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ABSTRACT. We consider the numerical approximation of singularly perturbed linear second

order reaction-diffusion boundary value problems with a small shift(δ) in the undifferentiated term

and the shift depends on the small parameter(ǫ). The presence of small parameter induces twin

boundary layers. The problem is discretized using standard finite difference scheme on an uniform

mesh and the retarded arguments are interpolated/extrapolated using the known computational

grid points. We present a new algorithm to interpolate/exptrapolate the retarded term in terms of

its neighbouring points. The scheme is proved to be stable and the error estimate is also given. It

is shown that the shift has significant effect on the behavior of the solution. Numerical experiments

are performed to support both the theoretical results as well as the existing results in the literature.
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1. INTRODUCTION

We consider the boundary value problems(BVPs) for the class of singularly per-
turbed differential difference equations(DDEs) given by

(1.1) Lu(x) = ǫ2u′′(x) + α(x)u(x − δ(ǫ)) + β(x)u(x) = f(x), x ∈ Ω = (0, 1)

subject to the interval and boundary conditions:

(1.2a) u(x) = φ(x) for − δ(ǫ) ≤ x ≤ 0

(1.2b) u(1) = u1

where ǫ → 0 is the perturbation parameter, δ(ǫ)(0 < δ < 1) is the delay parameter and
α(x), β(x), f(x) and φ(x) are smooth functions of x and are assumed, for simplicity,
to be independent of ǫ. Furthermore, when δ = 0 the solution of the corresponding
ordinary differential equation (ODE) has layers at x=0 and x=1 when

(1.3) α(x) + β(x) ≤ −θ < 0 ∀ x ∈ Ω̄

The layers are maintained when δ 6= 0 but remain small [1, 2]. The solution u(x)
must be continuous on [0, 1], continuously differentiable on (0, 1) and also statisfies
(1.1) and (1.2).

Boundary value problems involving DDEs arise naturally in many real life situ-
ations [3] like in studying variational problems in control theory where the problem
is complicated by the effect of time delays in signal transmission [4], and also in the
mathematical model (for the stochastic activity of neurons) of Stein [5, 6]. Stein’s
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model is for the calculation of first exit time for the generation of action potentials in
nerve cells by random synaptic inputs distributed as poisson process with exponential
decay between the inputs in the dentrites. So, DDEs are a very important class of
dynamical systems and often arise in either natural or technological control problems
and hence ignoring them is to ingnore the reality. These applications motivate the
approximation of DDEs.

Our goal in this paper is to elucidate the effect of the delay in a simpler class
of DDEs (1.1), (1.2) which arise from Stein’s model of neuronal variability. For a
neurophysiological demonstration of the Stein’s model one can refer to [5, 6, 7]. In
our previous papers [8, 9, 10] we have considered delay to be of ◦(ǫ) for different
classes of DDEs from Stein’s model in which we used Taylors series approximation to
the retarded term. In [10] we have studied the same class of DDEs (1.1), (1.2) using
Taylors series approximation to the retarded terms and showed the effect of δ and
η on the solution structure. The idea of using Taylors series approximation to the
retarded terms was first given by Feldstein [11] although he didn’t publish his work,
it has become a landmark work to most of the researchers in numerical DDEs.

Others who approximated the Stein’s model (DDE) are Tuckwell and Richter [6],
Tuckwell and Cope [12], Wilbur and Rinzel [7], Lange and Miura [2], Kadalbajoo
and Sharma [13], Patidar and Sharma [14]. Most of the above literature uses Taylors
series approximation to the retarded arguments. Lange and Miura gave a series of
papers (to list a few [2], [15]) on singularly perturbed differential difference equations
by extending the method of matched asymptotic expansions developed for ODEs.
Lange and Miura have analysed the same class of DDEs (1.1), (1.2) with small shifts
and concluded that the small shift δ can change the character of the layers and can
even destroy the layers when the shift increase but remain small. When δ is ©(ǫ) the
approach of expanding the retarded term using truncated Taylors series will lead to
misleading results [1, 2]. This is the motivation to this work. In this we are interested
in a direct discretization of our model (1.1), (1.2) without a priori estimate to the
retarded arguments.

Due to presence of δ in the reaction term of (1.1), a direct discretization of our

xx j ix j−1

δ

Figure 1. Important ostacle

model is not possible, because xi − δ may not coincide with the computational grid
points generated for a given N (see Fig. 1). The approximation of retarded term is
one of the most important obstacles to overcome in approximating the solutions of
DDEs. A new approach to the retarded term is given in section 2.1 and we have
introduced our discrete difference equations in section 2.2. The error estimates are
given in section 3 and the numerical experiments are given in section 4. Throughout
this paper we assumed that δ = τǫ and we have analysed the behavior for both
τ = ◦(1) and τ = ©(1). We investigate the effect of this small shift on the layer
structure of the solution.
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Our algorithm can easily be extended to the more general class of DDEs

ǫ2u′′(x) + α(x)u(x − δ(ǫ)) + β(x)u(x) + ω(x)u(x + η(ǫ)) = f(x), x ∈ Ω = (0, 1)

subject to the interval conditions:

u(x) = φ(x) for − δ(ǫ) ≤ x ≤ 0

u(x) = χ(x) for 1 ≤ x ≤ 1 + η(ǫ)

For simplicity we have restricted to (1.1), (1.2). Throughout this paper, C and θ
denote positive constant independent of ǫ and in the case of discrete problem they
are also independent of the mesh parameter N . ‖ · ‖∞ denotes the discrete maximum
norm over the appropriate domain

‖f‖∞ = max
x∈Ω̄N

|f(x)|

2. THE DISCRETIZATION

We shall discretize our model (1.1), (1.2) on an uniform mesh Ω̄N . We have
proposed a new approach to treat the retarded term and is as follows.

2.1. A new approach to the Retarded term. In this we propose a new algorithm
to locate the Interpolation/Extrapolation points in order to express xi − δ interms of
the computational grid points and thereby to compute u(x − δ).

 xN−1 N x  =1
U =BN

. . . . . .

  δ

 xK+1 xK
. . .

U 0 =φ(0)

U(x)=φ(x)

 0=x0−δ

Figure 2. Location of extraplotion points

The algorithm involves the following steps

• For a fixed N , compute Ω̄N = {xi : xj = jh, j = 0, 1, . . . , N}
• u(x) = φ(x) for −δ ≤ x ≤ 0 and U0 = u(x0) = u(0) = φ(0) & UN = u(xN) =

u(1) = B (from interval (1.2a) and boundary (1.2b) conditions)
• Fix the value of δ. Say δ = τǫ, where τ may be ◦(1) or ©(1), but remain small
• Compute the non-negative integer K by

(2.1) K =

[

δ

h

]

= [δN ] = integer part of δ ∗ N

• For any xi in {xj}
K
j=1 ⊂ {x : 0 < x ≤ δ} it is easy to verify that xi − δ ∈ (−δ, 0]

(see Fig. 2.1) and hence u(xi−δ) can be replaced by φ(xi−δ) (from the interval
condition (1.2a))

• Now, for any xi ∈ {xj}
N−1
j=K+1 ⊂ {x : δ < x < 1}, it is easy to check that

xi − δ ∈ [xi−K−1, xi−K ]
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xi−K−1 xi − δ xi−K xi

a

. . . . . .

Figure 3

• Now the retarded term xi − δ can be written in terms of xi−K−1 and xi−K and
is given by (see Fig. 3)

(2.2) xi − δ = axi−K−1 + (1 − a)xi−K ∀ K + 1 ≤ i < N

where a = xi−K−xi+δ

h
=(xi−K − xi + δ)N = (δN − K) ≥ 0.

• Now, without affecting any of our conclusions one can write

U(xi − δ) = U(axi−K−1 + (1 − a)xi−K)

= aUi−K−1 + (1 − a)Ui−K ∀ K + 1 ≤ i < N

This idea of writing U(axi−K−1 + (1 − a)xi−K) = aUi−K−1 + (1 − a)Ui−K has
also been done by Abrahamsson [16] in his scheme refered to as Abrahamsson’s
scheme or modification of the Abrahamsson-Keller-Kreiss box scheme [17], where

u(xi+xi+1

2
) is replaced by u(xi)+u(xi+1)

2
. In Abrahamsson’s scheme the solution at

the average of two points is replaced by the average of the solution at those two
points. In our case the solution at the weighted average of two neighbouring
points of xi − δ is replaced by the weighted average of the solution at those
points.

Remark 1. If δ < h then K = [δN ] < [h N] = 1 → K = 0, hence xi − δ ∈ (xi−1, xi).
In this case we just have to interpolate the nodes xi & xi−1 to get xi − δ.

Remark 2. For some δ > 0, if xi − δ ∈ Ω̄N → there exist K such that xi − δ =
xi−K and hence a=0. Hence no interpolation/extrapolation is needed, but in practice
xi − δ /∈ Ω̄N mostly.

2.2. Difference equations. Let U={Ui}
N
i=0 be any given function defined on the

computational grid, we shall approximate the second-order derivatives and the re-
tarded term at the grid point xi as follows: The second order derivative D+D−Ui

is

D+D−Ui =
(Ui−1 − 2Ui + Ui+1)

h2

We introduce our difference operator for (1.1), (1.2) by

(2.3) LhUi = f̂i

subject to

(2.4a) U0 = φ(0)

(2.4b) UN = B
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where
(2.5)

LhUi =

{

ǫ2D+D−Ui + βiUi for 1 ≤ i ≤ K

ǫ2D+D−Ui + αi(aUi−K−1 + (1 − a)Ui−K) + βiUi for K + 1 ≤ i ≤ N − 1

(2.6) f̂i =

{

fi + βiφ(xi − δ) for 1 ≤ i ≤ K

fi for K + 1 ≤ i ≤ N − 1

where φ(x) is the interval condition (1.2a), K and a are as given in section 2.1. The
above equations will get reduced to the following tridiagonal system of N−1 equations
with N + 1 unknowns.

(2.7) aαiUi−K−1+(1−a)αiUi−K +EiUi−1−FiUi+GiUi+1 = Hi ∀i = 1, 2, . . . , N−1

where

Ei =
ǫ2

h2

Fi =
2ǫ2

h2
− βi

Gi =
ǫ2

h2

Hi = f̂i

βi = β(xi), αi = α(xi) and fi = f(xi) for all xi ∈ Ω̄.

3. ERROR ANALYSIS

Lemma 3.1 (Discrete Minimum Principle). Suppose φ0 ≥ 0 and φN ≥ 0. Then

Lhφi ≤ 0 for all i = 1, 2, . . . , N − 1 implies φi ≥ 0 ∀ i = 0, 1, . . . , N .

Proof. Let k be such that

φk = min
0≤i≤N

φi

and assume that χk < 0. Then we have φk − φk−1 ≤ 0, φk+1 − φk ≥ 0 and for
1 ≤ k ≤ m

Lhφk = ǫ2 (φk−1 − 2φk + φk+1)

h2
+ βkφk

= ǫ2 ([φk+1 − φk] − [φk − φk−1])

h2
+ βkφk

> 0

provided βk ≤ 0, which contradicts our assumption that Lhφi ≤ 0 for all i =
1, 2, . . . , N − 1. Hence φk < 0 is not true, which implies φk ≥ 0. Since k is arbi-
trary it follows that φk ≥ 0 for all 0 ≤ i ≤ N .

Theorem 3.2. Under the assumptions (1.3), the solution of our difference equations

(2.3), (2.4) exist and is unique. It also satisfies the following bound

‖U‖∞ ≤ θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
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Proof. Lets prove the existence and uniqueness of the solution of the difference equa-
tions (2.3), (2.4). Let {Ui}

N
i=0 and {Vi}

N
i=0 be two solutions of (2.3), (2.4). Let us

define a mesh function Zi = Ui − Vi for all i = 0, 1, . . . , N . It is easy to verify that
Z0 = 0 = ZN which follows from the equation (2.4). Now,

LhZi = LhUi − LhVi = 0

Ui and Vi are solutions of (2.3). By an application of Lemma 3.1 we get

(3.1) Zi = Ui − Vi ≥ 0 ∀i

Now, let us define another mesh function Wi = Vi − Ui for all i = 0, 1, . . . , N . It is
easy to verify that W0 = 0 = WN which follows from the equation (2.4). Now,

LhWi = LhVi − LhUi = 0

Ui and Vi are solutions of (2.3). By an application of Lemma 3.1 we get

(3.2) Wi = Vi − Ui ≥ 0 ∀i

From equations (3.1) and (3.2), we get Ui = Vi for all i. Hence uniqueness is proved.
For linear equations, the existence is implied by uniqueness.

Now, lets prove the estimate. Lets consider the barrier functions given by

χ±
i = θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± Ui, 0 ≤ i ≤ N

where C is a positive constant.

χ±
0 = θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± U0

= θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± φ0

= θ−1‖f‖∞ + (C‖φ‖∞ ± φ0) + C|B|

≥ 0

Similarly,

χ±
N = θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± UN

= θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± B

= θ−1‖f‖∞ + C‖φ‖∞ + (C|B| ± B)

≥ 0

Case 1: For 1 ≤ i ≤ K

Lhχ±
i = ǫ2D+Diχ

±
i + βiχ

±
i

= βi

(

θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
)

± LhUi

= βi

(

θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
)

± (fi + βiφ(xi − δ))

= − (‖f‖∞ ± fi) − Cθ (‖φ‖∞ + |B|) ∓ βiφ(xi − δ) using (1.3)

Now chose C such that

(3.3) Lhχ±
i < 0, i = 1, 2, . . . , K
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Case 2: For K + 1 ≤ i ≤ N − 1

Lhχ±
i = ǫ2D+Diχ

±
i + αi

(

aχ±
i−K−1 + (1 − a)χ±

i−K

)

+ βiχ
±
i

= (αia + αi(1 − a) + βi)
(

θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
)

± LhUi

= (αia + αi(1 − a) + βi)
(

θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
)

± fi

= (αi + βi)
(

θ−1‖f‖∞ + C (‖φ‖∞ + |B|)
)

± fi

= (−‖f‖∞ ± fi) + (αi + βi)C (‖φ‖∞ + |B|)

< 0 using (1.3)

Hence

(3.4) Lhχ±
i < 0, i = K + 1, K + 2, . . . , N − 1

From (3.3) and (3.4) we get

(3.5) Lhχ±
i < 0, i = 1, 2, . . . , N − 1

Using Lemma 3.1, the above inequality gives

χ±
i = θ−1‖f‖∞ + C (‖φ‖∞ + |B|) ± Ui

≥ 0, 0 ≤ i ≤ N

which gives

(3.6) ‖U‖∞ ≤ θ−1‖f‖∞ + C (‖φ‖∞ + |B|)

Hence we have proved that the solution of the difference equations (2.3), (2.4) is
uniformly bounded and is independent of the parameters h,ǫ and δ.

Corollary 1. Assume (1.3) and δ > 0. The unique solution {Ui}
N
i=0 of our discrete

problem satisfies

(3.7) ‖U − u‖∞ ≤
1

θ
‖τ‖∞

where the truncation error τi satisfies,

(3.8) τi ≤
h2ǫ2

12
|uiv|

Proof. It is easy to verify (3.8) which follows from the Taylors series. Now,

LhUi − Lhu(xi) = τi ∀ i

It is obvious that τ0 = 0 = τN . Now by an application of theorem 3.2 one can get
(3.7).

4. NUMERICAL RESULTS

In this section we present numerical results to show the efficiency of the algorithms
discussed in the previous section with a comparison to other results in literature. Here
we take two test problems, first with contant coefficients (page 263, [2]) and second
with variable coefficients with small delay
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Example 4.1 (Lange & Miura: [2], page 263).

ǫ2u′′(x) − 2u(x − δ) − u(x) = 1,

under the interval and boundary conditions

u(x) = 1 for − δ ≤ x ≤ 0, u(1) = 0

Example 4.2.

ǫ2u′′(x) − (2 + x2)u(x − δ) + (1 − cos(x))u(x) = x4.5 + sin(x),

under the interval and boundary conditions

u(x) = 1 for − δ ≤ x ≤ 0, u(1) = 1

-0.5

 0

 0.5

 1

 0  0.5  1

Ι: ε=10−2, δ=0

exact

-0.5

 0

 0.5

 1

 0  0.5  1

ΙΙ:  ε=10−2, δ=0

UN

Figure 4. Graphs of exact (I), numerical (II) solution of Example 4.1
for ǫ = 10−2, δ = 0

Since the exact solution is not known when δ 6= 0, the maximum pointwise error
is estimated using the double mesh principle [18] defined by

EN
ǫ,δ = max

1≤i≤N−1
|UN

i − U2N
2i |.

where U2N
2i is the solution obtained on a mesh containing 2N number of mesh points.

Example 4.1 is taken from one of the landmark papers for numerical DDEs,
namely Lange & Miura page 263 [2]. Table 1 shows the computed maximum pointwise
errors of example 4.1 for δ = 0.03 and for various values of ǫ(1

2
≤ ǫ2 ≤ 1

210 ) and Table 2
shows the computed maximum pointwise errors for a fixed ǫ = 0.1 and for different
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ε=10−2, δ= τε  
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τ=0.9

Figure 5. Graphs of numerical solution of example 4.1 for ǫ = 10−2

and δ = 0.3, 0.9

δ = {0.03(0.02)0.13}. Similarly, Tables 3 & 4 show the maximum errors of example
4.2.

Figures 4(I) and 4(II) show the exact and numerical solution of Example 4.1
respectively, showing the efficiency of the difference scheme in capturing the layer
region. Figure 5 shows the computed numerical solution of Example 4.1 for ǫ = 0.01
and for various values of δ = 0.3, 0.9. Figures 6(I), 6(II) and 6(III) correspond to the
numerical solution of Example 4.1 for δ = τǫ with τ=1.5, 3 & 5 respectively. With
subgraph in Figure 6(III) one can conclude that the solution oscillates through out
the domain. A comparison of Figure 6(I–III) with Figures 5(b), 5(c), 5(d) of Lange &
Miura (page 263, [2]) proves the efficiency of our algorithm in modelling the solution
for δ = ©(ǫ).

Figure 7(I) shows the computed numerical solution of example 4.2 with δ = ◦(ǫ).
Figure 7(II) shows the computed numerical solution of Example 4.2 for δ = 1.5ǫ. One
can observe that the solution agrees the twin layers at x = 0 and x = 1 but oscillates
near the left boundary surprisingly. Figures 7(III-VI) shows the computed solution
of Example 4.2 with different δ. From Figures 6(I-III) & 7(III-VI) we observe that
when the delay increases to ©(ǫ) layer structure of the solution changes to oscillatory
behavior.
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Table 1. Maximum Pointwise error(EN
ǫ,δ) for Example 4.1 with δ = 0.03

ǫ2 Number of grid points N
100 200 300 400 500 600

2−1 0.00000803 0.00000201 0.00000089 0.00000050 0.00000032 0.00000022
2−2 0.00001732 0.00000433 0.00000192 0.00000108 0.00000069 0.00000048
2−3 0.00003183 0.00000796 0.00000354 0.00000199 0.00000127 0.00000088
2−4 0.00005854 0.00001465 0.00000651 0.00000366 0.00000234 0.00000163
2−5 0.00015633 0.00003913 0.00001740 0.00000979 0.00000626 0.00000435
2−6 0.00040861 0.00010240 0.00004553 0.00002562 0.00001640 0.00001139
2−7 0.00104474 0.00026242 0.00011673 0.00006568 0.00004204 0.00002920
2−8 0.00260987 0.00065831 0.00029307 0.00016495 0.00010559 0.00007334
2−9 0.00637779 0.00162133 0.00072284 0.00040704 0.00026064 0.00018105
2−10 0.01531354 0.00394921 0.00176542 0.00099507 0.00063744 0.00044290

Table 2. Maximum Pointwise error(EN
ǫ,δ) for Example 4.1 with ǫ2 = 0.01

δ Number of grid points N
100 200 300 400 500 600

0.03 0.00074981 0.00018816 0.00008368 0.00004708 0.00003014 0.00002093
0.05 0.00105355 0.00026430 0.00011754 0.00006613 0.00004233 0.00002940
0.07 0.00129141 0.00032391 0.00014405 0.00008104 0.00005187 0.00003602
0.09 0.00149532 0.00037499 0.00016676 0.00009382 0.00006005 0.00004170
0.11 0.00168105 0.00042152 0.00018744 0.00010546 0.00006750 0.00004688
0.13 0.00185621 0.00046539 0.00020695 0.00011643 0.00007452 0.00005175
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Table 3. Maximum Pointwise error(EN
ǫ,δ) for Example 4.2 with δ = 0.05

ǫ2 Number of grid points N
100 200 300 400 500 600

2−1 0.00001203 0.00000301 0.00000134 0.00000075 0.00000048 0.00000033
2−2 0.00002410 0.00000603 0.00000268 0.00000151 0.00000096 0.00000067
2−3 0.00004098 0.00001025 0.00000455 0.00000256 0.00000164 0.00000114
2−4 0.00007868 0.00001967 0.00000874 0.00000492 0.00000315 0.00000219
2−5 0.00021053 0.00005264 0.00002340 0.00001316 0.00000842 0.00000585
2−6 0.00054523 0.00013636 0.00006061 0.00003409 0.00002182 0.00001515
2−7 0.00138943 0.00034757 0.00015450 0.00008691 0.00005562 0.00003863
2−8 0.00349115 0.00087366 0.00038836 0.00021847 0.00013982 0.00009710
2−9 0.00863816 0.00216286 0.00096155 0.00054092 0.00034621 0.00024043
2−10 0.02103134 0.00526983 0.00234314 0.00131821 0.00084371 0.00058593

Table 4. Maximum Pointwise error(EN
ǫ,δ) for Example 4.2 with ǫ2 = 0.01

δ Number of grid points N
100 200 300 400 500 600

0.03 0.00066716 0.00016690 0.00007419 0.00004173 0.00002671 0.00001855
0.05 0.00099732 0.00024946 0.00011088 0.00006237 0.00003992 0.00002772
0.07 0.00127532 0.00031896 0.00014177 0.00007975 0.00005104 0.00003544
0.09 0.00151715 0.00037942 0.00016864 0.00009486 0.00006071 0.00004216
0.11 0.00173239 0.00043322 0.00019255 0.00010831 0.00006932 0.00004814
0.13 0.00192692 0.00048185 0.00021416 0.00012047 0.00007710 0.00005354
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Figure 6. Graphs (I)–(III) correspond to the numerical solutions of
Example 4.1 for ǫ = 10−2 and for δ = 1.5, 3, 5 respectively. The sub-
graph in III shows the oscillating behavior of the solution from x = 0
to x = 0.2
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5. DISCUSSION

The main objective of this paper is to to elucidate the effect of the delay on the
solution of BVPs of DDEs with twin layers. Our numerical algorithm addresses the
retarded term in a new way without any a-priori estimates for the retarded argument.
To this end, we have shown the efficiency of our alogrithm by comparing the results
obtained with one of the landmark papers by Lange and Miura [2]. This new ap-
proach to the retarded term can easily be extended to numerical schemes on shishkin
mesh (piecewise uniform). We have observed that when the delay is ©(ǫ) the layer
structures of the solutions changes to oscillatory behavior.
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