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Abstract. This paper proposes new processor architecture to exploit the increasingly number of 

transistors per integrated circuit and improve the performance of many applications on general-

purpose processors. The proposed processor (called Mat-Core) is based on the use of multi-level 

ISA to explicitly communicate data parallelism to processor in a compact way instead of the 

dynamic extraction using complex hardware or the static extraction using sophisticated compiler 

techniques. Scalar-scalar (level-0), scalar-vector (level-1), vector-vector (level-1), vector-matrix 

(level-2), and matrix-matrix (level-3) instruction sets are used as a multi-level interface between 

hardware and software. Mat-Core extends a general-purpose scalar processor (for executing 

scalar instructions) with a matrix unit (for executing vector/matrix instructions). To tolerate the 

memory latency, the extended matrix unit is decoupled into two components: address generation 

and data computation. The data computation unit is organized in parallel lanes; each lane contains 

a pipeline of each functional unit and a slice of the matrix register file. On parallel lanes, the Mat-

Core processor can effectively process not only vector but also matrix data. This paper explains 

the execution of vector/matrix instructions on the parallel lanes of Mat-Core. Moreover, the 

performances of element-wise vector-vector addition, vector-matrix multiplication, and matrix-

matrix multiplication are estimated on the decoupled Mat-Core processor. The increasingly 

budget of transistors can be exploiting to scale the Mat-core processor by providing more cores in 

a physical package. On a Multi-Mat-Core processor, performance would be improved by parallel 

processing threads of codes using multi-threading techniques. 

 

Keywords  -  high-performance computing, parallel architectures, vector/matrix processing, 

decoupled architectures, and multi-core computation. 

 

1. INTRODUCTION 

 

The key to achieving high performance with all modern microprocessors is the presence 

of parallelism in applications, for it allows the hardware to accelerate applications by 

executing multiple, independent operations concurrently [1]. Computer architects have 

employed various forms of parallelism to provide increases in performance above those 

made possible just by improvements in underlying circuit technologies. Beyond 

pipelining technique, which is now universally applied in all types of computing systems, 

there are several ways in which processor designs can exploit parallelism to improve 

performance. The three major forms are  instruction-level parallelism (ILP),  thread-level 
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parallelism (TLP), and data-level parallelism (DLP) [1, 2]. These various forms of 

machine parallelism are not mutually exclusive and can be combined to yield systems 

that can exploit all forms for application parallelism. For example, Intel multi-core 

processors are pipelined superscalar processor, which can exploit ILP, TLP, and DLP 

using superscalar techniques, multi-threading computations, and multimedia extension 

instruction sets, respectively [3].  

Exploiting ILP was the primary focus of processor designs (superscalar [4] and 

VLIW [5]) for about 20 years starting in the mid-1980s to improve the processor 

performance by parallel processing multiple scalar instructions per clock cycle. 

Superscalar architectures have used the increasable chip resources to dynamically 

extracting and dispatching more independent scalar instructions in the same clock cycle. 

However, VLIW architectures have increased the number of decoders and the execution 

datapaths to process more parallel scalar instructions explicitly packed by the compiler 

into a very long instruction word. Recently, the limits of power, available ILP, and long 

memory latency have slowed uniprocessor performance from about 52% to about 20% 

per year [1]. Moreover, superscalar and VLIW microprocessors use scalar instruction set 

architecture (ISA) as an interface between hardware and software, which cannot express 

parallelism to hardware (processor). 

On the software side, applications based on DLP are growing in importance and 

demanding increased performance from hardware [6, 7]. These applications include 3D 

graphics, image processing, signal processing, voice recognition, network processing, 

scientific and engineering applications, etc. To satisfy the performance demand, 

specialized hardware is commonplace for these applications. Otherwise, a general-

purpose scalar processor needs to perform fetching, decoding, executing, and writing a 

result for each scalar instruction. This traditional way for processing data parallel 

applications using scalar ISA is not the best, even though multiple scalar instructions can 

be extracted easily by hardware or compiler [8]. Recently, major microprocessor vendors 

have announced extensions to their general-purpose microprocessors in an effort to 

process multiple data by using a single instruction (SIMD) to improve the performance 

data parallel applications [9, 10]. For example, Intel processors have been extended with 

MMX, SSE, SSE2, SSE3, SSSE3, SSE4, and AVX [11]. Moreover, Sun enhanced Sparc 

with VIS, Hewlett-Packard added MAX to its PA-RISC architecture, Silicon Graphics 

extended the MIPS architecture with MDMX, Motorola extended the PowerPC with 

AltiVec, etc.  

Although these extensions are a good step toward incorporating vector architecture 

into microprocessor level, they have some disadvantages. They have limited vector 

instruction sets with fixed vector length and stride; one instruction may keep one datapath 

busy for a few clock cycles; wide datapaths can be used after either changing the ISA or 

the issue width; multiple instructions are needed to load and align a vector data, etc. See 

[12, 13] for more details.  
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On the other hand, vector instruction sets have many fundamental advantages and 

deserve serious consideration for implementation on microprocessors. Vector ISA 

packages multiple homogenous, independent operations into a single short instruction, 

which results in compact, expressive, and scalable code [14-20]. Thus, vector ISA have 

seen a renaissance, at least for use in graphics, digital signal processing, and multimedia 

applications, in addition to the traditional scientific and engineering applications [1]. The 

combination of regularity in each vector instruction and explicit parallelism allows for 

very aggressive design techniques, such as heavy pipelining, functional unit replication, 

and aggressive clocking. Recently, CMOS technology has enabled integration of a 

complete vector processor (scalar core and vector engine with parallel pipelines) on a 

single chip. Practically, the vector processor developed for the NEC SX-6 

supercomputers has eight vector pipelines and a four-way superscalar unit on a single 

chip (60 million transistors) [21]. Moreover, the latest vector processor of the SX-9 

system has 350 million transistors and a peak vector performance exceeding 100 

GFLOPS per single core (eight vector pipelines and superscalar unit) [22]. 

As the underlying semiconductor technology continues to improve significantly since 

a single chip transistor counts double roughly every 18 months [23], more pipelines and 

more powerful scalar core can be fabricated on a single chip. On parallel pipelines, not 

only vector but also matrix data can be processed. This paper proposes a new processor 

called Mat-Core to exploit the increasingly number of transistors per integrated circuit 

and improve the performance of many applications on general-purpose processors. Mat-

Core extends a general-purpose scalar processor (for executing scalar instructions) with a 

matrix engine (for executing vector/matrix instructions). One key point of the proposed 

Mat-Core is the use of multi-level (scalar/vector/matrix) ISA to provide a flexible and 

high-level interface between hardware and software. High-level instructions, such as 

scalar-vector, vector-vector, scalar-matrix, vector-matrix, and matrix-matrix instructions, 

convoy up to 3-D parallelism to the Mat-Core processor, instead of the dynamic 

extraction of parallelism using complex hardware or the static extraction of parallelism 

using sophisticated compiler techniques. Another key point of Mat-Core is the use of 

parallel pipelines for effectively executing both of vector and matrix instructions on the 

same hardware. Since the fundamental data structures for data parallel applications are 

scalar, vector, and matrix data [24, 25], which can be executed effectively on Mat-Core, 

our proposed matrix processor is an appropriate architecture for improving the 

performance of these applications. This paper describes in detail the organization of a 

single-core Mat-Core processor. The increasingly budget of transistors can be exploited 

by providing more processor cores in a physical package. The performance of many 

applications can be improved on Multi-Mat-Core processors by parallel processing 

threads of codes using multi-threading techniques [26, 27]. 
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This paper is organized as follows. Section 2 depicts the microarchitecture of the 

proposed Mat-Core processor, which can execute a mixture of scalar, vector, and matrix 

instructions and can exploit up to 3-D data parallelism. To tolerate the memory latency, 

Section 3 describes the architecture of the decoupled Mat-Core processor. The Mat-Core 

executions of some vector/matrix instructions are explained in Section 4. Moreover, it 

estimates the performances of element-wise vector-vector addition, vector-matrix 

multiplication, and matrix-matrix multiplication on Mat-Core processor. Finally, Section 

5 concludes this paper and gives directions for future work. 

 

 

2. THE MICROARCHITECTURE OF THE MAT-CORE PROCESSOR  

 

Figure 1 shows an overall block diagram of a matrix processor, which integrates a 

scalar processor (instruction cache, scalar functional units, and data cache), an extended 

unit (matrix unit) for executing high-level vector/matrix instructions, and an external 

memory interface (address and data buses) for loading/storing data. The scalar processor 

can be single-issue/multiple-issue, in-order/out-of-order architecture. It is responsible for 

executing scalar (unparallel) code and for supporting the execution of the high-level 

instructions on the extended matrix unit. The scalar processor, however, is not 

responsible for achieving high performance. The extended unit contains the matrix 

memory unit, matrix arithmetic unit, and matrix register file. The matrix memory unit is 

used for calculating the addresses and loading/storing the vector and matrix data from/to 

L2 cache memory to/from the matrix register file. The matrix arithmetic unit executes 

vector and matrix instructions on data stored in the matrix register file. The extended 

matrix unit is responsible for achieving high performance by executing vector/matrix 

instructions. 

The straightforward organization of a matrix processor is to structure the extended  
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matrix unit as n
2
 cells in order to process n n blocks of matrices and n

2
-element strips of 

vectors. Each cell has a portion of the matrix register file, arithmetic functional unit, and 

load/store unit, as shown in Figure 2. Element-wise vector and matrix instructions can be 

done easily without intercommunications between the n
2
 cells. Each cell loads one 

element from each input matrix using its load unit, performs the arithmetic instruction 

using its arithmetic unit, and then stores the result element using its store unit. Said 

differently, cells (1:n, 1:n) load a block of A(x1:xn, y1:yn) into a matrix register (n×n 

elements) and a block of B(x1:xn, y1:yn) into another matrix register, where (x1, y1) and (xn, 

yn) are the indices of the first and last elements of each block. The arithmetic units 

process these blocks of matrices loaded into matrix registers and then store the result 

C(x1:xn, y1:yn) back to the destination matrix register. The final step is returning the final 

results stored in the destination matrix register to L2 cache memory by the store units. 

The same sequence of instructions can be done for vector processing, where the input 

vectors are loaded into matrix registers in round-robin fashion.  

As we can see from Figure 2, each cell has a load/store unit, which is not scalable 

because of the memory wall problem [28, 29]. Due to the processor-memory performance 

gap, the main memory cannot sustain this quadratic increase in the number of 

loaded/stored elements. Let us consider decreasing only the number of load/store units 

from n
2
 to n, where n is the number of cells. In this case, loading an n n-block of matrix 

or an n
2
-strip of vector requires O(n) time; however, processing these loaded data on n

2
 

arithmetic units requires only O(1) time. This leads to keeping the arithmetic units idle 

for a long time while waiting for loading/storing vector/matrix data. In other words, the 

number of clock cycles needed for loading/storing data dominates the overall 

computational time. Thus, as the number of load/store units decreases from n
2
 to n, the 

number of arithmetic units should also be decreased to n units, to make a balance 

between the loading/storing time and processing time. The organization of the matrix unit 

based on the previous discussion has a 2-D register file, but the load/store and arithmetic 

units are 1-D.  

Processing vector/matrix data on multiple (1-D) execution units requires fetching 

multiple operands and storing multiple results per a clock cycle.  This results in a load 
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Figure 2: Straightforward organization of a matrix unit 
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store architecture with a multiple ports register file. A register file with R read ports and 

W write ports provides the capability of reading R registers and writing W registers during 

the same clock cycle. The most straightforward configuration for implementing a multi-

port register file is the monolithic register file [15, 30]. It uses a register cell with multi-

read and multi-write ports. Although the number of registers actually accessed is 

determined by the number of ports, all registers in such a monolithic register file are 

available simultaneously as a source or a destination for any processing unit or load/store 

unit. That is why the monolithic register file is also known as a shared register file. This 

means increasing the number of functional units increases the required number of read 

and write ports, which results in increasing the monolithic register file area and its time 

delay. To be specific, for N functional units, the area of the monolithic register file grows 

as N
3
 and its delay grows as N

3/2
 [31]. 

The monolithic register file, which is used by most superpipelined, superscalar, and 

VLIW designs, provides the ability of any functional unit to access any register 

randomly. However, in vector and matrix processing, data are accessed from the register 

file sequentially rather than randomly. In other words, not all registers are needed to be 

available simultaneously for vector/matrix processing. In addition, since the size of the 

matrix register file is much greater than the scalar register file, the monolithic register file 

is not an effective choice because it is not scalable. An alternative configuration for 

providing a multi-port register file is to partition the registers into banks (partitioned 

register file) [32, 33]. This configuration is more powerful in vector/matrix processing, 

where each register bank stores 1-D data. Each bank consists of many multi-port scalar 

registers and has its own read- and write-buses. Multiple banks give the appearance of a 

register file with multiple read and write ports needed for vector/matrix processing.  

Compared to a monolithic register file, a partitioned one provides less connectivity 

between  any individual register  and any functional unit because it uses the  features of  

Figure 3: The extended matrix unit of the Mat-Core processor 
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vector/matrix processing. Obviously, not all elements per register bank are available 

simultaneously as an operand or as a result. Instead, only three elements per register bank 

are available (two for reading and one for writing) during each clock cycle. A register 

bank can be used concurrently at most three instructions as the destination for one and the 

source of the other two. Figure 3 shows the organization of our proposed matrix unit, 

which has P parallel lanes. Each lane contains a set of register banks based on partitioned 

register file and a pipeline of each functional unit. P register banks represent a matrix 

register (one register bank per lane), which can store vector/matrix data.  

Even though no interconnections between parallel lanes are needed for element-wise 

vector/matrix instructions, not only element-wise instructions are needed for 

vector/matrix processing, but reduction and expansion instructions are also needed. Dot-

product, vector-matrix, and matrix-matrix multiplication instructions are based on 

reduction operations; however, outer-product instruction is based on expansion 

operations. Executing reduction and expansion instructions needs interconnections 

between lanes. These interconnections can be local, global, bus, etc. It is known that all 

these types of interconnections are not scalable, except the local, because longer wires are 

needed to connect more lanes. However, for a small number of parallel lanes, the use of 

full crossbars is more efficient technique than the other techniques. Crossbars provide 

complete flexibility in connecting any register bank of the partition register file with any 

functional unit. Figure 4 shows the operations that can be performed on the crossbars of 

Mat-Core processor. Pass, Rotate, and Broadcast are the main shuffle operations that can 

be done on Mat-Core crossbars.  

In this paper, we propose a single-core Mat-Core processor, which has a  scalar unit  

 

Figure 4: Full connection crossbar 
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extended by a four-lane matrix unit. As the underlying semiconductor technology 

continues to improve significantly, more cores can be fabricated on a single chip. Multi-

threading techniques on Mat-Core having multi-core (Multi-Mat-Core) can be used to 

further improving the performance of data parallel applications. 

 

 

3. DECOUPLED MAT-CORE ARCHITECTURE  

 

 Decoupled architectures are based on the observation that the execution of a program 

can be split into two different tasks: moving data to/from processor and executing 

arithmetic instructions that perform the program computations [34, 35]. Thus, a 

decoupled processor has two independent units: the address unit and the computation 

unit. The address unit performs all address computations, addresses checking, and 

loads/stores data from/to memory to/from queues in the computation unit. The 

computation unit moves data from/to queues to/from registers and executes all arithmetic 

instructions on data loaded into registers. These units are communicated through 

architectural queues which are used to temporary keep the loaded/stored data from/to 

memory to/from the register file. The main advantage of decoupled architectures is the 

toleration of memory latency. The arithmetic instructions waiting for memory operands 

do not block the issue stage. They are sent to an instruction queue freeing the issue stage 

to run ahead to find more memory instructions latter in the instruction stream. In other 

words, latency is tolerated because the address unit is able to slip ahead of the 

computation unit and loads data that will be needed soon by the computation unit early in 

time. This excess data produced by the address unit is stored in FIFO queue and stays 

there until it is retrieved by the computation unit [16].   

 The Mat-Core processor is based on decoupled architectures to hide memory latency. 

The extended matrix unit is split into two components: address generation and data 

computation, which communicate through data queues, as Figure 5 shows. High-level 

vector/matrix instructions are fetched, decoded, and then dispatched in-order by the 

scalar core to the pre-address instruction queue (Q1). The matrix unit takes 

memory/arithmetic vector/matrix instructions in-order from the head of Q1. Without 

checking, arithmetic instructions are passed directly to the second queue (Q2), which is 

called address check instruction queue. Load/store instructions are split into two 

components: address generation and pseudo-move instruction. The first component 

generates a stream of addresses stored in Q4 (load address queue) or Q5 (store address 

queue) to fill Q6 (load data queue) or empty Q7 (store data queue), respectively. In more 

detail, the address generation unit generates and checks the required addresses for 

loading/storing vector and matrix data. After checking, the address generation inserts 

load addresses into the load address queue (Q4) and store addresses into the store address  
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queue (Q5). When either a load or a store is ready (i.e., no dependence and the data is 

available in case of store instruction), it is sent over the address bus for execution. The 

pseudo-move instruction moves data from/to the load/store data queue (Q6/Q7) to/from 

the register files. After being checked, memory instructions are committed in-order from 

the address check instruction queue (Q2) to the final queue called committed instruction 

queue (Q3). However, arithmetic instructions are committed directly without checking to 

the Q3. Once an instruction (arithmetic or pseudo-move) is at the head of the Q3 and its 

operands are ready, it is dispatched to the appropriate functional unit. Pseudo-move 

instructions move data from/to Q6/Q7 to/from matrix registers, however, other 

instructions perform arithmetic operations on data in matrix registers. Note that, the 

purpose of Q2 is to buffer memory/arithmetic instructions that follow a memory 

instruction until it is known that the memory instruction will not generate a data page 

fault. On a page fault, only the content of Q1 and Q2 are needed to be stored. 

 Mat-Core is a load/store architecture, where memory can be accessed only with 

load/store instructions (data should be loaded into registers before processing). Scalar 

data are loaded from scalar data cache into scalar registers (integer or floating-point), 

processed (in-order or out-of-order) on scalar execution datapath, and then stored from 

scalar registers back to scalar data cache. Vector/matrix data are loaded directly from L2 

cache into matrix registers through load data queue (Q6), processed in parallel on P 

execution datapaths, and then stored back from matrix registers to L2 cache through store 

data queue (Q7). 

 Control registers are needed to adjust the number of parallel lanes used to execute 

vector/matrix instructions and to tell the functional units about the number of elements 

per lane. Strps and Wstrp control registers store the number of strips and the number of 

elements per strip, respectively. Strps Wstrp elements of blocks are processed using a 

vector/matrix instruction. For element-wise vector/matrix instructions, such as element-

wise addition, subtraction, multiplication, etc., Strps and Wstrp are read by the control 98    
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unit to generate the proper control signals to process Strps Wstrp blocks of matrices or 

Strps*Wstrp strips of elements. Other instructions, such as matrix-matrix multiplications, 

need three parameters for processing blocks of data. The control register Dim is used for 

storing the third parameter. Depending on the opcode of the instruction being executed, 

the control unit uses Strps/Wstrp or Strps/Wstrp/Dim to generate the control signals. 

 Like vector ISA, memory instructions are divided into separate unit-stride, stride, 

and indexed classes. The simplest and effective form of loading/storing a block of data is 

the unit-stride form, which transfers a set of elements (1  Wstrp  P elements, where P 

is the number of lanes) between contiguous memory locations and register file through 

Q6/Q7. The base address of these Wstrp contiguous elements is specified by the contents 

of a scalar register passed to the matrix unit by the scalar core. The address unit generates 

a series of memory addresses (only one address per clock cycle); each address moves 1  

Wstrp  P elements from/to L2 cache memory to/from Q6/Q7. On the Mat-Core 

processor, vector data (1-D arrays) are loaded into matrix registers (2-D arrays) in round-

robin fashion, and then processed on P execution datapaths as a matrix data. Said 

differently, vector data is a special case of matrix data, as explained in more detail in 

below.  

 Unit-stride accesses are obviously just a special case of stride accesses. A stride 

load/store instruction transfers memory elements that are separated by a constant stride. 

The number of elements between two consecutive elements should be loaded into a scalar 

register and sent to the matrix unit. Moreover, Strps, Wstrp, and Dim are set to n, 1, and 

0, respectively, where n is the vector length.  

 As unit-stride is a special case from stride memory access, stride load/store is a 

special case from indexed memory access. Indexed load/store instructions allow elements 

to be collected into a matrix register from arbitrary locations in memory. An indexed 

load/store instruction uses another matrix register to supply a set of element indices. For 

an indexed load or gather, the register of indices is added to a scalar base register to give 

the effective addresses from which individual elements are gathered. An indexed store, or 

scatter, inverts the process and scatters elements from a densely packed data from the 

register file into memory locations specified by the effective addresses.  

 To effectively support stride and index accesses, the address unit should generate P 

addresses per clock cycle for loading/storing P elements from/to L2 cache. This means 

each lane should have an address generator and TLB for generating and checking an 

address per clock cycle. As the number of parallel lanes increases, the address bandwidth 

(the number of non-consecutive memory requests that can be transferred per unit time) 

should also be increased. This results in sophisticated and unscalable architecture because 

of memory wall problem. For simplicity and scalability, the Mat-Core processor has only 

a single address  port,  which can  accept a single  address per clock cycle. In this case,  
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strided and indexed loads and stores move at most a single element per clock cycle 

regardless of operand size. 

 In addition to Strps, Wstrp, and Dim, Mat-Core has a set of read only control 

registers: MSR, MSW, and MDIM, which are holding the maximum number of strips, the 

maximum width per strip, and maximum number of elements for the third parameter, 

respectively. These control registers are needed for the strip mining technique [36-38] to 

process longer or unknown vectors, and for the block mining technique based on the 

block notation technique [24] to process larger or unknown matrices. 

  

 

4. VECTOR/MATRIX OPERATIONS ON DECOUPLED MAT-CORE 

PROCESSOR 

 

 The Mat-Core ISA extends a scalar ISA with vector and matrix instruction sets. The 

following instruction sets can be executed on the Mat-Core processor: scalar-scalar (level 

0), scalar-vector (level 1), vector-vector (level 1), scalar-matrix (level 2), vector-matrix 

(level 2), and matrix-matrix (level 3). Up to 3-D data parallelism can be communicated 

explicitly to the Mat-Core processor through multi-level ISA. This section describes the 

execution of element-wise vector-vector addition, vector-matrix multiplication, and 

matrix-matrix multiplication on Mat-Core with 12 clock cycles memory latency and four 

clock cycles latency for any floating-point operation (FLOP). Besides, the performances 

of these operations are estimated on the decoupled Mat-Core processor.  

 

4.1. Element-Wise Vector-Vector Addition on Mat-Core 

 To process vector data on the extended matrix unit of the Mat-Core processor, the 

input vectors should be loaded into matrix registers in round-robin fashion. After loading 

vector data into matrix registers, element-wise vector-vector operations can be performed 

easily like matrix-matrix operations. Let us explain in details the execution of element-

wise vector-vector addition on four-lane Mat-Core processor, where the same procedure 

is done for element-wise matrix-matrix operations. In general, element-wise vector 

instructions (Z = X op Y), such as vector addition, subtraction, multiplication, division, 

etc., can be processed on multiple execution datapaths without cross-lane 

communications (see Figure 6). The input vectors X and Y are distributed across matrix 

registers in a round-robin fashion. An execution datapath within a lane can process data 

stored in matrix registers at the rate of one element per cycle. Each datapath receives 

identical control but different input elements in each clock cycle. Besides, crossbars of 

source 1 and 2 receive the control signal “Pass” that allows passing the input data of 

source 1 (x0, x1, x2, and x3) and source 2 (y0, y1, y2, and y3) without shuffling to the 

output terminals of the source crossbars. 
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 The performance of element-wise vector-vector addition on the decoupled Mat-Core 

processor is dominated by memory clock cycles rather than the arithmetic clock cycles. 

As shown in Figure 7, the computation time can be overlapped by loading/storing time. 

Thus, on long vectors the number of clock cycles per FLOP is almost three. Besides, 

Table 1 shows the time line of execution of two iterations of vector addition on 

decoupled Mat-Core. The scalar unit fetches vector instructions (LDus: load with unit-

stride, ADDvv: add two vectors, and SRus: store with unit-stride) and issues them to 

Q1 (pre-address instruction queue) in the matrix unit. Provided the Q1 is not full the 

scalar core can continue execution. This results in overlapping the execution time of the 

scalar instructions with vector instructions because a high-level vector instruction takes 

many clock cycles for execution.  

 The matrix unit takes instructions in-order from the head of the Q1. When the head 

of Q1 is LDus or SRus (memory) instruction, two actions are done in parallel: sending  

 

x0,y0 x1,y1 x2,y2 x3,y3 

Crossbar of Source 2 

x12 

x8 

x4 

x0 

y12 

y8 

y4 

y0 

x13 

x9 

x5 

x1 

y13 

y9 

y5 

y1 

x14 

x10 

x6 

x2 

y14 

y10 

y6 

y2 

x15 

x11 

x7 

x3 

y15 

y11 

y7 

y3 

Lane 0 Lane 1 Lane 2 Lane 3 

Step 1 

x0,y0 x1,y1 
x6,y6 x7,y7 

x12 

x8 

x4 

x0 

y12 

y8 

y4 

y0 

x13 

x9 

x5 

x1 

y13 

y9 

y5 

y1 

x14 

x10 

x6 

x2 

y14 

y10 

y6 

y2 

x15 

x11 

x7 

x3 

y15 

y11 

y7 

y3 

Step 2 

x4,y4 x5,y5 
x2,y2 x3,y3 

x0,y0 x1,y1 

x10y1

0 

x11y1

1 

x12 

x8 

x4 

x0 

y12 

y8 

y4 

y0 

x13 

x9 

x5 

x1 

y13 

y9 

y5 

y1 

x14 

x10 

x6 

x2 

y14 

y10 

y6 

y2 

x15 

x11 

x7 

x3 

y15 

y11 

y7 

y3 

Step 4 

x4,y4 x5,y5 x6,y6 x7,y7 
x8,y8 x9,y9 

x14,y1

4 

x15,y1

5 

x12,y1

2 

x13,y1

3 

x2,y2 x3,y3 
x0,y0 x1,y1 

x6,y6 x7,y7 

x12 

x8 

x4 

x0 

y12 

y8 

y4 

y0 

x13 

x9 

x5 

x1 

y13 

y9 

y5 

y1 

x14 

x10 

x6 

x2 

y14 

y10 

y6 

y2 

x15 

x11 

x7 

x3 

y15 

y11 

y7 

y3 

Step 3 

x4,y4 x5,y5 
x2,y2 x3,y3 

x8,y8 x9,y9 x10,y1

0 

x11,y1

1 

Figure 6: Element-wise vector operation on Mat-Core processor 
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the memory instruction to the address unit for generating and checking addresses, and 

passing the pseudo-move instruction into Q2. However, ADDvv instruction is passed to 

the Q2 without checking when it reaches the head of Q1. The address unit generates, 

checks, and sends addresses to Q4 (load address queue) or Q5 (store address queue). 

When an address reaches the head of Q4/Q5, it is sent to the memory for loading/storing 

data even though the remaining addresses are under generation and checking. The 

pseudo-move instruction must wait in Q2 until last element address is generated and 

checked. After checking the last element address, the pseudo-move instruction is allowed 

to be passed to Q3. Any non memory instructions are at head of the Q2 is simply passed 

along to the Q3. Finally, arithmetic and pseudo-move instructions in Q3 are executed in-

order in the computation unit when all operands are ready.  According to Table 1, the 

performance of element-wise vector-vector addition on long vectors can be estimated as 

about 1.3 FLOPs per clock cycle (16 FLOPs /12 cycles). 

 As special case of element-wise vector/matrix operations, scalar-vector and scalar-

matrix operations can be easily implemented on Mat-Core processor by performing the 

same operation on vector/matrix data stored in a matrix register and a scalar datum 

broadcasted to parallel lanes using crossbar. The crossbar of the source 1 (scalar datum) 

is controlled by the control signal called “Broadcast-0”; however,  the crossbar of source 

2 (vector data) is controlled by “Pass” (see Figure 4).  

 

4.2. Vector-Matrix Multiplication on Mat-Core 

 There are two implementations of the vector-matrix multiplication (y = x A + y) 

due to the two nested loops [24]. One of these implementations is based on dot-product  

 
Table 1: Time line of execution of vector addition on decoupled Mat-Core 

Instruction Issue to Q1 Issue to Q2 Issue to Q3 Dispatch from Q3 Complete 

LDus  

M1,X(R1) 
1 2 6 14 18 

LDus  

M2,Y(R1) 
2 6 10 18 22 

ADDvv 

M3,M1,M2 
3 7 10 19 27 

SRus  

Z(R1),M3 
4 10 14 24 28 

LDus  

M1,X(R1) 
5 14 18 26 30 

LDus  

M2,Y(R1) 
6 18 22 30 34 

ADDvv 

M3,M1,M2 

7 19 22 31 39 

SRus  

Z(R1),M3 

8 22 26 36 40 
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and the other implementation is based on SAXPY (scalar a times vector x plus vector y). 

Each variant involves the same amount of FLOPs but accesses the operands data 

differently.  

 

Obviously, loading a block of the input matrix into a matrix register row-by-row is better 

than loading it column-by-column, assuming the input matrix is stored in the main 

memory in row major. The former needs unit-stride accesses for loading the input matrix; 

however, the later needs stride accesses, which is more expensive.  

 Figure 8 shows the Mat-Core implementation of vector-matrix multiplication based 

on SAXPY on four parallel lanes. A 4 4 block of the input matrix A is loaded into a 

matrix register say M1 and a 4-element strip of input vector x is loaded into another 

matrix register (the first row of M2; four elements). In addition, a 4-element strip of the 

vector y is loaded into the first row of a matrix register (say M3) for accumulating the 

result. As shown in Figure 8, the source 2 crossbar broadcasts the elements of the input 

vector x; one element is broadcasted to all lanes each step. Element-wise multiply 

operations are performed on the contents of the matrix registers M1 and M2. The matrix 

data stored in M1 are passed through the source 1 crossbar; however, the vector data 

stored in the first row of M2 are broadcasted through the source 2 crossbar. The result of 

multiplication is accumulated with the data stored in the matrix register M3. To improve 

the performance, MAC (multiply-accumulate) operation would be used instead of 

chaining the multiplier and adder. MAC operation is a one of the fundamental operations  
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Figure 8: Vector-matrix multiplication on Mat-Core processor 
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of digital signal processors and is a key to dot-product operations for vector and matrix 

multiplies. 

 The performance of vector-matrix multiplication on Mat-Core is better than the 

performance of element-wise vector/matrix operations. As Figure 9 shows, a single loop 

iteration requires loading five elements and performing four MAC operations (eight 

FLOPs). However, a single iteration of an element-wise vector/matrix operation requires 

loading/storing 12 elements and performing only four FLOPs. As shown from the time 

line of the execution of vector-matrix multiplication on decoupled Mat-Core (see Table 

2), the total execution time equals the time needed for loading data. Thus, on large 

matrices the number of FLOPs per clock cycle is estimated as about 6.4 (32 FLOPs / 5 

cycles). 

 

4.3. Matrix-Matrix Multiplication on Mat-Core  

 Multiplying two Am w and Bw n matrices and accumulating the result with Cm n 

matrix (C = C + A B) can be effectively implemented on the Mat-Core processor as 

shown in Figure10. The three nested loops (i, j, k) in the matrix-matrix multiplication can 

be arbitrarily ordered giving six variations (see [24] for more detail). Each of the six 

possibilities (ijk, jik, ikj, jki, kij, kji) features an inner loop operation (dot-product or 

SAXPY) and middle loop operation (vector-matrix, matrix-vector, row outer-product, 

and column outer-product). Additionally, each variant has its own pattern of data 

accessing (unit-stride or stride), while all of them have the same amount of floating-point 

operations (2mwn FLOPs).  

 Among the six implementations of the matrix-matrix multiplication, the ikj variant, 

which is based on vector-matrix multiplication and its inner loop is based on SAXPY, is 

the best because it accesses each block of A, B, and C row-by-row, again assuming A, B,  

Table 2: Time line of execution of vector-matrix multiplication on decoupled Mat-Core 

Instruction Issue to Q1 Issue to Q2 Issue to Q3 Dispatch from Q3 Complete 

LDus  M1,X(R1) 1 2 3 14 15 

LDus  M2,Y(R1) 2 3 7 15 19 

VMmul M3,M1,M2 3 4 7 16 24 

LDus  M1,X(R1) 4 7 8 19 20 

LDus  M2,Y(R1) 5 8 12 20 24 

VMmul M3,M1,M2 6 9 12 21 29 
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Figure 9: The execution of vector-matrix multiplication 
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and C matrices are stored in row major. As Figure 10 shows, the input matrices are 

loaded into matrix registers (4×4 elements). Sixteen steps are needed to perform  four 

vector-matrix multiplications; each requires four steps. 

 In contrast of element-wise vector/matrix operations and vector-matrix 

multiplication, the execution time of matrix-matrix multiplication is dominated by 

arithmetic (MAC) operations rather than by memory operations. As shown in Figure 11, 

loading time is overlapped with arithmetic operations. This is good for freeing the 

memory busses to prefetch more instructions into instruction cache. From the time line of 

decoupled execution of matrix-matrix multiplication shown in Table 3, the number of 

FLOPs per clock cycles is estimated as about eight on large matrices (128 FLOPs / 16 

clock cycles). 

 
 

5.  CONCLUSION 

 

Different subtasks of an application usually have different computational, memory, 

and I/O requirements that result in different needs for computer capabilities. Thus, a more 

appropriate approach for both a high performance and simple programming model is to 

design a processor having a multi-level instruction set architecture (ISA). Each level has 

instructions executed on a different data structure and precisely tells the processor what 

the application needs to be performed in compact form. This leads to high performance 

and a minimum executable code size. 

Data parallel applications, which include scientific, engineering, multimedia, etc., are 

growing in importance and demanding increased performance from hardware. Since the 

fundamental data structures for a wide variety of data parallel applications are scalar, 

vector, and matrix, our proposed Mat-Core processor has a multi-level ISA (scalar-scalar 

(level-0), scalar-vector (level-1), vector-vector (level-1), vector-matrix (level-2), and 

matrix-matrix (level-3)) executed on zero-, one-, and two-dimensional arrays of data. 

These instruction sets are used to express a great amount of fine-grain parallelism (up to 

3-D data parallelism) to a processor instead of the dynamical extraction by a complicated 

logic (superscalar approach) or statically with sophisticated compilers (VLIW approach). 

This reduces the design complexity and provides a high-level programming interface to 

hardware. 

The proposed Mat-Core processor extends a general-purpose scalar processor (for 

executing scalar instructions) with a matrix unit (for executing vector/matrix 

instructions). To tolerate the memory latency, the extended matrix unit is decoupled into 

two components: address generation and data computation. Like vector 

microarchitectures,  the  data computation  unit is organized in parallel lanes;   each lane  
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Figure 10: Matrix-matrix multiplication on Mat-Core processor 
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Figure 11: The execution of matrix-matrix multiplication 
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contains a pipeline of each functional unit and a slice of the matrix register file. On 

parallel lanes, the Mat-Core processor can effectively process not only vector but also 

matrix data. The executions of element-wise vector-vector addition, vector-matrix 

multiplication, and matrix-matrix multiplication are explained in detail in this paper. 

Moreover, their performances are estimated on the decoupled Mat-Core processor as 

about 1.3, 6.4, and 8 FLOPs per clock cycle, respectively. 

As the underlying semiconductor technology continues to improve significantly, the 

increasingly budget of transistors can be exploited by providing more processor cores in a 

physical package. The performance of many applications can be improved on the multi-

core version of Mat-Core processor (Multi-Mat-Core) by parallel processing threads of 

codes using multi-threading techniques. In the future, both of Mat-Core and Multi-Mat-

Core will be implemented and evaluated on kernels and whole applications. 
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