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Abstract. The aim of this paper is two fold. First, we want to discuss the solution properties 

of higher order linear descriptor matrix differential systems. Secondly, we want to extend the 

classical matrix rank criterion for the controllability of first order to higher order linear 

descriptor matrix differential systems. This criterion has been chosen and studied, since it is a 

typical property and requirement for many modern control systems while at the same time it 

emerges in a plethora of different control science applications. 

AMS (classification): 93B05, 93C15 

Key Words: Linear Descriptor Matrix Systems; Controllability; Rank Criterion 

1. INTRODUCTION 

In the last two decades, higher order linear descriptor systems are considered for 

the control of constrained mechanical systems, see Müller et al [11], Hou [6], Rabier 

and Rheinboldt [14] etc; the control of electrical systems, e.g. Bai et al [3] and more 

recently; the control of more complex structures which are constructed by a mixture 

of different systems, see Otter et al [12]. Moreover, it is pointed out that higher order 

linear descriptor differential systems might result from linearization procedures of 

general nonlinear higher order descriptor systems of the form 

  , , , , 0
k

F t x x x  , 

around reference solutions, see Mehrmann and Shi [10], Pantelous et al [13] and 

references therein. 

Generally speaking, we consider the algebra  ;nM F , where F  is a field.  

A higher order descriptor matrix differential system with arbitrary constant 

coefficients, appears to be significant -above all, if one is interested in the behaviour 

of the original state variables, see Apostol [1], Ben Taher and Rachidi [2], see eq. 

(1.1) 
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                 1 2

1 1

k k k

k k oEX t A X t A X t A X t A X t BU t
 

      ,      (1.1)  

where  , ;iE A n n M F , 0,1, , 1i k   with E  singular, i.e.  rank E n , t  is 

the independent time variable,     ; ,U t C m l F FM  is the piecewise 

continuous input (control) vector and  ;B n m M F  is the input matrix.  

If            1 2
,  , ,  ,  

k k

o o o oX t X t X t X t
      stand for the value of the state 

trajectory  X t  immediately before starting the dynamical process described by eq. 

(1.1), then every point oX  is consistent, i.e. if for every point oX  there exists a 

sufficiently smooth input function  U t  and an associated state trajectory  X t  of 

eq. (1.1) such that  

     lim
o

o o t t
X t X t X t


  . 

Usually, in the classical theory of ordinary differential equations and classical 

state space systems, (i.e. descriptor systems where the leading coefficient is the 

identity matrix), higher order differential systems are turned into first order systems 

by introducing new variables for the 1k   derivative, see Kalogeropoulos et al [8]. 

This transformation gives rise to linear first order descriptor (or generalized state-

space) systems of the form (1.2) which appears next. 

Thereafter, if we consider the transformation  X t 

 

 

   

 

1

;

k

X t

X t
kn l

X t


 
 
  
 
 
  

FM , the 

eq. (1.1) can be rewritten as a first order descriptor differential system, see eq. (1.2),  

     X t X t U t E A B         (1.2) 

where 

 ;

n

n

n

I

I

kn kn

I

E

 
 
 
   
 
 
  

O

E

O

M F ,  

1 2 1

0 0 0

0 0 0

;

0 0 0

n

n

n

o k

I

I

kn kn

I

A A A A 

 
 
 
   
 
 
 
 

A M F  

and              

0

0
;kn m

B

 
 
   
 
 
 

B M F . 

The kn kn  matrix A is known as the (block) companion matrix of (1.3) 

               1 2

1 1

k k

k k oL X A X t A X t A X t A X t
 

     ,    (1.3) 
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and the vector  X t is called the state vector of system (1.2), see also Gantmacher [5]. 

Note also that  rank nkE . 

Consequently, the aim of the paper is twofold. Firstly, in the 2
nd

 section, to 

calculate the solution of the (homogeneous) linear matrix descriptor differential 

equation (1.4) with consistent and non-consistent initial conditions, 

               1 2

1 1

k k k

k k oEX t A X t A X t A X t A X t
 

     .          (1.4) 

Secondly, since the matrix criteria in the verification of controllability are of special 

importance and with many applications, in the 3
rd

 section, to provide the 

controllability property for higher order linear descriptor differential systems, see eq. 

(1.1).    

 

2. SOLUTION PROPERTIES FOR A CLASS OF HIGHER ORDER 

LINEAR DESCRIPTOR MATRIX DIFFERENTIAL SYSTEMS 

As a short introduction of this chapter, some preliminary concepts and definitions 

from Matrix Pencil theory are introduced. In the literature of control and system 

theory, descriptor systems are closely related to matrix pencil theory, see Dai [4], 

Gantmacher [5]. 

Definition 2.1 Given  , ,F G n m M F  and an indeterminate sF , the matrix 

pencil sF G  is called regular when m n  and  det 0sF G  . In any other case, 

the pencil will be called singular. 

Definition 2.2 The pencil sF G  is said to be strictly equivalent to the pencil sF G  

if and only if there exist nonsingular matrices  ,P n n M F  and  ,Q m m M F  

such as  

 P sF G Q sF G   . 

In this paper, we consider the case that pencil is regular. In this case, i.e. where 

the pencil sF G  is a regular, we have elementary divisors (e.d.) of the following 

type: 

 e.d. of the type 
ps  are called zero finite elementary divisors (z. f.e.d.) 

 e.d. of the type  s a


 , 0a   are called nonzero finite elementary divisors (nz. 

f.e.d.) 
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 e.d. of the type ˆqs  are called infinite elementary divisors (i.e.d.). 

Let 1 2, ,..., nB B B  be elements of nM . The direct sum of them denoted by 

1 2 ...B B   nB  is the  1 2 , ,..., nblock diag B B B . 

Then, the complex Weierstrass form w wsF Q  of the regular pencil sF G  is 

defined by w w p p q qsF Q sI J sH I    , where the first normal Jordan type element 

is uniquely defined by the set of f.e.d.  

   1

1 , ,
p p

s a s a 

  , 
1 jj

p p



  

of sF G  and has the form 

   
1 1 1p p p p p psI J sI J a sI J a

       . 

And also the q  blocks of the second uniquely defined block q qsH I  correspond to 

the i.e.d.  

1ˆ ˆ, ,
qq

s s  , 
1 jj
q q




  

of sF G  and has the form 

1 1q q q q q qsH I sH I sH I
 

     . 

 

Thus, qH  is a nilpotent matrix with elements into the algebra  ,n nM F . 

Moreover, the index of nilpotency of  qH  is  max : 1,2, ,jq q j   , where  

       qH = O ,       (2.1) 

and  
j j jp p j qI ,J a ,H  are defined as 

 

 

1 0 0

0 1 0
,

0 0 1

jp j jI p p

 
 
   
 
 
 

M F ,     

1 0 0

0 1 0

,

0 0 0 1

0 0 0 0

j

j

j

p j j j

j

j

a

a

J a p p

a

a

 
 
 
   
 
 
 
 

M F   
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and       

0 1 0 0

0 0 1 0

,

0 0 0 0 1

0 0 0 0 0

jq j jH q q

 
 
 
   
 
 
  

M F .    

(2.2) 

Consequently, from the regularity of matrix sF G , there exist nonsingular  

matrices P  and Q  into the algebra  ,n nM F  such that. 

w p qPFQ F I H   ,        (2.3) 

w p qPGQ G J I   ,        (2.4) 

where , ,p p qI J H  and qI  are given by (2.2) where 

1p p pI I I


   , 

   
1 1p p pJ J a J a

    , 

1q q qH H H


  , 

and                                            
1q q qI I I


   . 

Note that 
1 jj

p p



  and 

1 jj
q q




 , where p q n  . 

Thereafter, if we consider the transformation  

 X t 

 

 

   

 

1

;

k

X t

X t
kn l

X t


 
 
  
 
 
  

FM , 

eq. (1.4) can be rewritten as a first order generalized differential system,  

   X t X tE A ,             (2.5) 

where  ;n n nI I I E kn kn      E M F , and  
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 

1 2 1

0 0 0

0 0 0

;

0 0 0

n

n

n

o k

I

I

kn kn

I

A A A A 

 
 
 
   
 
 
 
 

A M F . 

Now, considering the transformation 

   X t QY t ,         (2.6) 

the following well-known lemma is derived.   

Lemma 2.1 [Dai, 4] System (2.5) can be divided into two sub-systems: 

The so-called slow sub-system 

   p p pY t J Y t  ,         (2.7) 

with initial conditions,   1

, ,0p p o p kn oY Y Q X  . 

and the relative fast sub-system  

   q q qH Y t Y t  .                         (2.8) 

with consistent initial conditions,   1

, ,0q q o q kn oY Y Q X  . 

Remark 2.1 The initial conditions of system (1.4) are give by 

           1 2
0 ,  0 , ,  0 ,  0

k k
X X X X

 
. 

So,  

 

 

   

 

-1

0

0
;

0

o

k

X

X
X kn l

X

 
 
   
 
 
  

M F , and   10 oY Q X . 

Actually, the system (2.7) is an ordinary linear differential system and has a 

unique solution for any initial condition   1

, ,0q q o q kn oY Y Q X  . 

It is well known that the solution of (2.7) is given by (2.9) 

  1

,
pJ t

p p kn oY t e Q X .              (2.9) 

Proposition 2.1 [Dai, 4] The fast system (2.8) has only the zero solution, i.e. 

 qY t O , when we have (consistent) initial conditions, i.e.   1

, ,0q q o q kn oY Y Q X  . 
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Hence, the set of consistent initial conditions for the system    w wY t Y t E Α  is 

given by the form  
 0

0 ,
p

q

Y
Y p q kn
   

    
   

O
. 

Proposition 2.2 The solution of the higher order linear descriptor regular system (1.4) 

with consistent initial conditions is given by   

  1

, ,
pJ t

nk p p kn oX t LQ e Q X ,          (2.10) 

where    ,nL I n kn  MO O F ,

 

 

   

 

-1

0

0
;

0

o

k

X

X
X kn l

X

 
 
   
 
 
  

M F , and 

,nk pQ , 1

,p knQ  are elements of the matrices Q  and 1Q , respectively.  

Proof When we have consistent initial conditions,  

 
  1

, ,
pJ t

p p kn o

q q

Y t e Q X
Y t p q kn

  
     

    
O O

. 

Here, since we have used the transformation (2.6), i.e.    X t QY t , we take 

   
 

 
  1

, , , ,,

pJ tp

nk p nk p p nk p p kn onk q
q

Y t
X t QY t Q Q Q Y t Q e Q X

Y t


 

      
 

. 

Finally, we have used that      1X t Z t LX t  , where 

   ,nL I n kn  MO O F . 

So, the expression (2.10) is derived.   

In this brief section, we describe the impulse behavior of the system (2.5), at time 

0ot  . In that case, we have to reformulate only the Proposition 2.1, so the impulse 

solution is finally obtained.  

Proposition 2.3 [Dai, 4; Kalogeropoulos et al, 8] The nilpotent system (2.8) has the 

following solution 

     
* 2

1 1

,

0

q
j j

q q q kn o

j

Y t t H Q X


 



  ,           (2.11) 
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where  j  for *0,1,2,..., 2j q   is the Dirac function and its derivates.   

Proposition 2.4 The solution of the higher order linear descriptor regular system (1.4) 

with non-consistent initial conditions is given by   

     
* 2

1 1 1

, , , ,

0

p

q
J t j j

nk p p kn nk q q q kn o

j

X t L Q e Q Q t H Q X


  



  
  

  
 ,       (2.12) 

where  j  for *0,1,2,..., 2j q   is the Dirac function and its derivates. Moreover, 

   ,nL I n kn  MO O F , 

 

 

   

 

-1

0

0
;

0

o

k

X

X
X kn l

X

 
 
   
 
 
  

M F , and ,nk pQ , 

1

,p knQ  are elements of the matrices Q  and 1Q , respectively.  

Proof When we have non-consistent initial conditions,  

 
 

     
*

1

,

2
1 1

,

0

,

pJ t

p kn o

p
q

j j
q q q kn o

j

e Q X
Y t

Y t p q kn
Y t t H Q X




 



 
   

      
   
 


. 

Using again the transformation (2.6), i.e.    X t QY t , we take 

   
 

 
   

   
*

, , , ,

2
1 1 1

, , , ,

0

       p

p

nk p nk q nk p p nk q q

q

q
J t j j

nk p p kn o nk q q q kn o

j

Y t
X t QY t Q Q Q Y t Q Y t

Y t

Q e Q X Q t H Q X


  



 
      

 

  

. 

Finally, since also      1X t Z t LX t  , where 

   ,nL I n kn  MO O F . 

So, the expression (2.12) is derived.   

Remark 2.2 For 0t  , it is obvious that (2.10) is satisfied. Thus, we can point out 

that the system (1.4) has the above impulse behaviour at instant time, where a non-

consistent initial value is assumed, while it appears to have a smooth behaviour at any 

other instant subsequent time. 
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3. EXTENDING THE CLASSICAL CONTROLLABILITY RANK 

CRITERION 

In the literature, the notion of the controllability property of dynamical systems 

has attracted considerable attention for some years. It refers to the ability of systems 

to transfer the state vectors from one specified vector value to another in finite time 

by suitable inputs.  

In particular, systems of the form (1.2) (or equivalently systems (1.1)) are called 

controllable if, for any 1 ot t ,  oX t  ;knM F  and W  ;knM F , there exists a 

control input  U t  [ , )oC t   such that  1X t W .  

Generally speaking, in this section, we extend a very classical controllability 

criterion for a class of higher order linear descriptor matrix differential systems. 

Let us briefly recall a result for first order linear descriptor matrix differential 

systems. In this part of the section, we want to remind the well-known Proposition 

3.1, see [Dai, 4].  

Proposition 3.1 [Dai, 4] The system      Ex t Ax t Bu t  , where 

 , ;E A s s M F  and  ;B s r M F  is controllable if and only if the following 

matrix 

  2

1 1 ;s

A B

E A B

D s s s rE A B

A

E B



 
 


 
     
 

 
  

M F  

is of  full row rank, i.e. 2

1 srank D s  . 

Theorem 3.1 Higher order linear descriptor matrix differential systems of type (1.1) 

are controllable if and only if the following matrix  
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  

1 2 3

1 2

1

1

1

2

3

2

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

1 ;

k k k

k k

k

o

kn

A A A B

E A A B

E A B

A
C

A

A

A

E B

kn kn n m

  

 





   
 

 
 
 
 
 
 
 

 
 
 

 
 
 
  

   M F

 

(3.4) 

is full row rank, i.e.       

2

1 knrank C kn        (3.5) 

Proof According to the Proposition 3.1, system (1.2) is controllable if and only if the 

following matrix 1knD  , where  

    2

1 1 ;knD kn kn kn m

 
 
 
    
 
 
  

-A B

E -A B

-A B

E B

M F  

is full row rank, i.e.  
2

1 knrank D kn  , or equivalently, 

 
2

1 knrank D rank kn

 
 
 
  
 
 
  

-A B

E -A B

-A B

E B

. 

Then, by substituting ,  E A  and B we obtain 
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1 2 2 1

1 2 2 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n

n

n

o

n n

n n

n n

o

n

n

n

I

I

I

A A A A A

I I

I I

rank

I I

A A A A A

I

I

I

 

 

 

 










     



 





      
















 
 
 
 
 
 
 
 
 
 
 

 

Now, by taking each matrix block as an element, we make the following rearrangements:   

 the k -row is transferred to 1k   places below, and simultaneously  

 the 1k  -row is rearranged with the first row, the 2k  - row is rearranged with the 

second one and so on, as the following expression shows. 

1 2 2 1

1 2 2 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

n n

n n

n n

n

n

n

o

o

n

I I

I I

I I

I

I

rank I

A A A A A

A A A A A

I

 

 

 

 













     

      



0 0 0

0 0 0 0

n

n

I

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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Afterwards, we add to the  2k  -column the first column, to the  3k  - column the 

second one and so on, as it is demonstrated next: 

 

 

1 2 2 1 1 3 2

1 2 2 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0

0 0

0 0 0 0

0 0 0 0

n

n

n

n

n

n

o

o

n

I

I

I

I

I

rank I

A A A A A A A A A

A A A A A

I

    

 

   

 







         

      



0 0 0 0

0 0 0 0

0 0 0 0

n

n

I

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

Additionally, we add to k -row the second row, to  1k  -row the third one and so 

on. Afterwards, we add to  2 1k  -row the first row multiplied by oA , the second 

row multiplied by 1A  and so on, until the  1k  -row.  

Furthermore, in the same row we add the  2 3k  -row multiplied by oA , the 

 2 4k  -row multiplied by 1A , and so on until the  3 1k  - row.  Finally, we add to 

2k -row the  2 2k  -row multiplied by oA , the  2 3k  -row multiplied by 1A  and so 

on. Thus, we obtain the following rank expression 
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1 2

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n

n

n

n

n

n

n

I

I

I

rank I

A A

A

I

I

I

 



 










  

  










 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Now, the k -column is transferred 1k   places on the right and the  2 2k  -row is 

multiplied by 1 . Additionally, the    2 2 ,  2 3 , ,3k k k   -rows are transferred 1k   

places above. Consequently the following expression appears next:  

1 2

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

n

n

n

n

n

n

I

I

I

I

I

rank I

A A B

E A B

E B

 



 

















 

 

































. 

Finally, we obtain the following expression  



124           PANTELOUS, et al 

 

1 2 3

1 2

1

1

2

2

1

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

k k k

k k

k

o

k

k

A A A B

E A A B

E A B

rank

A

A

A

A

A

E B

  

 







 
 
 
 
 
 
   
 

  
 
 
 
 


 
 
 






 

 

n

n

n

I

I

I









, 

 

where 
   1 1k n k n

n n nI I I
  

   nI . 

Thus 

 

   

1 2 3

1 2

1

2

1

2

3

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0
1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

k k k

k k

k

o

A A A B

E A A B

E A B

A
kn k n rank kn

A

A

A

E B

  

 



   
 

 
 
 
 
 
 

   
 

 
 

 
 
 
  

 

if and only if  
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1 2 3

1 2

1

2

1

2

3

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

k k k

k k

k

o

A A A B

E A A B

E A B

A
rank kn

A

A

A

E B

  

 



   
 

 
 
 
 
 
 

 
 

 
 

 
 
 
  

. 

 

 

In the end of this section, two simple application-examples are provided for 

second order linear descriptor differential systems (for instance, it may be simple 

examples of mathematical pendulums) 

       1 0EX t A X t A X t BU t   . 

 

Example 3.1 Denote the following system with  

1 1

1 1
E

 
  
 

, det 0E  , 1

1 1

0 1
A

 
  
 

, 0

0 1

1 1
A

 
  
 

 and 
0

1
B

 
  
 

 

1 0

1

1 1 0 1 0 0 0

0 1 1 1 1 0 0
0 0

1 1 1 1 0 0 0
0 0 6

1 1 0 1 0 1 0
0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 1

A A B

rank E A B

E B

   
 

  
   
   

          
 
 

 

Example 3.2 Denote the following system with  

2 0

0 0
E

 
  
 

, det 0E  , 1

1 0

0 1
A

 
  
 

, 0

2 0

0 2
A

 
  
 

 and 
0

1
B

 
  
   
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1 0

1

1 0 2 0 0 0 0

0 1 0 2 1 0 0
0 0

2 0 1 0 0 0 0
0 0 5 6

0 0 0 1 0 1 0
0 0 0

0 0 2 0 0 0 0

0 0 0 0 0 0 1

A A B

rank E A B

E B

  
 

 
   
   

           
 
 

 

For example 3.2, it is not difficult to verify that the derived system is un-

controllable, see Dai [4].    

 

4. CONCLUSIONS – FURTHER RESEARCH 

In this paper, using well-known results for first order linear descriptor matrix 

differential systems, we calculate the solution properties with consistent and with non-

consistent initial conditions. Furthermore, a new controllability property for higher 

order linear descriptor matrix differential systems is provided.  

Finally, two application examples of second order linear descriptor differential 

systems are solved numerically confirming the validity of the central theorem 

providing the matrix criterion.  

Further current research efforts include the investigation of similar properties 

regarding higher order descriptor discrete systems, as well as stochastic type 

descriptor differential systems, see for instance Kalogeropoulos and Pantelous [7], 

and Mahmudov [9]. 

 

REFERENCES 

[1] T.M. Apostol (1975), Explicit formulas for solutions of the second order matrix 

differential equation Y AY  , American Mathematical Monthly, Vol. 82, pp. 

159-162. 

[2] R. Ben Taher and M. Rachidi (2008), Linear matrix differential equations of 

higher-order and applications, Electronic Journal of Differential Equations, Vol. 

2008, No. 95, pp. 1-12.  

 

 



                    MATRIX DIFFERENTIAL SYSTEMS                              127 

[3] Z. Bai, P. De Wilde, and R. W. Freund (2005), Reduced order modeling. In W. 

Schilders and E. J. W. ter Maten, editors, Handbook of Numerical Analysis. Vol. 

XIII, Numerical Methods in Electromagnetics, p. 825-895. 

[4] L. Dai (1989), Singular Control Systems, Springer-Verlag, Berlin, Germany. 

[5] F.R. Gantmacher (1959), The Theory of Matrices Vol. I and II. Chelsea Publishing 

Company, New York, USA. 

[6] M. Hou (1999), Descriptor Systems: Observer and Fault Diagnosis. Fortschr. –

Ber. VDI Reihe 8, Nr. 482. VDI Verlag, Düsseldorf, Germany. 

[7] G.I. Kalogeropoulos and A.A. Pantelous (2008), On Generalized regular 

stochastic differential-algebraic delay systems with time invariant coefficients, 

Stochastic Analysis and Applications, Vol. 26, No. 5, pp. 1076-1094. 

[8] G.I Kalogeropoulos, A.D. Karageorgos, A.A. Pantelous (2009), Higher order 

linear matrix descriptor differential equations of Apostol-Kolodner type, 

Electronic Journal of Differential Equations, Vol. 2009, No. 25, pp. 1–13. 

[9] N.I. Mahmudov (2001), Controllability of linear stochastic systems, IEEE 

Transactions on Automatic Control, Vol. 46, No. 5, pp. 724-731. 

[10] V. Mehrmann and C. Shi (2006), Transformation of high order linear differential 

-algebraic systems to first order, Numerical Algorithms Vol. 42, pp. 281–307. 

[11] P.C. Müller, P. Rentrop, W. Kortüm, and W. Führer (1993), Constrained 

mechanical systems in descriptor form: identification, simulation and control. In. 

Schiehlen W. (ed.): Advanced multi body system dynamics, p. 451-456. Kluwer 

Academic Publichers, Stuttgart, Germany. 

[12] M. Otter, H. Elmqvist, and S.E. Mattson (2006), Multi-domain Modeling with 

Modelica. In Paul Fishwick, editor, CRC Handbook of Dynamic System 

Modeling. CRC Press. 

[13] A.A. Pantelous, A.D. Karageorgos, G.I. Kalogeropoulos and K.G. Arvanitis 

(2010), Solution properties of linear descriptor (singular) matrix differential 

systems of higher-order with (non-)consistent initial conditions, Abstract and 

Applied Analysis Vol. 2010, Article ID 897301, 24 pages. 

 [14] P.J. Rabier and W.C. Rheinboldt (2000), Nonholonomic Motion of Rigid Mecha-

nical Systems from a DAE Viewpoint. SIAM Publications, Philadelphia, PA. 

 



 

 


