

per sec) and has touched petaflops ( 1510  floating point operations per sec). In fact, the 

time for such experiments can be drastically reduced with the aid of such models. There 

are certain areas that involve truly large optimization problems for which the exhaustive 

search can be tractable only when the bounds iii x    are very sharp/narrow. While 

performing numerical experiments consciously, we do gain significant insight into the 

problem and consequently could reduce the size of each bound on an element of the 

solution vector. Such a reduction will enable the exhaustive search find a solution in an 

acceptable time frame. In fact one has, unlike the main-frame computing days, a 

complete computer (laptop/desktop) in one’s disposal all the time and it is much more 

powerful compared to those during the 20
th

 century computing devices. 

      In randomized search we generate arbitrarily 100p  uniformly distributed pseudo-

random numbers, simply called random numbers, for each element of the solution vector 

x  in each of the intervals  iii x    2,1i . The Matlab rand generates a pseudo- 

 

 

                                                 
1
 It can be easily seen that the Matlab code used here computes the function f  at half of the points again 

and again at each successive iteration. This can be avoided while writing an efficient Matlab code. 

Consequently significant computing time can be saved. 
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random number ir  in ]1,0[
2
. To generate a random number ix  in ],[ ii   from ir , we 

compute 2,1)(  irx iiiii  .Thus using Matlab rand, we will generate 

100001002   pairs of points or, simply points ),( 21 xx . We evaluate the function 

),( 21 xxf  at each of these 10000  points. Reject those points that do not satisfy the 

inequality 2026 21  xx and compute the function value for the remaining points and 

take the largest function value as our approximate solution vector )1(x  –  the first iteration 

value. Using the following Matlab commands (in one line) 

 

>> i=1; for j=1:100, for k=1:100, x1=1+rand; x2=1+rand; f=-2*x1.^2-

x2.^2+x1.*x2+8*x1+3*x2; if (6*x1+2*x2<=20), xx1(i)=x1; xx2(i)=x2; h(i)=f; i=i+1; 

end; end; end; H=[xx1' xx2' h']; Hsort=sortrows(H, 3); a=size(Hsort); Hsort(a(1),:) 

 

we get ,, 21 xx and the objective function value as ]9939.1329970.1[][ 21 fxx . 

Our tx ]29970.1[)1(  . It can be seen that the rand command produces different values 

every time it is run. This is because of the seed for generation of random numbers, which 

would be different for every new run. By executing the foregoing commands for the 

second time we have obtained  ]9806.139914.19947.1[][ 21 fxx . Our 
tx ]9914.19947.1[)1(  . 

      However, if we now replace 100 in the first line of the Matlab commands by 200 in 

both the places then we get ]9847.139920.19963.1[][ 21 fxx . Our 
tx ]9920.19963.1[)2(  . We can see that the solution is not improved. Instead it has 

deteriorated in spite of generating more random numbers. Such a behavior is quite 

expected when we use rand that generates pseudo-random numbers.  However, we may 

replace pseudo-random number generator rand  by a quasi-random number generator [2-

4] since quasi-random numbers are more uniformly distributed with less discrepancy.  

      If we replace 100 by 1000 (in both the places in the foregoing first line of the Matlab 

codes) which is significantly much larger, then we should expect an improvement in the 

solution. The slightly improved solution is ]9974.139981.19996.1[][ 21 fxx  

which is far from satisfactory. Also, the computing time to evaluate the function f  10 

million times besides checking the validity of the inequality 2026 21  xx  is enormous 

(over 2 hours) in a 2005 desktop computer. 

      However, instead of increasing the number of random numbers, one can divide the 

domain  iii x    2,1i  into sub-domains appropriately (not necessarily as 

mentioned in section 2.3). We evaluate the function ),( 21 xxf  at all the 100 pairs of 

random points in each of these sub-domains.  . Reject those points that do not satisfy the 

inequality 2026 21  xx and retain the remaining points and take that point for which 

the function value is the largest as our approximate solution in a sub-domain. Having 

obtained the point corresponding to the largest function value in each domain, we choose 

the largest of all these values. The vector (point) corresponding to this largest value will  

 

                                                 
2
 We have not seen Matlab rand producing exactly 0 and exactly 1 while generating random numbers. 

Strictly speaking it generates random numbers in )1,0( . However, for our purpose, this does not pose any 

problem.  



EXHAUSTIVE VERSUS RANDOMIZED SEARCHES             493  

 

be an approximate optimal solution. One can still further subdivide keeping the required 

random numbers unchanged and continue till a desired accuracy is achieved.  

      Both the foregoing methods are exponential, the exhaustive search method is 

deterministic and produce better solution at every successive iteration unlike the 

randomized search. The genetic algorithms/ evolutionary approaches are always based on 

the use of a large number of random numbers and are usually polynomial-time. One may 

certainly go for such an algorithm for obtaining an optimal solution. We are here 

concerned with scientists/engineers/students who are not well-versed with such 

algorithms and yet desire to use modeling as an aid to their physical/chemical 

experiments. The foregoing simple procedures needs no formal knowledge on their part 

and are easy to program in a high level language such as Matlab/Mathematica. 

 

4. APPLICATION IN MAXIMIZING SOLAR DEVICE EFFICIENCY   

        

Solar devices, particularly solar cells, have not yet become sufficiently competitive and 

are yet to occupy a significant place among widely used energy sources such as those 

from fossil fuel (coal, natural gas, diesel, mineral oil). Fossil fuel is the primary source of 

energy for the world It is increasingly becoming more expensive and straining the 

economy of most countries of the world while exploration is continuing in obtaining 

energy from sources such as the sun and the wind and making it competitive.  The energy 

produced from the sun and the wind is increasingly enhanced for our use and it is 

becoming gradually cheaper. The initial investment is a major hurdle while the later 

expenditure in producing energy from the sun (or the wind) is significantly low. A 

situation will crop up in not-so-distant future when the increasing cost of the energy from 

fossil fuel will be comparable to the decreasing cost of energy from the sun. At that time 

the solar energy which is available in abundance and is clean (pollution-free) will 

increasingly start replacing  the conventional energy produced by fossil fuel. Currently, 

many solar energy centers are engaged in maximizing the usage of solar energy available 

in abundance. Theoretically one can use  up to 40% of the energy obtained from the sun 

while currently we are able to utilize around 15 to 20% of the available solar energy. 

Hence there is a scope to improve the efficiency of solar devices.  

      While solar laboratory facilities are increasingly improved and utilized to enhance the 

effective availability of solar energy, computer modeling can be added along with these 

facilities to determine the best/optimal values of the concerned parameters fast. Thus 

such a modeling will cut down the time of experiments with many parameters drastically. 

In fact, in an experiment, we change only one parameter and observe its effect on another 

parameter while the rest of the parameters are kept fixed/unchanged. This is because we, 

the common human beings, are not able to comprehend precisely the effect of 

simultaneous change of several parameters in an experiment on other parameters. 

Computer modeling, on the other hand, is capable of doing this job fast and accurately for 

the experimentalists since the processing speed of the computer has crossed teraflops and 

has touched petaflops ( 1510  floating-point operations per second) by the end of the first 

decade of 21
st
 century [1]. This speed is over one thousand folds larger than that during 

the last decade of 20
th

 century. We present here two forms of global mathematical models 

for the efficiency of solar cells [5, 6]. Both the models conform to those presented in 

section 2.1. Hence these can be solved by the exhaustive search method (the simplest 

possible method). 
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Model 1: A single multivariate efficiency function model We need to identify the 

parameters and their optimal achievable values that allow us to increase the efficiency to 

the maximum possible extent. So far we have identified most of the parameters that 

contribute to the efficiency. In other words, the efficiency has been found to be the 

function of the following parameters as described in terms of the notations presented 

below [5, 6]. 

 

Notations 

 

pR parallel resistance  ( for an ideal device) 

SR series resistance (0 for an ideal device) 

J current density flowing in the device 

scJ short-circuit current 

0J reverse saturation current of the diode 

 LJ current generated by light 

LJ reverse current associated with photo-excitation 

 voltage = forward current device voltage 

oc open-circuit voltage 

A area through which current flows 

A ideality factor 

       1A  if the transport process is diffusion 

        2A  if the transport process is recombination 

I total current = JA (This A  is the area unlike the foregoing A  which 

      can be identified from the context) 

 efficiency 

qE semiconductor band gap 

ff fil factor 

radP total radiation power incident on the cell 

 

The efficiency   is a function of variables/parameters mocm qTkAJ  ,,,,,,  and possibly 

,,,,,,, 0 energyphotonabsorptionRRJJJ psL  also. Some of the foregoing parameters 

appear to be related. 

 

Brief partial sketch of the optimization problem 

 

|}})/(|ln)/({)[/1(

),,,,,,,,,,,,,(

AkTqqAkTJP

energyphotonabsorptionRRJJJqTkAJMaximize

mocmrad

psoLmocm








  

 

subject to 

 

   

 

 

 7766

55443322

11

,

,,,

).(max













m

oc

m

q

TkA

densitycurrentpossibleJ
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

10109988 ,,   oL JJJ
 

)(|1)/(|ln)/(0 1 valuepositivesmallAkTqqAkT mocm     

)(|1)/(|ln)/(0 20 valuesmalleappropriatanotherJJqAkT Loc     

Photon energy versus optical absorption curve provides another inequality 

J  curve provides yet another inequality 

  
All variables 0 . 

 
Having compiled all the available inequalities, We insert the minimum and maximum 

attainable values ii  , . These values could be obtained from the laboratory experiments 

or from literature depicting experimental results. An evolutionary method may be devised 

to solve the optimization problem. This solution will enable us to determine the best 

combination of the concerned (attainable) parameter values that will maximize the 

efficiency of the solar cell. In fact, since there are numerous possible combinations (as it 

is a combinatorial problem), laboratory experimentation to explore all possible 

combination is intractable. Through the use of a personal computer which executes over 

one billion floating-point operations per second (FLOPS), we should be able to get the 

solution (i.e., the desired optimal parameter values) in a matter of minutes. These values 

will readily help the laboratory experimentation thus allowing the experimentalists to 

save significant time on experimentation taking only two parameters at a time while 

keeping others fixed. Unfortunately the actual situation is not as simple as depicted by the 

foregoing multivariable efficiency function model. For if it is so, then modeling alone 

would have saved the enormous trouble of highly time consuming experimentation. 

     Some of the critical issues for thin film solar cell models are number of layers, band 

discontinuities, band gaps, and charge in deep bulk states as well as in deep interface 

states. These need to be appropriately taken care of.  

 

Model 2: Nonlinear programming model involving all possible/available relations We 

have seen many relations  equations and inequalities  involving thin film pv devices 

including their concerned materials/compounds. The concerned nonlinear program [6] in 

a general form can be written as 

 

.)1(1,

)/.,.(

)1(1,),,,(

),,,(

21

21

njx

ustoavailablefarsosinequationequationspossibleallei

miorxxxfor

tosubjectxxxefficiencyMaximize

jjj

inii

n















  

 

5. Conclusions 

 

We have described two possible models, viz., Model 1: A single multivariate efficiency 

function model and Model 2: Nonlinear programming model involving all 

possible/available relations. The efficiency function in Model 2 is chosen as the function 

same as in Model 1 or a better one which is (so far) available or developed. Model 2 is 

definitely better than Model 1 in terms of providing realistic values of the parameters that 

go to enhance/maximize the efficiency. But computationally it is more involved. If there  
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is any inconsistency among the relations (equations and inequalities), it would not be 

possible to get a solution that satisfies all the relations. In such a situation, it is necessary 

to check and correct the mathematical model for the human mistake committed in 

modeling. The physical model derived from the material universe is assumed to be 

errorless (although it need not be).  

     One important computational aspect is that equality relationships in physical 

quantities cannot, in general, exist. This is because of the fact that exact physical 

quantities cannot be exactly represented nor can these be exactly measured. A measuring 

device is not, in general, more accurate than 0.005% [7]. Consequently we represent 

almost all equations in terms of inequalities. Even the parameters/variables affecting the 

efficiency are expressed in the model in terms of their realistic, possibly narrow, bounds 

as has been done in the first model. 

     The nonlinear program not being able to/produce a solution implies that the nonlinear 

program model needs to be corrected/modified based on determining the contradictory 

inequation(s)/bounds in the model as stated earlier. Such a contradiction (inconsistency) 

could creep in always due to human mistakes/measuring device errors (accuracy 

%)005.0 . 

     The later model (Model 2) is certainly not the final model that is the perfect/best one 

and that can never be improved. Our increasing knowledge about the physics of the solar 

cell will definitely result in a superior cell in course of time. Thus modeling will continue 

rather indefinitely in the realm of thin film pv devices. Although the current success of 

such a modeling is low in terms of aiding the experimentalists as well as reducing the 

cost and time of experiments, a day will come when we are much better informed through 

past mistakes/failures. Consequently modeling, we believe, will be the dominant tool in 

solar cell efficiency arena. However, the later form of the model (Model 2), we believe, is 

completely general. Only the improvement will occur in the efficiency function and all 

the two sets of inequalities. While the modeling along with the laboratory experimental 

activities helps us to gain increasingly deeper insight, the general model will continue to 

improve in its contents but not in its form [5, 6]. In fact, the models proposed are not 

static but dynamic in their contents.  

      The foregoing two models are essentially the ones which can be solved using the 

methods described in section 2. Specifically, the best method is the exhaustive search 

described in section 2.2. It can be seen that the way we have presented the method 

involves computation of the function(s) at the same points again and again. Hence the 

presented exhaustive search is crude and can be made more efficient by omitting the 

concerned repetitions. Such omissions need some additional programming effort and is 

recommended definitely for reasonably large problems. However, for not too large a 

problem, the exhaustive search described in section 2.2 is not only too easy to be readily 

coded but also will produce the required optimal solution in an acceptable time frame. 

      Many models have been proposed in literature [8-28]. All these have varying degree 

of  advantages and scope and are tractable. The exhaustive search for both Models 1 and 

2, on the other hand, is the most easily followed and simplest for coding in, say, Matlab 

by scientists/engineers/students who do not have formal programming knowledge. It is 

capable of producing the most accurate solution within the precision of computation, but 

it is exponential-time and intractable if the posed modeling problem is very large. A 

randomized algorithm based on the usage of quasi-random numbers will not be able to 

produce as good a solution as the one produced by the exhaustive search. Further we will 

not be able to deterministically/precisely ascertain, within reasonably narrow bounds,  the  
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quality (relative error bounds) of the solution in a randomized algorithm, 

probabilistically, this can be determined though.  

      However, due to the availability of enormous computing power touching petaflops [1] 

in the current (first) decade of 21
st
 century (see also sections 1 and 3), the exponential-

time exhaustive search is not altogether untouchable if the posed real-world modeling 

problem is not very large.  In fact we do have many small as well as large real-world 

problems for which we have not tried exhaustive search consciously possibly thinking 

about its combinatorial computational (exponential) complexity. Now it is slowly 

entering into the realm of computation not only because of ever increasing computing 

power [7] but also because of (i) availability of individual  computer (lap-top/desktop) 

and (ii) non-utilization of an estimated 95% computing resources (power) unlike main-

frame era in mid-/late 20
th

 century.  
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