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ABSTRACT. A discrete event system, is a dynamical system whose state evolves in time by
the occurrence of events at possibly irregular time intervals. Place-transitions Petri nets (commonly
called Petri nets) are a graphical and mathematical modeling tool applicable to discrete event systems
in order to represent its states evolution. Timed Petri nets are an extension of Petri nets that model
discrete event systems where now the timing at which the state changes is taken into consideration.
One of the most important performance issues to be considered in a discrete event dynamical system
is its stability. Lyapunov stability theory provides the required tools needed to aboard the stability
problem for discrete event systems modeled with timed petri nets whose mathematical model is
given in terms of difference equations. By proving practical stability one is allowed to preassigned
the bound on the discrete event systems dynamics performance. Moreover, employing Lyapunov
methods, a sufficient condition for the stabilization problem is also obtained. It is shown that
it is possible to restrict the discrete event systems state space in such a way that boundedness
is guaranteed. However, this restriction results to be vague. This inconvenience is overcome by
considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed
Petri net graphical model.

AMS (MOS) Subject Classification. 08A99, 93D35, 93D99, 39A11

1. INTRODUCTION

A discrete event system, is a dynamical system whose state evolves in time by

the occurrence of events at possibly irregular time intervals. Some examples include:

Manufacturing systems, Computer networks, Queuing systems, Communication sys-

tems, Business processes. Place-transitions Petri nets (commonly called Petri nets)

are a graphical and mathematical modeling tool applicable to discrete event systems

in order to represent its states evolution. Petri nets are known to be useful for an-

alyzing the systems properties in addition of being a paradigm for describing and

studying information processing systems. Timed Petri nets are an extension of Petri

nets that model discrete event systems where now the timing at which the state

changes is taken into consideration. This is of critical importance since it allows to
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consider useful measures of performance as for example: how long does the discrete

event system spends at a given state etc. For a detailed discussion of Petri net theory

see [5] and the references quoted therein. One of the most important performance

issues to be considered in a discrete event dynamical system is its stability. Lyapunov

stability theory provides the required tools needed to aboard the stability problem

for discrete event systems modeled with timed petri nets whose mathematical model

is given in terms of difference equations [3, 6]. By proving practical stability one is al-

lowed to preassigned the bound on the discrete event systems dynamics performance.

Moreover, employing Lyapunov methods, a sufficient condition for the stabilization

problem is also obtained. It is shown that it is possible to restrict the discrete event

systems state space in such a way that boundedness is guaranteed. However, this

restriction results to be vague. This inconvenience is overcome by considering a spe-

cific recurrence equation, in the max-plus algebra, which is assigned to the the timed

Petri net graphical model. The main contribution of the paper consists in combining

Lyapunov theory with max-plus algebra to give a precise solution to the stability

problem for discrete event dynamical systems modeled with timed Petri nets. The

presented methodology is new and results to be innovative. The paper is organized

as follows. In Section 2, Lyapunov theory for discrete event modeled with Petri nets

is addressed. Section 3, presents Max-Plus algebra. In Section 4, the solution to the

problem is given. Section 5, provides an example where the methodology proposed is

applied to a queuing system. Finally, the paper ends with some conclusions.

2. LYAPUNOV STABILITY AND STABILIZATION OF DISCRETE

EVENT SYSTEMS MODELED WITH PETRI NETS

The solution to the stability problem for discrete event systems, whose model is

obtained employing timed Petri nets, is achieved thanks to the theory of vector Lya-

punov functions and comparison principles. The methodology shows that it is possible

to restrict the systems state space in such a way that boundedness is guaranteed.

NOTATION: N = {0, 1, 2, . . . }, R+ = [0,∞), N+
n0

= {n0, n0 + 1, . . . , n0 + k, . . . },
n0 ≥ 0. Given x, y ∈ Rn, we usually denote the relation “≤” to mean componentwise

inequalities with the same relation, i.e., x ≤ yis equivalent to xi ≤ yi, ∀i. A function

f(n, x), f : N+
n0
× Rn → Rn is called nondecreasing in x if given x, y ∈ Rn such that

x ≥ y and n, ∈ N+
n0

then, f(n, x) ≥ f(n, y).

Consider systems of first ordinary difference equations given by

(2.1) x(n + 1) = f [n, x(n)], x(no) = x0, n ∈ N+
n0

where n ∈ N+
n0

, x(n) ∈ Rn and f : N+
n0
×Rn → Rn is continuous in x(n).

Definition 1. The n vector valued function Φ(n, n0, x0) is said to be a solution of

(2.1) if Φ(n0, n0, x0) = x0 and Φ(n + 1, n0, x0) = f(n, Φ(n, n0, x0)) for all n ∈ N+
n0

.
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Definition 2. The system (2.1) is said to be

i). Practically stable, if given (λ, A) with 0 < λ < A, then

|x0| < λ ⇒ |x(n, n0, x0)| < A, ∀n ∈ N+
n0

, n0 ≥ 0;

ii). Uniformly practically stable, if it is practically stable for every n0 ≥ 0.

The following class of function is defined.

Definition 3. A continuous function α : [0,∞) → [0,∞) is said to belong to class K
if α(0) = 0 and it is strictly increasing.

Consider a vector Lyapunov function v(n, x(n)), v : N+
n0
× Rn → Rp

+ and define

the variation of v relative to (2.1) by

(2.2) ∆v = v(n + 1, x(n + 1))− v(n, x(n))

Then, the following result concerns the practical stability of (2.1).

Theorem 4. [6] Let v : N+
n0
× Rn → Rp

+ be a continuous function in x, define the

function v0(n, x(n)) =
∑p

i=1 vi(n, x(n)) such that satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|) for a, b ∈ K and

∆v(n, x(n)) ≤ w(n, v(n, x(n)))

for n ∈ N+
n0

, x(n) ∈ Rn , where w : N+
n0
× Rp

+ → Rp is a continuous function in the

second argument.

Assume that : g(n, e) , e + w(n, e) is nondecreasing in e, 0 < λ < A are given

and finally that a(λ) < b(A) is satisfied. Then, the practical stability properties of

(2.3) e(n + 1) = g(n, e(n)), e(n0) = e0 ≥ 0.

imply the practical stability properties of system (2.1).

Proof. Let us suppose that e(n+1) is practically stable for (a(λ), b(A)) then, we have

that
∑p

i=1 e0i
< a(λ) ⇒

∑p
i=1 ei(n, n0, e0) < b(A) for n ≥ n0 where ei(n, n0, e0) is the

vector solution of (2.3). Let ‖x0‖ < λ, we claim that ‖x(n, n0, x0)‖ < A for n ≥ n0.

If not, there would exist n1 ≥ n0 and a solution x(n, n0, x0) such that ‖x(n1)‖ ≥ A

and ‖x(n)‖ < A for n0 ≤ n < n1. Choose e0 = v(n0, x0) then v(n, x(n)) ≤ e(n, n0, e0)

for all n ≥ n0. (If not v(n, x(n)) ≤ e(n, n0, e0) and v(n + 1, x(n + 1)) > e(n +

1, n0, e0) ⇒ g(n, e(n)) = e(n+1, n0, e0) < v(n+1, x(n+1)) = ∆v(n, x0)+v(n, x(n)) ≤
w(n, v(n))+v(n, x(n)) = g(n, v(n))−v(n, x(n))+v(n, x(n)) = g(n, v(n)) ≤ g(n, e(n))

which is a contradiction). Hence we get that b(A) ≤ b(‖x(n1)‖) ≤ v0(n1, x(n1)) ≤∑p
i=1 ei(n1, n0, e0) < b(A), which cannot hold therefore, system (2.1) is practically

stable.
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Corollary 5. In Theorem 4:

i). If w(n, e) ≡ 0 we get uniform practical stability of (2.1) which implies structural

stability.

ii). If w(n, e) = −c(e), for c ∈ K, we get uniform practical asymptotic stability of

(2.1).

Definition 6. A Petri net is a 5-tuple, PN = {P, T, F, W, M0} where:

P = {p1, p2, . . . , pm}is a finite set of places,

T = {t1, t2, . . . , tn} is a finite set of transitions,

F ⊂ (P × T ) ∪ (T × P ) is a set of arcs,

W : F → N+
1 is a weight function,

M0: P → N is the initial marking,

P ∩ T = ∅ and P ∪ T 6= ∅.

Definition 7. The clock structure associated with a place pi ∈ P is a set V = {Vi :

pi ∈ P} of clock sequences Vi = {vi,1, vi,2, . . . }, vi,k ∈ R+, k = 1, 2, . . .

The positive number vi,k, associated to pi ∈ P , called holding time, represents

the time that a token must spend in this place until its outputs enabled transitions

ti,1, ti,2, . . . , fire. Some places may have a zero holding time while others not. Thus,

we partition P into subsets P0 and Ph, where P0 is the set of places with zero holding

time, and Ph is the set of places that have some holding time.

Definition 8. A timed Petri net is a 6-tuple TPN = {P, T, F, W, M0,V} where

{P, T, F, W, M0} are as before, and V = {Vi : pi ∈ P } is a clock structure. A timed

Petri net is a timed event petri net when every pi ∈ P has one input and one output

transition, in which case the associated clock structure set of a place pi ∈ P reduces

to one element Vi = {vi}

A PN structure without any specific initial marking is denoted by N . A Petri

net with the given initial marking is denoted by (N, M0). Notice that if W (p, t) = α

(or W (t, p) = β) then, this is often represented graphically by α, (β) arcs from p to t

(t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at

time k and let Mk = [Mk(p1), . . . ,Mk(pm)]T denote the marking (state) of PN at

time k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj) for

all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there exists at

least one transition to fire. If a transition is enabled then, it can fire. If an enabled

transition tj ∈ T fires at time k then, the next marking for pi ∈ P is given by

(2.4) Mk+1(pi) = Mk(pi) + W (tj, pi)−W (pi, tj).
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Let A = [aij] denote an n × m matrix of integers (the incidence matrix) where

aij = a+
ij − a−ij with a+

ij = W (ti, pj) and a−ij = W (pj, ti). Let uk ∈ {0, 1}n de-

note a firing vector where if tj ∈ T is fired then, its corresponding firing vector is

uk = [0, . . . , 0, 1, 0, . . . , 0]T with the one in the jth position in the vector and zeros

everywhere else. The matrix equation (nonlinear difference equation) describing the

dynamical behavior represented by a PN is:

(2.5) Mk+1 = Mk + AT uk

where if at step k, a−ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and if this ti ∈ T

fires then, its corresponding firing vector uk is utilized in the difference equation to

generate the next step. Notice that if M ′ can be reached from some other marking

M and, if we fire some sequence of d transitions with corresponding firing vectors

u0, u1, . . . , ud−1 we obtain that

(2.6) M ′ = M + AT u, u =
d−1∑
k=0

uk.

Let (Nm
n0

, d) be a metric space where d : Nm
n0
×Nm

n0
→ R+ is defined by

d(M1, M2) =
m∑

i=1

ζi|M1(pi)−M2(pi)|; ζi > 0

and consider the matrix difference equation which describes the dynamical behavior

of the discrete event system modeled by a PN

(2.7) M ′ = M + AT u, u =
d−1∑
k=0

uk

where, M ∈ Nm, denotes the marking (state) of the PN , A ∈ Zn×m, its incidence

matrix and u ∈ Nn, is a sequence of firing vectors. Then, the following results

concerns in what to the stability problem means.

Proposition 9. Let PN be a Petri net. PN is uniform practical stable if there exists

a Φ strictly positive m vector such that

(2.8) ∆v = uT AΦ ≤ 0

Moreover, PN is uniform practical asymptotic stable if the following equation holds

(2.9) ∆v = uT AΦ ≤ −c(e), for c ∈ K

Proof. Pick as our Lyapunov function candidate v(M) = MT Φ with Φ an m vector (to

be chosen). One can verify that v satisfies all the conditions of Theorem 4, and that

one obtains uniform practical (asymptotic) stability if there exists a strictly positive

vector Φ such that equation (2.8) holds.
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Lemma 10. Let suppose that Proposition 9 holds then,

(2.10) ∆v = uT AΦ ≤ 0 ⇔ AΦ ≤ 0

Proof. (⇐) This is immediate from the fact that u is positive. (⇒) Since uT AΦ = 0

holds for every u ⇒ AΦ = 0. If uT AΦ < 0 again since u is positve AΦ < 0.

Remark 11. Notice that since the state space of a TPN is contained in the state

space of the same now not timed PN, stability of PN implies stability of the TPN.

2.1. Lyapunov Stabilization. Notice, that in the solution of the stability problem,

the u vector does not play any role, so why not to take advantage of it in order to

get some specific behavior. Consider the matrix difference equation which describes

the dynamical behavior of the discrete event system modeled by a Petri net

M ′ = M + AT u

We are interested in finding a firing sequence vector, control law, such that system

(2.7) remains bounded.

Definition 12. Let PN be a Petri net. PN is said to be stabilizable if there exists

a firing transition sequence with transition count vector u such that system (2.7)

remains bounded.

Proposition 13. Let PN be a Petri net. PN is stabilizable if there exists a firing

transition sequence with transition count vector u such that the following equation

holds

(2.11) ∆v = AT u ≤ 0

Proof. Define as our vector Lyapunov function v(M) = [v1(M), v2(M), . . . , vm(M)]T ;

where vi(M) = M(pi), 1 ≤ i ≤ m we can verify that all the conditions of Theorem 4

are satisfied and, that one obtains uniform practical stability if there exists a fireable

transition sequence with transition count vector u such that equation (2.11) holds.

Therefore, we conclude that PN is stabilizable.

Remark 14. This result was first stated and proved in [7] and it relies in the use of

vector Lyapunov functions. It is important to underline that by fixing a particular u,

which satisfies (2.11), we restrict the state space to those markings (states) that are

finite. The technique can be utilized to get some type of regulation and/or eliminate

some undesirable events (transitions). Notice that in general (2.8) 6⇒ (2.11) and that

the opposite is also true (this is illustrated with the following two examples).

(2.8) ; (2.11) Consider the Petri net model shown in Fig. 1.
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Figure 1.

The incidence matrix which represents the model is

(2.12) A =

[
−1 1 0

−1 0 1

]
Then, picking Φ = [1, 1, 1] uniform practical stability is concluded. However, there is

no u such that AT u ≤ 0.

(2.11) ; (2.8). Consider the Petri net model depicted in Fig. 2.

Figure 2.

The structure is typical of an unbounded Petri net model in which the marking in

p1can grow indefinitely due to the repeated firing of t1. However, by taking u = [k, k],

k > 0 equation (2.11) is satisfied therefore, the system becomes bounded i.e., is

stabilizable.

Remark 15. Notice that by firing all the transitions in the same proportion i.e.,

u = [k, k], k > 0 an unbounded PN becomes stable. This guarantees that there is

no possibility that the marking will grow without bound at any place between two

transitions. This basic idea motivates the definition of stability for TPN which will

be given in Section 4.

3. MAX-PLUS ALGEBRA [1, 2]

In this section the concept of max-plus algebra is defined. Its algebraic structure

is described. Matrices and graphs are presented. The spectral theory of matrices is
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discussed. The problem of solving linear equations is addressed. Finally, max-plus re-

currence equations for timed Petri nets are introduced. The theoretical mathematical

foundation exposed in this section was taken from [1, 2] incorporating the author‘s

personal style and trying to improve its statements, as well as its proofs, whenever it

was possible.

3.1. Basic Definitions. NOTATION: N is the set of natural numbers, R is the

set of real numbers, ε = −∞, e = 0, Rmax = R ∪ {ε}, n = 1, 2, . . . , n

Let a, b ∈ Rmax and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b) and a⊗
b = a + b.

Definition 16. The set Rmax with the two operations ⊕ and ⊗ is called a max-plus

algebra and is denoted by <max = (Rmax,⊕,⊗, ε, e).

Definition 17. A semiring is a nonempty set R endowed with two operations ⊕R,

⊗R, and two elements εR and eR such that: ⊕R is associative and commutative with

zero element εR, ⊗R is associative, distributes over ⊕R, and has unit element eR ∈Ris

absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R.

Such a semiring is denoted by < = (R,⊕R,⊗R, ε, e). In addition if ⊗R is com-

mutative then R is called a commutative semiring, and if ⊕R is such that a⊕R a = a,

∀a ∈ R then it is called idempotent.

Theorem 18. The max-plus algebra <max = (Rmax,⊕,⊗, ε, e) has the algebraic struc-

ture of a commutative and idempotent semiring.

3.2. Matrices and Graphs. Let Rn×n
max be the set of n×n matrices with coefficients

in Rmax with the following operations: The sum of matrices A, B ∈ Rn×n
max , denoted

A ⊕ B is defined by: (A ⊕ B)ij = aij ⊕ bij = max(aij, bij) for i and j ∈ n. The

product of matrices A ∈ Rn×l
max, B ∈ Rl×n

max, denoted A⊗B is defined by: (A⊗B)ik =
l⊗

j=1

aij ⊗ bjk = max
j∈l

{aij + bjk} for i and k ∈ n. Let E ∈ Rn×n
max denote the matrix with

all its elements equal to ε and denote by E ∈ Rn×n
max the matrix which has its diagonal

elements equal to e and all the other elements equal to ε. Then, the following result

can be stated.

Theorem 19. The 5-tuple <n×n
max = (Rn×n

max ,⊕,⊗, E , E) has the algebraic structure of

a noncommutative idempotent semiring.

Definition 20. Let A ∈ Rn×n
max and k ∈ N then the k-th power of A denoted by A⊗k

is defined by: A⊗k = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k−times

, where A⊗0 is set equal to E.

Definition 21. A matrix A ∈ Rn×n
max is said to be regular if A contains at least one

element distinct from ε in each row.
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Definition 22. Let N be a finite and non-empty set and consider D ⊆ N ×N . The

pair G = (N ,D) is called a directed graph, whereN is the set of elements called nodes

and D is the set of ordered pairs of nodes called arcs. A directed graph G = (N ,D) is

called a weighted graph if a weight w(i, j) ∈ R is associated with any arc (i, j) ∈ D.

Let A ∈ Rn×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N (A) = n and a pair (i, j) ∈ n× n will be a

member of D(A) ⇔ aji 6= ε, where D(A) denotes the set of arcs of G(A).

Definition 23. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈
D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists of

the nodes i = i1, i2, . . . , im, jm = j with length m denoted by |p|1 = m. In the case

when i = j the path is said to be a circuit. A circuit is said to be elementary if nodes

ik and il are different for k 6= l. A circuit consisting of one arc is called a self-loop.

Let us denote by P (i, j; m) the set of all paths from node i to node j of length m ≥ 1

and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight of a

path p ∈ P (i, j; m) denoted by |p|w is defined to be the sum of the weights of all the

arcs that belong to the path. The average weight of a path p is given by |p|w/|p|1.
Given two paths, as for example, p = ((i1, i2), (i2, i3)) and q = ((i3, i4), ((i4, i5) in

G(A) the concatenation of paths ◦ : G(A) × G(A) → G(A) is defined as p ◦ q =

((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph G(A) and powers of matrix

A are closely related as it is shown in the next theorem.

Theorem 24. Let A ∈ Rn×n
max , then ∀k ≥ 1: [A⊗k]ji = max{|p|w : p ∈ P (i, j; k)},

where [A⊗k]ji = ε in the case when P (i, j; k) is empty i.e., no path of length k from

node i to node j exists in G(A).

Definition 25. Let A ∈ Rn×n
max then define the matrix A+ ∈ Rn×n

max as: A+ =
∞⊕

k=1

A⊗k.

Where the element [A+]ji gives the maximal weight of any path from j to i. If in

addition one wants to add the possibility of staying at a node then one must include

matrix E in the definition of matrix A+ giving rise to its Kleene star representation

defined by:

(3.1) A∗ =
∞⊕

k=0

A⊗k.

Lemma 26. Let A ∈ Rn×n
max be such that any circuit in G(A) has average circuit weight

less than or equal to ε. Then it holds that:

(3.2) A∗ =
n−1⊕
k=0

A⊗k.



44 Z. R. KONIGSBERG

Proof. Since A∗ =
∞⊕

k=0

A⊗k = (
n−1⊕
k=0

A⊗k) ⊕ (
∞⊕

k≥n

A⊗k) and all paths of length greater

than or equal to n are made up of a circuit and a path of length strictly less than

n. Therefore we have that Ak ≤ A⊕ A∗2 ⊕ · · · ⊕ A∗(n−1) ∀k ≥ n, which implies that

A∗ =
n−1⊕
k=0

A⊗k.

Definition 27. Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable from

node i, denoted as iRj, if there exists a path from i to j. A graph G is said to be

strongly connected if ∀i, j ∈ N , jRi. A matrix A ∈ Rn×n
max is called irreducible if its

communication graph is strongly connected, when this is not the case matrix A is

called reducible.

Remark 28. In this paper irreducible matrices are just considered. It is possible to

treat the reducible case by transforming it into its normal form and computing its

generalized eigenmode see [4].

3.2.1. Spectral Theory.

Definition 29. Let A ∈ Rn×n
max be a matrix. If µ ∈ Rmax is a scalar and v ∈ Rn

max is a

vector that coontains at least one finite element such that:

(3.3) A⊗ v = µ⊗ v

then, µ is called an eigenvalue and v an eigenvector.

Remark 30. Notice that the eigenvalue can be equal to ε and is not necessarily

unique. Eigenvectors are certainly not unique indeed, if v is an eigenvector then α⊗v

is also an eigenvector for all α ∈ R .

Let C(A) denote the set of all elementary circuits in G(A) and write:

(3.4) λ = max
p∈C(A)

|p|w
|p|1

for the maximal average circuit weight. Notice that since C(A) is a finite set, the

maximum of (3.4) is attained (which is always the case when matrix A is irreducible).

In case C(A) = ∅ define λ = ε.

Definition 31. A circuit p ∈ G(A) is said to be critical if its average weight is

maximal. The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the graph

consisting of those nodes and arcs that belong to critical circuits in G(A).

Lemma 32. Let assume that G(A) contains at least one circuit then, any circuit in

Gc(A) is critical.
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Proof. If this were not the case, we could find a circuit p ∈ Gc(A), composed of sub-

paths, lets say pi of critical circuits pc, with weight different from λ (which without loss

of generality will be assumed to be equal to e). If this circuit had a weight greater

than e then, since p is also a circuit in G(A), it would contradict the assumption

that the maximal average circuit weight λ is equal to e. On the other hand, if the

weight of it were less than e, since the maximal average circuit weight is λ = e,

the circuit composed of the union of the complements of the paths pi ∈ Gc(A), with

respect to G(A), must have positive weight, in order to assure that the critical circuits

pc ∈ G(A), to which the sub-paths pi belong is critical i.e., has average wight λ = ε,

which is also a contradiction. Therefore, any circuit in Gc(A) is critical.

Definition 33. Let A ∈ Rn×n
max be a matrix and µ an eigenvalue of A with associated

eigenvector v then, the support of v consists of the set of nodes of G(A) which

correspond to finite entries of v.

Lemma 34. Let A ∈ Rn×n
max be an irreducible matrix then any v ∈ Rn

max which satisfies

(3.3) has all components different from ε.

Proof. Let us assume that the support of v does not cover the whole node set of

G(A) then since A is irreducible, there are arcs going from nodes in the support of

v going to nodes not belonging to the support of v i.e., there exists a node j in the

support of v and a node i not in the support of v with aij 6= ε. But this implies that

[A⊗ v]i ≥ aij ⊗ vj > ε therefore, the support of A⊗ v is larger than the support of v

which contradicts (3.3).

Next, the most important result of this sub-subsection is given.

Theorem 35. If A ∈ Rn×n
max is irreducible, then there exists one and only one fi-

nite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to the

maximal average weight of circuits in G(A):

(3.5) λ(A) = max
p∈C(A)

|p|w
|p|1

Proof. Existence of the eigenvalue λ and the eigenvector v. Consider matrix

Aλ with elements [Aλ]ij = aij − λ, λ finite. The maximum average circuit of Aλ is e.

Hence, Lemma 26 implies that A∗
λ and A+

λ exist. Moreover, from Lemma 32, matrix

A+
λ is such that that ∀η ∈ N c(A) : [A+

λ ]ηη = e. Let [A].k denote the kth column of

matrix A then, since ∀η ∈ N c(A) : [A+
λ ]ηη = e ⇒ [A∗

λ]ηη = e + [A+
λ ]ηη = e, it follows

that [A+
λ ].η = [A∗

λ].η. But A+
λ = Aλ ⊕ A∗

λ which implies that:

[Aλ ⊕ A∗
λ].η = [A∗

λ].η ⇒ Aλ ⊕ [A∗
λ].η = [A∗

λ].η ⇐⇒ A⊕ [A∗
λ].η = λ⊕ [A∗

λ].η.

Hence, it follows that λ is an eigenvalue of matrix A with associated eigenvector v

the ηth column of A∗
λ for all η ∈ N c(A).
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Uniqueness. Suppose µ 6= λ satisfies (3.3) and pick any circuit γ = ((η1, η2), (η2, η3),

. . . , (ηl, ηl+1)) ∈ G(A) of length l = |γ|1 with ηl+1 = η1. Then, since aηk+1ηk
6= ε with

k ∈ l, it follows that aηk+1ηk
⊕ vηk

≤ µ⊕ vηk+1
, k ∈ l, where Lemma 34 assures that all

components of v 6= ε, but this implies that
l⊗

k=1

aηk+1ηk
⊕ vηk

≤ µ⊗l ⊕
l⊗

k=1

vηk+1
which

in conventional algebra can be written as:
l∑

k=1

aηk+1ηk
+ vηk

≤ µ× l +
l∑

k=1

vηk+1
which

is reduced to
l∑

k=1

aηk+1ηk
≤ µ× l or |γ|W ≤ µ× l ⇒ |γ|W

|γ|l
≤ µ. But since this holds for

every circuit in G(A) µ has to be equal to λ.

3.2.2. Linear Equations.

Theorem 36. Let A ∈ Rn×n
max and b ∈ Rn

max. If the communication graph G(A) has

maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b solves the

equation x = (A⊗ x)⊕ b. Moreover, if the circuit weights in G(a) are negative then,

the solution is unique.

Proof. Existence. By Lemma 26 A∗ exists. Substituting the proposed solution into

the equation one gets:

x = (A⊗[A∗⊗b])⊕b = (A⊗A∗⊗b)⊕(e⊕b) = [(A⊗A∗)⊕e]⊗b = [A⊗A∗]⊕b = A∗⊕b.

Uniqueness. Let y be another solution of x = (A ⊗ x) ⊕ b then substituting y =

b ⊕ (A ⊗ y) it follows that: y = b ⊕ (A ⊗ b) ⊕ (A⊗2 ⊗ y), iterating once and once

again, one gets: y = b ⊕ (A ⊗ b) ⊕ (A⊗2 ⊗ b) ⊕ · · · ⊕ (A⊗(k−1) ⊗ b) ⊕ (A⊗k ⊗ y) =

[
k−1⊕
l=0

(A⊗l ⊗ b)] ⊗ (A⊕k ⊕ y). Now, since by assumption circuits have negative weight

the right side of the above equation, as k goes to ∞ tend to E while the left side,

using Lemma 26, tends to A∗ ⊗ b therefore, y = x.

3.3. Max-Plus recurrence equations for timed event Petri Nets [1, 2, 3].

Definition 37. Let Am ∈ Rn×n
max for 0 ≤ m ≤ M and x(m) ∈ Rn

max for−M ≤ m ≤ −1;

M ≥ 0. Then, the recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k −m); k ≥ 0 is called

an Mth order recurrence equation.

Theorem 38. The M th order recurrence equation, given by equation x(k) =
M⊕

m=0

Am⊗

x(k−m); k ≥ 0, can be transformed into a first order recurrence equation x(k +1) =

A⊗ x(k); k ≥ 0 provided that A0 has circuit weights less than or equal to zero.

Proof. Since by hypothesis, A0 has circuit weights less than or equal to zero, Lemma 26

allows A0 to be written as A∗
0 =

n−1⊕
i=0

A⊗i
0 . Setting b(k) =

M⊕
m=1

Am⊗x(k−m) the original

equation reduces to x(k) = A0 ⊗ x(k)⊕ b(k) which by Theorem 36 can be rewritten
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as x(k) = A∗
0⊗ b(k). Finally, defining x̂(k) = (xT (k− 1), xT (k− 2), . . . , xT (k−M))T

and,

Â =



A∗
0 ⊗ A1 A∗

0 ⊗ A2 · · · · · · A∗
0 ⊗ AM

E E · · · · · · E
E E

. . . E
...

. . .
...

E E · · · E E


we get that x̂(k + 1) = Â⊗ x̂(k); k ≥ 0 as desired.

With any timed event Petri net, matrices A0, A1, . . . , AM ∈ Nn×Nn can be defined

by setting [Am]jl = ajl, where ajl is the largest of the holding times with respect to all

places between transitions tl and tj with m tokens, for m = 0, 1, . . . ,M , with M equal

to the maximum number of tokens with respect to all places. Let xi(k) denote the

kth time that transition ti fires, then the vector x(k) = (x1(k), x2(k), . . . , xm(k))T ,

called the state of the system, satisfies the Mth order recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k − m); k ≥ 0 Now, assuming that all the hypothesis of Theorem 38

are satisfied, and setting x̂(k) = (xT (k), xT (k − 1), . . . , xT (k − M + 1))T , equation

x(k) =
M⊕

m=0

Am ⊗ x(k −m); k ≥ 0 can be expressed as: x̂(k + 1) = Â⊗ x̂(k); k ≥ 0,

which is known as the standard autonomous equation.

4. THE SOLUTION TO THE STABILITY PROBLEM FOR

DISCRETE EVENT DYNAMICAL SYSTEMS MODELED WITH

TIMED PETRI NETS

This section defines what it means for a TPN to be stable, then gathering the

results previously presented in the papers past sections the solution to the problem

is obtained.

Definition 39. A TPN is said to be stable if all the transitions fire with the same

proportion i.e., if there exists q ∈ N such that

(4.1) lim
k→∞

xi(k)

k
= q, ∀i = 1, . . . , n

This last definition tell us that in order to obtain a stable TPN all the transitions

have to be fired q times. However, it will be desirable to be more precise and know

exactly how many times. The answer to this question is given next.

Lemma 40. Consider the recurrence relation x(k + 1) = A ⊗ x(k), k ≥ 0, x(0) =

x0 ∈ Rn arbitrary. A an irreducible matrix and λ ∈ R its eigenvalue then,

(4.2) lim
k→∞

xi(k)

k
= λ, ∀i = 1, . . . , n
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Proof. Let v be an eigenvector of A such that x0 = v then,

x(k) = λ⊗k ⊗ v ⇒ x(k) = kλ + v ⇒ x(k)

k
= λ +

v

k
⇒ lim

k→∞

xi(k)

k
= λ

Now starting with an unstable TPN , collecting the results given by: Proposi-

tion 13, what has just been discussed about recurrence equations for TPN at the end

of Subsection 3.3 and the previous Lemma 40 plus Theorem 35, the solution to the

problem is obtained.

5. QUEUING SYSTEMS

Figure 3. Timed Petri net model

Consider the TPN model (Fig. 3) of a simple queuing system. Where the events

(transitions) that drive the system are: q: customers arrive to the queue, s: service

starts, d: the customer departs. The places (that represent the states of the queue)

are: A: customers arriving, P: the customers are waiting for service in the queue,

B: the customer is being served, I: the server is idle. The holding times associated

to the places A and I are Ca and Cd respectively, (with Ca > Cd). The incidence

matrix that represents the PN model is

A =

 0 1 0 0

0 −1 1 −1

0 0 −1 1


Therefore since there does not exists a Φ strictly positive m vector such that AΦ ≤ 0

the sufficient condition for stability is not satisfied. Moreover, the PN (TPN) is

unbounded since by the repeated firing of q, the marking in P grows indefinitely.

However, by taking u = [k, k, k]; k > 0, we get that AT u ≤ 0. Therefore, the PN

is stabilizable which implies that the TPN is stable. Now, from the TPN model we

obtain that matrix Â, which defines the standard autonomous equation, is equal to:

(5.1) Â =

 Ca ε ε

Ca ε Cd

Ca ε Cd

 .
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Therefore, λ(A) = max
p∈C(A)

|p|w
|p|1

= max{Ca, Cd} = Ca. This means that in order for

the TPN to be stable and work properly all the transitions must fire at the same

speed as the customers arrive i.e., they have to be served as soon as they arrive to

the queue, which is what it was expected from the beginning.

6. CONCLUSIONS

The main contribution of this paper consists in combining Lyapunov theory with

max-plus algebra to give a precise solution to the stability problem for discrete event

dynamical systems modeled with timed Petri nets. The presented methodology is

new and results to be innovative.
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