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Abstract. This paper sketches the research developments in the area of computational 

methods for solving the eigenvalue problems and how the methods developed relate to each 

other as they evolve over centuries. This is an attempt to write a complete overview on the 

research on computational aspects of eigenvalue problem, emphasize the history of methods 

that still play a role and some of those that no longer are considered to be on the main track 

but are somehow related to the present techniques in some smaller steps. This contribution 

brings out the state-of-the-art of the algorithms for solving large-scale eigenvalue problems 

for both symmetric and nonsymmetric matrices separately, thereby clearly drawing a 

comparison between the differences in the algorithms in practical use for the two. Some of the 

methods or modifications to the earlier methods that have been notable at the turn of the 21st 

century will also be covered through this paper under ―Modern Approaches‖. Also as the 

standard eigenvalue problem has become better understood, in a numerical sense, progress 

has been made in the generalized eigenvalue problem and this will briefly cover 

developments in solving these problems too. 

 

1. INTRODUCTION 

 

The terminology eigenvalue comes from the German word Eigenvert which means proper or 

characteristic value. The concept of eigenvalue first appeared in an article on systems of 

linear differential equations by the French mathematician d‘ Alembert in the course of 

studying the motion of string with masses attached to it at various points. 

For squared matrix A satisfying Ax = λx, is called an eigenvalue problem. The scalar λ is 

called an ―eigenvalue‖, and the vector x is called the ―eigenvector‖. Computation of the 

eigenvalues λ explicitly via the characteristic equation i.e.   

   det(A- λI)=0 

 is not feasible except for the lower order square matrices(n ≤ 4) since a general polynomial of 

order n > 4 cannot be solved by a finite sequence of arithmetic operations and radicals (Abel–

Ruffini theorem[Wikipedia-1]). There do exist efficient root-finding algorithms for higher 

order polynomials, however, finding the roots of the characteristic polynomial may well be an 

ill-conditioned problem even when the underlying eigenvalue problem is well-conditioned. 

The computation of the roots of the characteristic equation in finite precision may be highly 

unstable since small perturbations in the coefficients may lead to large perturbations in roots. 

The numerical computation of the associated eigenvectors from these eigenvalues is even 

more delicate, particularly when these eigenvectors make small angles with each other. For 
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this reason, this method is rarely used. Hence no algorithm can exactly produce all the roots 

of an arbitrary polynomial of degree n in a finite number of steps and thus eigenvalues for any 

matrix with a general structure (i.e. not a diagonal or a triangular matrix) must be computed 

iteratively. 

Standard eigenvalue problems (of the form Ax = λx) continue to be an important area of 

research in the field of numerical linear algebra and it comes as no surprise that research in 

this field started as early as 1846, when Jacobi first computed the eigenvalues of symmetric 

matrices by rotating the matrix to strongly diagonally dominant matrix. Jacobi‘s method is 

still of great relevance and has formed the basis of many powerful and popular algorithms 

such as the QR algorithms. Since computing eigenvalues and vectors is essentially more 

complicated than solving linear systems, it is not surprising that highly significant 

developments in this area started with the introduction of electronic computers around 1950, 

when eigenvalue problems other than the standard ones for instance the generalized 

eigenvalue problems (of the form Ax +λBx+ λ
2 

Cx=0) required solution. In the early decades 

of 20th century, however, important theoretical developments had been made from which 

computational techniques could grow. Matrix transforming techniques like the ones 

developed by Jacobi and Householder were found to be inconsistent with larger eigenvalue 

problems and so proper iterative techniques needed to be devised. Power iteration method 

wasn‘t of great significance due to its lack of robustness in terms of its inability to determine 

eigenvalues other than the dominant ones, although the method is still in use with some 

modifications, most frequently as a part of very efficient algorithms such as QR-method, 

Krylov‘s method etc. Apparently ―Google‘s‖ Page-Rank Algorithm is also based on the 

Power iteration method [Langville, 2006]. Lanczos and Arnold started their research on 

improved iteration techniques in the and by the middle of the 19
th
 century [Arnoldi, 1951] 

developed an eigenvalue algorithm for general (possibly non-Hermitian) matrices and 

[Lanczos, 1950] came up with an analogous method for Hermitian matrices. 

Davidson a chemist came up with an algorithm just around that time that is commonly seen as 

an extension to Lanczos‘s method but as [Saad, 1992] points out it‘s related to the Arnoldi 

from the view of implementation. The problem of determining reliably full digital information 

in the subspace spanned by eigenvectors corresponding to coincident or pathologically close 

eigenvalues has never been satisfactorily solved [Wilkinson, 1965]. Solution of eigenvalue 

problems and hence the choice of the algorithm most essentially depends on the properties of 

the matrix, whether the matrix is real or complex, symmetric or nonsymmetric, sparse or 

dense, hermitian or skew hermitian, unitary etc. Besides the standard eigenproblem, there are 

a variety of more complicated eigenproblems, for instance Ax = λBx, and more generalized 

eigenproblems like Ax +λBx +λ
2
Cx =0, higher-order polynomial problems, and nonlinear 

eigenproblems. All these problems are considerably more complicated than the standard 

eigenproblem, depending on the operators involved and so problems related to these will be 

dealt with towards the end sections. 

2. SYMMETRIC EIGENVALUE PROBLEM 

 

The symmetric eigenvalue problem with its rich mathematical structure is one of the most 

aesthetically pleasing problems in numerical linear algebra. Jacobi started his work on real 

symmetric matrices firstly in 1846 applying plane rotations to the matrix to transform it to a 

diagonally dominant matrix, elements of whose diagonal were the eigenvalues. As we have 

already seen that in general the roots of the characteristic polynomial cannot be given in 

closed form shows that any method must proceed by successive approximations. Although 

one cannot expect to produce the required eigenvalues exactly in a finite no of steps, there  
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exist rapidly convergent iterative methods for computing the eigenvalues and eigenvectors 

numerically for symmetric matrices. 

 

Jacobi’s Method 

In the classical method of [Jacobi, 1846] plane rotations were used to diagonalize a real 

symmetric matrix (wherein real plane rotations were used). The number of plane rotations 

necessary to produce the diagonal form is infinite, which is obvious considering the fact that 

we cannot, in general, solve a polynomial equation (n ≥ 4) in a finite number of steps. In 

practice the process is terminated when the off-diagonal elements are negligible to working 

accuracy. Jacobi, however, did not use the method to achieve full convergence (which was 

accomplished later in the 20
th
 century) but combined it with an iterative process (Gauss-

Jacobi Iteration) for the missing component of the desired eigenvector (for which he took a 

unit vector as an initial guess). [Bodewig(pp. 280-287), 1959] pointed out that Jacobi‘s 

techniques were kind of a preconditioning form of the Gauss-Jacobi iteration that he also used 

to solve linear least-squares systems. The preconditioning part of the method, as an iterative 

technique to diagonalize the matrix was reinvented in 1949 by Goldstine et al and published 

in a manuscript. After Ostrowski had pointed out that this was actually a rediscovery of 

Jacobi's method, the adapted manuscript was published in [Goldstein, Murray and Neumann, 

1959]. According to [Wilkinson(page 343), 1965], Jacobi‘s method was already being used 

independently on desk computers at the National Physical Laboratory in 1947. Since 1949 the 

method has received extensive coverage in the literature papers by Goldstine, Murray and von 

Neumann. See papers by [Gregory, 1953], [Henrici, 1958], [Pope and Tompkins, 1957], 

[Schonhage, 1961] and [Wilkinson, 1962].  

Jacobi methods seek to diagonalize a given matrix A by a sequence of Jacobi rotations. Zero 

elements created at one step will be filled in later and any diagonalizing sequence must be, in 

principle, infinite. At each step this technique seeks and destroys a maximal off-diagonal 

element. This rate of convergence sets in after a number of sweeps (i.e. (n-1)n/2 elementary 

rotations), but there is no rigorous bound on the number of sweeps required to achieve the 

accuracy[Parlett(page 181), 1980]. During the 1960s, considerable effort went into the 

improvement of this task. In [Corbato, 1963] it is shown that one need only search an array of 

length n. However, the price for this improvement is twofold: (i) an auxiliary array is needed 

for the maximal elements in each column, and (ii) the attractive simplicity of the program has 

been compromised (the number of instructions is more than doubled). 

It should be emphasized that by taking advantage of symmetry and working with either the 

lower or the upper triangle of A, a traditional Jacobi rotation can be made with 4n 

multiplications and two square roots. 

 

Cyclic Jacobi 

The simplest strategy is to annihilate elements, regardless of size, in the order and then begin 

again for another sweep through the matrix. However, the more vexing problem was the 

possibility that cyclic Jacobi might not always lead to convergence to a diagonal matrix. 

[Henrici, 1958] showed that if the angles are suitably restricted the cyclic Jacobi method does 

indeed converge. In principle the off-diagonal elements could be annihilated in any order at 

each sweep, provided that no element was missed. Cyclic Jacobi methods waste time 

annihilating small elements in the early sweeps. Quadratic convergence for the cyclic Jacobi 

algorithm was proven, under various assumptions, by [Henrici, 1958], [Schonhage, 1961], 

[Wilkinson, 1962], and [Kempen, 1966]. However, since it does not require off-diagonal 

search, it is considerably faster than Jacobi's original algorithm. 
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Improvisations to Jacobi’s Method (Givens rotation) 

The Jacobi rotation is distinguished by causing the greatest decrease in the sum of squares of 

the off-diagonal elements. It is locally optimal but not necessarily best for the total 

computation. A modification to the Jacobi rotation was the Givens rotation which was not 

introduced until the 1950s. Givens rotation in the (i, j) plane chooses θ to annihilate some 

element other than aij. In many ways Givens rotations are more useful than Jacobi rotations. 

We can, first of all, use Givens original method to reduce A to tridiagonal form T. These 

rotations more importantly preserve the zeros that have been so carefully created. Next we 

can do a Jacobi rotation Rn-1,n. This fills in elements (n, n - 2) and (n - 2, n) and creates a bulge 

in the tridiagonal form. This bulge can be chased up the matrix and off the top by a sequence 

of Givens rotations. At this point we have executed one tridiagonal QL transformation with 

zero shifts. This sequence can be repeated until the off-diagonal elements are negligible. If we 

relax the habit of zeroing a matrix element at every step, we can do a plane rotation in the (n - 

1, n) plane through an angle other than the Jacobi angle. This permits us to incorporate shifts 

into the QL algorithm and thus accelerate convergence dramatically.  

The general superiority of the method of Givens to that of Jacobi for the determination of the 

eigenvalues gained recognition comparatively slowly in spite of the fact that [Givens, 1954] 

gave a rigorous a priori error analysis which is one of the landmarks in the history of the 

subject. Probably the fact that the methods proposed for computing the eigenvectors were 

found to be unreliable gave rise to unjustified suspicions concerning the accuracy of the 

eigenvalues. In practice Jacobi programs are only about three times slower than the 

tridiagonal QL methods, but the trademark of Jacobi's method has been simplicity rather than 

efficiency. This may be very important in special circumstances (hand-held calculators or 

computations in space vehicles). 

 

Another Modification to the Jacobi Algorithm 

The suggestion, that methods analogous to that of Jacobi should be used for the reduction of a 

general matrix to triangular form was made by [von Neumann, 1947], [Causey, 1958], 

[Greenstadt, 1955] and [Lotkin, 1956] in their respective papers. At the matrix conference at 

Gatlinburg in 1961, Greenstadt gave a summary of the progress which had been made up to 

that time and concluded that no satisfactory procedure of this kind had yet been developed. 

[Eberlein, 1962] described a modification of this method based on the observation that for any 

matrix A there exists a similarity transform В = Р
-1

АР which is arbitrarily close to a normal 

matrix. In Eberlein's algorithm P is constructed as the product of a sequence of matrices 

which are generalizations of plane rotations but are no longer unitary. Iteration is continued 

until В is normal to working accuracy and a feature of the method is that in general the 

limiting В is the direct sum of a number of 1x1 and 2x2 matrices, so that the eigenvalues are 

available. Eberlein has also considered the reduction of a general matrix to normal form using 

a combination of plane rotations and diagonal similarity transformations, and similar ideas 

have been developed independently by Rutishauser. Generally the guiding strategy at each 

stage is the reduction of the Henrici departure from normality [Wilkinson(Chapter 3, Sec. 50), 

1962]. Development on these lines may yet give rise to methods which are far superior and 

would seem to be one of the most promising lines of research. Methods of this class are not 

covered by any of the general error analyses however, one would expect them to be stable 

since the successive reduced matrices are tending to a normal matrix and the latter has a 

perfectly conditioned eigenvalue problem. 
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Advantages and state-of-the algorithm. 

A valuable feature of Jacobi is that it never rotates through larger angles than necessary and 

consequently, when the matrix permits; small eigenvalues can be computed to high relative 

accuracy. Wilkinson analysed this and showed that the relative error in the eigenvalue 

approximations is eventually reduced to the order of the condition number of the matrix A 

times machine precision. This was perfected in 1992, by [Demmel and Veselic, 1992] and 

[Slapricar, 1992], who showed that for symmetric positive-definite matrices, the condition 

number of A could be replaced by that of the matrix symmetrically scaled by the diagonal. 

The arrival of parallel computers renewed interest in Jacobi methods because n/2 Jacobi 

rotations can be performed simultaneously if that many processors are available. Hence this 

technique still is of current interests because in cases where fast storage is tight, it is amenable 

to parallel computation and because under certain circumstances it has superioir accuracy. 

Papers by [Modi, 1988], Veselic and [Hari, 1990, 1991] hold much importance to the present 

state of the art of the Algorithm and its application to parallel computing. 

 

Gerschgorin Theorems  

Gerschgorin's theorem has been widely recommended for the location of eigenvalues, 

[Taussky, 1949] had been a particularly ardent advocate of this theorem and its extensions. 

The use of diagonal similarity transforms to improve the location of the eigenvalues was 

discussed in Gerschgorin's original paper [Greschgorin, 1931] but the extension of this device 

to give the results of classical perturbation theory together with rigorous error bounds appears 

to be new.  

An important solution framework for the symmetric eigenvalue problem involves the 

production of a sequence of orthogonal transformations {Qk} with the property that the 

matrices Q
T

kAQk are progressively ―more diagonal.‖ [Greschgorin theorem, 1931] gives 

bounds under which all eigenvalues of a matrix lie. The theorem essentially states that if the 

off-diagonal entries of a square matrix over the complex numbers have small norms, the 

eigenvalues of the matrix cannot be "far from" the diagonal entries of the matrix. Therefore, 

by reducing the norms of off-diagonal entries one can attempt to approximate the eigenvalues 

of the matrix. Of course, diagonal entries may change in the process of minimizing off-

diagonal entries.[Wilkinson(Chapter 4), 1962]. Interestingly Greschgorin theorem can be very 

useful for computation of some eigenvalues without involving softwares or numerical 

iterative techniques[T. D. Roopamala and S. K. Katti, 2010].  

 

Schur’s Factorisation 

The Schur decomposition of a square nxn matrix A with complex entries is A = QUQ
− 1

, 

where Q is a unitary matrix (so that its inverse Q
−1

 is also the conjugate transpose Q* of Q), 

and U is an upper triangular matrix, which is called a Schur form of A. Since U is similar to 

A, it has the same multiset of eigenvalues, and since it is triangular, those eigenvalues are the 

diagonal entries of U. 

If the triangular matrix U is written as U = D + N, where D is diagonal and N is strictly upper 

triangular (and thus a nilpotent matrix). The diagonal matrix D contains the eigenvalues of A 

in arbitrary order (hence its Frobenius norm, squared, is the sum of the squared moduli of the 

eigenvalues of A, while the Frobenius norm of A, squared, is the sum of the squared singular 

values of A). The nilpotent part N is generally not unique either, but its Frobenius norm is 

uniquely determined by A (just because the Frobenius norm of A is equal to the Frobenius 

norm of U = D + N) [Saad, 1989]. 

It is clear that if A is a normal matrix, then U from its Schur decomposition must be a 

diagonal matrix and the column vectors of Q are the eigenvectors of A. Therefore, the Schur  
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decomposition extends the spectral decomposition. In particular, if A is positive definite, the 

Schur decomposition of A, its spectral decomposition and its singular value decomposition 

coincide. 

Given square matrices A and B, the generalized Schur decomposition factorizes both matrices 

as A = QSZ * and B = QTZ *, where Q and Z are unitary, and S and T are upper triangular. 

The generalized Schur decomposition is also sometimes called the QZ decomposition [Golub 

and van Loan, 1996]. 

 

Householder’s Algorithm 

In linear algebra, a Householder transformation (also known as Householder reflection or 

elementary reflector) is a linear transformation that describes a reflection about a plane or 

hyper plane containing the origin. Householder transformations are widely used in numerical 

linear algebra, to perform QR decompositions and in the first step of the QR algorithm. The 

Householder transformation was introduced in 1958 by Alston Scott Householder. The 

algorithm Householder‘s tri-diagonalization works for arbitrary symmetric matrices, possibly 

with multiple eigenvalues. In the latter case, the resulting tridiagonal matrix would 

decompose if the computation were exact. The algorithms backtransformation derives the 

eigenvector system of A from an eigenvector system of the tri-diagonal matrix. Householder 

tri-diagonalization, is however just the first step in the determination of the eigenvalues and 

eigenvectors of the matrix A, it is followed by a determination of the eigenvalues by the 

procedure of tri-di-bisection. The determination of corresponding eigenvectors is made 

possible by applying the procedure of tridiinverse iteration to the resulting tri-diagonal matrix 

from the Householder Transformation. In the last step the procedure backtransformation is to 

be applied. 

Householder tri-diagonalization may also form the preparation for the application of the QD 

or QR algorithm. 

Householder first suggested the use of the elementary Hermitian matrices for the reduction to 

tri-diagonal form in a lecture given at Urbana in 1958 and referred again to it briefly in a joint 

paper with [Bauer, 1959]. Its general superiority to Givens' method both in speed and 

accuracy was first recognized by [Wilkinson, 1960a]. According to Wilkinson, there are (n - 

2) steps in this reduction, in the r
th
 of which the zeros are introduced in the r

th
 row and r

th
 

column without destroying the zeros introduced in the previous steps.  

Error analyses were given for the fixed-point reduction by [Wilkinson, 1960b] and for the 

floating-point reduction by [Ortega, 1963]. The calculation of the eigenvalues of a tri-

diagonal matrix using the Sturm sequence property was described and an error analysis given 

by Givens (loc. cit.). This analysis applied to fixed-point computation with ad hoc scaling was 

the first in which explicit reference was made to what is now known as a 'backward error 

analysis'(though this idea was implicit in the papers by [von Neumann and Goldstine, 1947] 

and [Turing, 1948]). The problem of computing eigenvectors of a tri-diagonal matrix when 

accurate eigenvalues are known has been considered by [Brooker and Sumner, 1966], 

[Forsythe, 1958], [Wilkinson, 1958], and by Lanczos in the paper by [Rosser et al., 1951].  

 

Power Iteration Method 

For the careful analytic treatment of asymptotic properties of powers of matrices refer to the 

papers by Ostrowski and by Gautschi. [Muntz, 1913a, 1913b] gives an early, possibly the 

earliest, treatment of simple iteration as a practical computational device. The idea of iterating 

on a matrix to obtain more than one root at a time is perhaps fairly natural. It was suggested 

by [Horst, 1937], but the paper was read only by a limited group. [Perron, 1908] provides the  
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basis for a rigorous justification. More modern treatments are listed under the names of 

Rutishauser, Bauer, and Francis. 

The Power method, for general square matrices, is the simplest of all the methods for solving 

eigenvalues and eigenvectors. The basic idea is to multiply the matrix A repeatedly by a well-

chosen starting vector, so that the component of that vector in the direction of the eigenvector 

with largest eigenvalue in absolute value is magnified relative to the other components. 

Householder called this Simple Iteration, and attributed the first treatment of it to [Muntz, 

1913a, 1913b]. [Bodewig(p. 250), 1959] attributes the power method to [von Mises, 1929], 

and acknowledges Muntz for computing approximate eigenvalues from quotients of minors of 

the explicitly computed matrix Ak , for increasing values of k. The speed of convergence of 

the Power iteration depends on the ratio of the second largest eigenvalue (in absolute value) to 

the largest eigenvalue (in absolute value). In many applications this ratio can be close to 1. 

This has motivated research to improve the effciency of the Power method. If the eigenvalue 

is multiple, but semi-simple, then the algorithm provides only one eigenvalue and a 

corresponding eigenvector. A more serious difficulty is that the algorithm will not converge if 

the dominant eigenvalue is complex and the original matrix as well as the initial vector is real. 

This is because for real matrices the complex eigenvalues come in complex pairs and as result 

there will be (at least) two distinct eigenvalues that will have the largest modulus in the 

spectrum. Then the theorem will not guarantee convergence. There are remedies to all these 

difficulties like the shift-and-invert techniques. 

If the power method is used not on the original matrix but on the shifted matrix A + I maybe 

on a matrix of the form B(σ) = A +  σ I for any positive σ(and the choice  σ = 1 is a rather 

arbitrary choice), there are better choices of the shift σ, but more generally, when the 

eigenvalues are real it is not too difficult to find the optimal value of  σ, i.e., the shift that 

maximizes the asymptotic convergence rate. The scalars σ are called shifts of origin. The 

important property that is used is that shifting does not alter the eigenvectors and that it does 

change the eigenvalues in a simple known way, it shifts them by σ. From the above 

observations, one can think of changing the shift σ occasionally into a value that is known to 

be a better approximation of  λ1 than the previous  σ. For example, one can replace 

occasionally σ by the estimated eigenvalue of A that is derived from the information that αk 

converges to l/ (λ1-σ), i.e., we can take σ new = σ old + 1/αk. Strategies of this sort are often 

referred to as shift-and-invert techniques. Another possibility, which may be very efficient in 

the Hermitian case, is to take the new shift to be the Rayleigh quotient of the latest 

approximate eigenvector vk. However since the LU factorization is expensive so it is desirable 

to keep such shift changes to a minimum.  

At one extreme where the shift is never changed, we obtain the simple Inverse Power method. 

At the other extreme, one can also change the shift at every step. The algorithm corresponding 

to this case is called Rayleigh Quotient Iteration (RQI) and has been extensively studied for 

Hermitian matrices. 

 

Inverse Iteration  

It is interesting that the most effective variant of the Power method is the Inverse Power 

method, in which one works with the matrix (A - λI)
−1

. This variant was proposed as late as 

1944 by Wielandt (Wielandt's fractional iteration). Wielandt also proposed continuing the 

process after the largest eigenvalue has converged, by working with the defected matrix A-

λvv
*
, for which λ, v is the computed eigenpair (with ||v||2 = 1), associated with the largest 

eigenvalue in magnitude. (The deflation procedure outlined here is for symmetric matrices. 

For nonsymmetric matrices it is necessary to work with at least two vectors; the choice of one 

of the vectors may not be unique.) This is called implicit deflation; another possibility is to  
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keep the iteration vectors orthogonal to the computed eigenvector(s): explicit deflation. A 

compact description and analysis of these deflation techniques was given by [Parlett, 1980].  

There are two ways in which we can implement the inverse iteration process. One obvious 

possibility would be to use the original matrix A ϵ R
nxn

. An alternative is to replace A in this 

equation by the tridiagonal matrix T ϵ R
nxn

 supplied by [Householder‘s method, 1964]. The 

calculation is then very much quicker, but produces the eigenvector of T. To obtain the 

corresponding eigenvector of A we must then apply to this vector the sequence of 

Householder transformations which were used in the original reduction to tridiagonal form.  

In general, the nearer σ is to the eigenvalue λk the faster the power iteration (A - σI)
-1

 must 

converge to the eigenvector xk. However, as σ tends to λk the matrix (A - σI) becomes more 

and more ill-conditioned until when σ = λk it is singular. 

The Power method and the Inverse Power method, in their pure form are no longer 

competitive methods even for the computation of a few eigenpairs, but they are still of 

interest since they are explicitly or implicitly part of most modern methods such as the QR 

method, and the methods of Lanczos and Arnoldi. 

 

Rayleigh Quotient Iteration 

Another possible and very useful variant to the Power Method is working with properly 

updated shifts σ in the inverse process and in particular, if one takes the Rayleigh quotient 

with the most recent vector as a shift, then one obtains the Rayleigh quotient iteration. 

According to [Parlett(p. 71), 1980], Lord Rayleigh used in the 1870s a less powerful 

technique, he did a single shift-and-invert step with a Rayleigh quotient for an eigenvector 

approximation, but with a unit vector as the right-hand side. (This saves the refactoring of the 

matrix (A -σI), at each iteration.) The modern RQI, in which one takes the most current 

eigenvector approximation as the right-hand side, leads to very fast convergence. Ostrowski, 

in a series of six papers [Ostrowski, 1958-1959], studied the convergence properties for 

variance of RQI for the symmetric and nonsymmetric case. He was able to establish cubic 

convergence in both cases under various circumstances (in the nonsymmetric case for a 

properly generalized Rayleigh quotient). The use of iterative methods in which a number of 

vectors are used simultaneously has been described in papers by [Bauer, 1957 and 1958]. The 

method of [Wilkinson(Sec. 38), 1962] has been discussed more recently by [Voyevodin, 

1962]. A detailed discussion on this topic is given in[Householder's book(Chapter 7), 1964]. 

Treppen-iteration, the orthogonalization technique and bi-iteration may be performed using 

the inverse matrix. We have typically in the case of treppen-iteration 

    AXs+1 = Ls, Xs+1 = Ls+1Rs+1 

and it is obvious that A
-l
 need not be determined explicitly. We need only carry out a 

triangular decomposition of A, and this is particularly important if A is of Hessenberg form. 

We may incorporate shifts of origin, but a triangular decomposition of (A- σI) is required for 

each different value of σ. Again we have the weakness referred to in [Wilkinson(Sec. 34), 

1962] that σ cannot be chosen freely after a value of λ1 has been determined. 

 

QR-Algorithm   

The QL, or QR, algorithm is the currently the most preferred way to compute the eigenvalues 

of matrices and can be seen invariably as the more sophisticated version of the Power 

Algorithm. The basic idea being to perform a QR decomposition, writing the matrix as a 

product of an orthogonal matrix and an upper triangular matrix, multiply the factors in the 

other order, and iterate.  

According to Parlett, the key idea came from Rutishauser with his construction of a related 

algorithm called LR way back in 1958. Wilkinson however asserts Rutishauser's first account  



   
 

THE EIGENVALUE COMPUTATION FOR MATRICES         137 

of the LR algorithm to be given in 1955, with shifts of origin and interchanges applied to 

Hessenberg matrices in 1959, mainly on matrices with complex elements. However much of 

the credit for the development of  QR algorithm is due to [Francis(England), 1961, 1962] who 

made the three observations required to make the method successful to wit (1) the basic QR 

transformation, (2) the invariance of the Hessenberg form, and (3) the use of origin shifts to 

hasten convergence. According to Parlett, Francis received some assistance from Strachey 

and Wilkinson. [Kublanovskaya, 1963] working independently during the same period 

discovered (1) and (3), but without the improvements induced by (2) the algorithm is very 

slow. The method can be seen as a natural analogue of the LR algorithm, however Francis' 

papers not only describe just the mere detail of the QR algorithm, but also the technique for 

combining complex conjugate shifts of origin and methods for dealing with consecutive small 

sub-diagonal elements [Wilkinson(Sec. 38), 1962] which contribute heavily to the 

effectiveness of the QR algorithm. For the proofs of convergence of the QR algorithm we 

refer to [Wilkinson(Sec. 29-32), 1962]. However, proofs based on the more sophisticated 

determinantal theory have been given by [Kublanovskaya, 1963] and [Householder, 1964]. 

The intimate connection between the RQI and QR was noticed by both Kahan and Wilkinson. 

In fact, the observed monotonic decay of the last off- diagonal element in the tridiagonal QR 

algorithm led Kahan to the global convergence analysis of RQI [Parlett(Chapter 4), 1980]. In 

1968 Wilkinson proved that the tridiagonal QL algorithm can never fail when his shift is 

used. His proof is based on the monotonic decline of the product |β1β2|. However, the analysis 

is simpler when β1
2
 β2 is used in place of β1β2 [Parlett(Sec. 8.9, 8.10), 1980]. The rapid and 

global convergence of QL with Wilkinson's shift is very attractive. Apparently in 1985, 

[Erxiong and Zhenye, 1985] came up with a better strategy. 

The PWK version of the root-free QL algorithm [Parlett(Sec. 8.15), 1980] has not appeared in 

the open literature. Backward stability of PWK was proved by [Feng, 1991]. The algorithm 

was incorporated in the LAPACK library under the name SSTERF using QR rather than QL 

format. Gates and Gragg in 1996 demonstrated how to get rid of one multiplication in the 

inner loop while preserving stability in the algorithm. In PWK (QL shifted version) the 

operations  

 γi  ci
2
(αi-σ) -si

2
γi+1, 

 ᾶi  γi+1 + αi -  γi. 

were replaced by Gates and Gragg by introducing a new variable ui and rewrite these 

operations (in QL format) as 

ui  αi +  γi+1, 

γi  ci
2
(ui-σ) -γi+1, 

ᾶi  ui -  γi. 

The variable ui is a "temporary" variable and the quantity αi +  γi+1 was never sent back to the 

memory. In addition Gates and Gragg show how the sign of  ck may be recovered from ck
2
 

(assuming sk > 0). Observe that sign(ck) = sign(πk+1), by definition of ck, and, in addition γk = 

πkck so that sign(γk) = sign(πk)sign(ck). Hence, sequentially, 

  

 sign(γk)sign(πk),  π
2
k+1≠0, 

 sign(πk) =    -sign(πk+2)  otherwise. 
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The QR method for computing all of the eigenvalues and associated eigenvectors of a dense 

symmetric matrix is really powerful and robust and has essential enhancements that make the 

method extend its application to the solution of the nonsymmetric eigenvalue problem with 

the general GR algorithm.  

 

Lanczos Method 

The [Lanczos algorithm, 1950] is an iterative algorithm invented by Cornelius Lanczos in 

1950 that is an adaptation of power methods to find eigenvalues and eigenvectors of a square 

matrix or the singular value decomposition of a rectangular matrix. Lanczos algorithm 

emerged from the pioneering Ph.D. thesis by [Paige, 1971]. Some important facets of that 

work were published in [Paige, 1972, 1976]. Algorithm holds special interests for finding 

decompositions of very large sparse matrices like for instance in Latent Semantic Indexing 

where matrices relating millions of documents to hundreds of thousands of terms must be 

reduced to singular-value form. Variations on the Lanczos algorithm exist where the vectors 

involved are tall, narrow matrices instead of vectors and the normalizing constants are small 

square matrices. The idea of using the algorithm iteratively, i.e., restarting periodically, goes 

back to some of the early attempts to use Lanczos[Parlett, 1980] on the computers available in 

the 1950s. These are called "block" Lanczos algorithms, first developed by [Golub and 

Underwood, 1977]. These algorithms can be much faster on computers with large numbers of 

registers and long memory-fetch times. The error bounds on the Hermitian Lanczos algorithm 

are described [Saad, 2000]. Bounds of a different type have been proposed by [Kaniel, 1966] 

(however there were a few errors for the case i > l in Kaniel's original paper and some of 

these errors were later corrected by [Paige, 1971]). [Saad, 1980] also developed similar 

bounds for Block Lanczos algorithm.  

Selective orthogonalization was introduced by [Parlett and Scott, 1979]. Scott also advocated 

that SO be applied only at the wanted end of the spectrum. [Cullum and Willoughby, 1985] 

showed how modifications in  the Lanczos algorithm  can be used to compute the whole 

spectrum of large matrices. We mention two recent developments related to the Lanczos 

algorithm. Ruhe takes the idea of shift-and-invert Lanczos, i.e., use (A -σI)
-1

 as the operator, 

and extends it to present us with rational Krylov subspace methods [Ruhe, 1984].  

The second idea was developed for the nonsymmetric eigenvalue problem but extends readily 

to the symmetric Lanczos algorithm. Saad developed the idea of explicitly restarting a 

Lanczos run when storage is limited. However, it seems preferable to restart the Lanczos 

algorithm implicitly by explicitly post multiplying the matrix Qj of Lanczos vectors by 

cleverly chosen orthogonal matrices.  

Many implementations of the Lanczos algorithm restart after a certain number of iterations. 

One of the most influential restarted variations is the implicitly restarted Lanczos method 

[Calvetti, Reichel, and Sorensen, 1994], which is implemented in ARPACK. This has led into 

a number of other restarted variations such as restarted Lanczos bi-diagonalization 

[Kokiopoulou, Bekas and Gallopoulos, 2004]. Another successful restarted variation is the 

Thick-Restart Lanczos method [Wu and Simon, 2000], which has been implemented in a 

software package called TRLan. Implementations on massively parallel machines have 

recently been discussed by [Petiton, 1991] on the CM-2 and by [Scott, 1989] on the iPSC/2. 

Cullum and Willoughby offer a FORTRAN code for the Hermitian case in their book 

[Cullum and Willoughby, 1985] based on the Lanczos algorithm without any form of re-

orthogonalization. A similar (research) code was also developed by [Parlett and Reid, 1981]. 

Recently, [Freund, Gutknecht, and Nachtigal, 1990] published a FORTRAN implementation 

of their Look-Ahead Lanczos algorithm. We know of no other codes based on the Lanczos 

algorithm with or without re-orthogonalization. There have been a few implementations of the  
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Hermitian Lanczos and the Block Lanczos algorithm with some form of re-orthogonalization. 

Parlett came up with a survey concerning software availability in 1984 [Parlett, 1984].  

The Lanczos algorithm has had a diversified history since it was first introduced in 1950. 

Although Lanczos pointed out that his method could be used to find a few eigenvectors of a 

symmetric matrix it was heralded at that time as a way to reduce the whole matrix to 

tridiagonal form. In this capacity it flopped unless very expensive modifications were 

incorporated. Twenty years later, Paige showed that despite its sensitivity to roundoff, the 

simple Lanczos algorithm is nevertheless an effective tool for computing some outer 

eigenvalues and their eigenvectors [Parlett, 1980]. Lanczos procedure has been modified with 

success for large, difficult problems by incorporating a variety of checks on the progress of 

the computation by [Whitehead, 1972], [Davidson, 1975] and [van Kats and van der Vorst, 

1976]. 

 

3. NON-SYMMETRIC EIGENVALUE PROBLEM 

 

For nonsymmetric matrices the picture is less rosy as compared to the symmetric problem. 

Unfortunately, it is not always possible to diagonalize a nonsymmetric matrix, and even if it is 

known that all eigenvalues are distinct, then it may be numerically undesirable to do this. The 

most stable methods seem to be based on the Schur factorization, that is for each nxn matrix 

A, there exists an orthogonal Q, so that Q
T
AQ = R, where R is upper triangular. Apart from 

permutations and signs, the matrix Q is unique. The Schur factorization reveals much of the 

eigenstructure of A, its diagonal elements are the eigenvalues of A and the off-diagonal 

elements of R indicate how small the angles between eigenvectors may be. Other methods 

like Power method, Inverse and Rayleigh quotient iteration can also be applied to 

nonsymmetric matrices but several research papers have shown that there exist a set of 

matrices for which the algorithms fail.  

For matrices not too large, QR is the method of choice, but for larger matrices the picture is 

less clear. Modern variants of the Arnoldi method seem to be the first choice at the moment, 

and, if approximations are available, the Jacobi-Davidson method may be attractive.  

 

Jacobi Davidson Method 

Jacobi and Davidson originally presented their methods for symmetric matrices, but as is well 

known and as we will see in the present discussion, both methods can easily be formulated for 

nonsymmetric matrices. The Jacobi-Davidson (JD) subspace iteration method can be applied 

to nonsymmetric and complex matrices A and can also be extended to solve generalized 

eigenvalue problems [Fokkema, Sleijpen, and Vorst, 1996]. In this approach a search 

subspace is generated onto which the given eigenvalue problem is projected. For the 

construction of effective subspaces we observe that for a given approximate Ritz pair (θ, s), 

the residual is given by 

   r = As – θs 

Following the historical technique of [Jacobi, 1846](for strongly diagonally dominant 

matrices), it was suggested in [Sleijpen and  Vorst, 1996] to compute a correction Δs for s in 

the subspace orthogonal to s, such that the residual vanishes in that subspace. 

That is, we want to solve 

   (I – ss
*
)(A- θI) (I – ss

*
) Δs = -r, 

For Δs ┴ s 

It can be shown that for θ = λ (an eigenvalue of A), this correction Δs leads immediately to 

the corresponding eigenvector y = s + Δs; Ay= λy. 
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For the expansion of the subspace we solve above equation for a given Ritz value θ, and we 

expand the subspace with Δs. We compute a new Ritz pair with respect to the expanded 

subspace and we repeat the above procedure. This is the basis for the Jacobi-Davidson 

Method. The sketched procedure leads to quadratic convergence of the Ritz value to an 

eigenvalue if A is nonsymmetric, and to cubic convergence if A is symmetric. 

A major advantage of Jacobi-Davidson is that the correction equations allow approximate 

solutions, hence they can be solved by existing iterative methods; preconditioners may be 

incorporated. In contrast, shift-invert Arnoldi-type methods generally require rather accurate 

system solves, which presents difficulty for preconditioned iterative linear solvers. One main 

reason for the different accuracy requirement is that, in an Arnoldi-type method, the residual 

vector at each iteration is computed as a by-product of the Arnoldi decomposition, it needs 

high accuracy in order to keep the Arnoldi structure; while a JD method preforms the 

Rayleigh-Ritz procedure and computes a new residual vector (r = Ax − μx) at each iteration 

step. The extra work frees a Davidson-type method from the need to solve its correction 

equations accurately. 

 

Schur and Jordan decomposition 

Most of the algorithms involve transforming the matrix A into simpler or canonical forms, 

from which it is easy to compute its eigenvalues and eigenvectors. These transformations are 

called similarity transformation. The two most common canonical forms are called the Jordan 

form and Schur form. The Jordan form is useful theoretically but it is very hard to compute in 

a numerically stable fashion, which is why Schur decomposition is the preferred way to 

transform a matrix to triangular (or diagonal) matrix. 

Schur’s Decomposition 

The proof of the existence of Schur decompositions is essentially the one given by [Schur, 

1909], an early example of the use of partitioned matrices. The decomposition can be 

computed stably by the QR algorithm [Stewart(Sec. 2-3, Chapter 2), 2001] and it can often 

replace more sophisticated decompositions-the Jordan canonical form in matrix algorithms.  

A block upper triangular matrix with either 1-by-l or 2-by-2 diagonal blocks is upper quasi-

triangular. The real Schur decomposition amounts to a real reduction to upper quasi-triangular 

form. 

As we know that a real matrix can have complex eigenvalues since the roots of its 

characteristic polynomial may be real or complex. Therefore, there is not always a real 

triangular matrix with the same eigenvalues as a real general matrix, since a real triangular 

matrix can only have real eigenvalues. Therefore, we must either use complex numbers or 

look beyond real triangular matrices for our canonical forms for real matrices. It will turn out 

to be sufficient to consider block-triangular matrices. The canonical forms that are computed 

presently are mostly block triangular and proceed computationally by breaking up large 

diagonal blocks into smaller ones. For a complex matrix A, the ultimate canonical form is 

triangular and for a real matrix A, the ultimate canonical form is quasi-triangular. 

Block Diagonalization 

Although rounding error prevents matrices that are exactly defective from arising in practice, 

one frequently encounters matrices with very ill-conditioned systems of eigenvectors. Block 

diagonalization would seem to be an attractive way out of this problem. The idea is to 

generate clusters of eigenvalues associated with nearly dependent eigenvectors, find bases for 

their eigenspaces, and reduce the matrix to block diagonal form. If the blocks are small, one 

can afford to lavish computation on their subsequent analysis. 
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Unfortunately, this sensible-sounding procedure is difficult to implement. Leaving aside the 

possibility that the smallest cluster may consist of all the eigenvalues, the problem is to find 

the clusters. Also it has been shown that eigenvalues that should be clustered do not have to 

lie very close to one another. Consequently, schemes for automatically block diagonalizing a 

matrix by a well-conditioned similarity transformation have many ad hoc features. For 

detailed description see [Bavely and Stewart, 1979], [Demmel and Kagstorm, 1987], 

[Demmel, 1983], [Demmel, 1986], [Gu., 1994].  

Jordan Decomposition  

The Jordan canonical form was established in 1870 by Camile Jordan [Jordan, 1870]. The 

characteristic polynomials of the Jordan blocks of a matrix A are called the elementary 

divisors of A. Thus to say that A has linear elementary divisors is to say that A is non-

defective or that A is diagonalizable. The issues regarding the computing of block diagonal 

forms of a matrix apply to the Jordan form as well. For details refer [Golub and Wilkinson, 

1976], [Kagstorm and Ruhe, 1980], [Ruhe, 1970]  

The Jordan form tells everything that we might want to know about a matrix and its 

eigenvalues, eigenvectors, and invariant subspaces. There are also explicit formulas based on 

the Jordan form to comput e
A
 or any other function of matrix. But it is bad to compute the 

Jordan form for two numerical reasons: 

1. It is a discontinuous function of A, so any rounding error can change it completely. 

2. It cannot be computed stably in general. 

Note that the Schur form is not unique, because the eigenvalues may appear on the diagonal 

of T in any order. This introduces complex numbers even when A is real, therefore a 

canonical form is preferred that uses only real numbers, because it will be cheaper to 

compute. This also means that we will have to sacrifice a triangular canonical form and settle 

for a block-triangular canonical form. 

 

Power Method, Inverse and the RQI 

As an explicit method for computing a dominant eigenpair, the power method goes back at 

least to [Miintz, 1913]. Hotelling in his famous paper on variance components [Hotelling, 

1933] used it to compute his numerical results. [Aitken, 1937] also gave an extensive analysis 

of the method. 

Power method is used most often and sometimes unknowingly, for example, a simulation of a 

discrete-time discrete-state Markov chain amounts to applying the power method to the 

matrix of transition probabilities. For a time, before the advent of the QR algorithm, the 

power method was one of the standard methods for finding eigenvalues and eigenvectors on a 

digital computer. Wilkinson, working at the National Physical Laboratory in England, honed 

this tool to as fine an edge as its limitations allow. A particularly important problem was to 

deflate eigenvalues as they are found so that they do not get in the way of finding smaller 

eigenvalues. 

The Inverse power method is due to [Wielandt, 1944]. [Ipsen, 1997] gives a survey of the 

method and its properties, along with an extensive list of references. The method is chiefly 

used to compute eigenvectors of matrices whose eigenvalues can be approximated by other 

means [Stewart(Algorithm 2.6, Chapter 3), 2001]. 

The fact that A - kI is ill conditioned when k is near an eigenvalue of A makes certain that the 

vector in the inverse power method will be inaccurately calculated. The analysis given here 

which shows that the inaccuracies do no harm is due to [Wilkinson, page 619-622, 1965]. 
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The Rayleigh quotient is due to Lord Rayleigh (J. W. Strutt), who defined it for symmetric 

matrices. Some of its many generalizations have appeared frequently in the form of many 

research papers. The fact that the Rayleigh quotient gives an optimal residual is due to 

[Wilkinson, p. 172, 1965]. Wilkinson used shifting to good effect at the National Physical 

Laboratory. The shift was actually entered by machine operators in binary by switches at the 

console before each iteration [Wilkinson, p. 577, 1965]. It is important to use the Rayleigh 

quotient to compute the optimal residual for the obvious reason that if we use the constant 

shift k; the residual can never converge to zero. A more subtle reason however, is the 

behaviour of the residual when the matrix is strongly non-normal—that is, when the off-

diagonal part of its Schur form dominates the diagonal part [Henrici, 1962]. In that case, the 

first residual will generally be extremely small and then will increase in size before 

decreasing again. The use of the Rayleigh quotient to compute the optimal residual mitigates 

this problem. For details see [Golub and Wilkinson, 1976] and [Ipsen, 1997]. The Rayleigh 

quotient iteration has been analysed extensively in a series of papers by [Ostrowski, 1958a, 

1958b, 1959a, 1959b, and 1959c]. 

As we have already seen that if the matrix is symmetric, then Rayleigh quotient iteration 

succeeds [Parlett, 1980], [Batterson and Smillie]. Parlett has also questioned the algorithms 

(or some of its modification) success when applied to the more general case of nonsymmetric 

matrices. But unfortunately there exists an open set of nonsymmetric real matrices for which 

the algorithm fails. Since the characteristic polynomials can have both real and complex roots, 

invariant subspaces to which the algorithm converges are the reasonable targets for an 

eigenvector algorithm. 

1R. an eigenvector, 

2R. the one-dimensional span of an eigenvector, 

3R. an eigenspace, or 

4R. a generalized eigenspace. 

For a symmetric matrix, Rayleigh quotient iteration succeeds with the solution having the 

form 2R. If the matrix is nonsymmetric and the characteristic polynomial has complex roots, 

then it is perhaps unreasonable to expect an eigenvalue algorithm to converge to one of the 

above types of solution. For each of the four types of solutions there is a complex analogue 

(1C-4C, where the space referred to in 2C is two-dimensional). An algorithm is said to 

weakly succeed for a matrix A provided that the set of initial points for which the sequence 

converges to either 4R or 4C is a set of full measure. An algorithm which does not weakly 

succeed is said to strongly fail which is the case for RQI for nonsymmetric matrices 

[Batterson and Smillie, 1990]. 

 

Givens and Householder’s transformation  

Rotations used by [Jacobi, 1846] in his celebrated algorithm for the symmetric eigenvalue 

problem, are usually distinguished from plane rotations because Jacobi chose his angle to 

diagonalize a 2x2 symmetric matrix. [Givens, 1954] was the first to use them to introduce a 

zero at a critical point in a matrix; hence they are often called Givens rotations. Givens gave 

the method for the inversion of a nonsymmetric matrix, which has been in use at Oak Ridge 

National Laboratory and has proved to be highly stable numerically but requires a rather large 

number of arithmetic operations, including a total of n(n - 1)/2 square roots. Strictly, the 

method achieves the triangularization of the matrix, after which any standard method may be 

employed for inverting the triangle. The triangular form is brought about by means of a 

sequence of n(n - 1)/2 plane rotations, whose product is an orthogonal matrix. Each rotation 

requires the extraction of a square root. The advantage in using the method lies in the fact that 

an orthogonal matrix is perfectly conditioned. Hence the condition of the matrix cannot  
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deteriorate through successive transformations. In fact, if one defines the condition number of 

a matrix A to be [Householder, 1958a] 

γ (A) = ||A || ||A
-1

||, 

where the norm is the spectral norm, then for any orthogonal matrix W, γ (W) = 1 and the 

condition of any matrix is preserved under multiplication by an orthogonal matrix: 

γ (WA ) =  γ (A ). 

To look at the matter another way, if   WA = R, where R is an upper triangle, then 

A
T
A = A

T
W

T
WA = R

T
R, 

so that R is precisely the triangle one would obtain from the application of the Choleski 

square-root method to the positive definite matrix A
T
A. It is, in fact, the matrix to which [von 

Neumann and Goldstine, 1947] are led in their study of Gaussian elimination as applied to a 

positive definite matrix. To obtain the precise triangle that would result from Gaussian 

elimination with A
T
A, one has only to remove as a factor the diagonal of R: 

R = DU, 

where U has a unit diagonal.[Householder, 1958b] 

For error analyses of plane rotations see [Wilkinson, pp. 131-143], [Gentleman, 1975], and 

especially [Higham Sec 18.5, 1996]. The superior performance of plane rotations on graded 

matrices is part of the folklore. In special cases, however, it may be possible to show 

something. For example, [Demmel and Veselic, 1992] have shown that Jacobi's method 

applied to a positive definite matrices is superior to Householder tridiagonalization followed 

by the QR algorithm. Mention should also be made of the analysis of [Anda and Park, 1996].  

Householder transformations seem first to have appeared in a text by [Turnbull and Aitken, 

1932], where they were used to establish Schur's result [Schur, 1909] that any square matrix 

can be triangularized by a unitary similarity transformation. They also appear as a special case 

of a class of transformations in [Feller and Forsythe, 1951]. [Householder, 1958b], who 

discovered the transformations independently, was the first to realize their computational 

significance. Householder called his transformations elementary Hermitian matrices in his 

Theory of Matrices in Numerical Analysis [Householder, 1964], a usage which has gone out 

fashion. Since the Householder transformation I - uu
T
 reflects the vector u through its 

orthogonal complement (which remains invariant), these transformations have also been 

called elementary reflectors. Householder seems to have missed the fact that there are two 

transformations that will reduce a vector to a multiple of e1 and that the natural construction 

of one of them is unstable. This oversight was corrected by [Wilkinson, 1960]. [Parlett, 1971, 

1998]] has shown how to generate an alternative transformation in a stable manner. Although 

Householder derived his triangularization algorithm for a square matrix, he pointed out that it 

could be applied to rectangular matrices as well. 

 

QR-Algorithm 

The situation for real, nonsymmetric matrices is much more complicated than for the 

symmetric matrices . In this case, the given matrix has real elements, but its eigenvalues may 

well be complex. Real matrices are used throughout, with a double shift strategy that can 

handle two real eigenvalues, or a complex conjugate pair. Even thirty years ago, counter 

examples to the basic iteration were known and Wilkinson introduced an ―ad-hoc‖ shift to 

handle them. But no one has been able to prove a complete convergence theorem, infact 

counter examples exist that will cause the real, nonsymmetric QR algorithm to fail, even with 

Wilkinson‘s ad hoc shift, but only on certain computers.   

The real Schur decomposition amounts to a real reduction to upper quasi-triangular form. The 

most prominent shortcoming associated with Schur‘s decomposition is that each step requires 

a full QR factorization costing O (n
3
) flops. Fortunately, the amount of work per iteration can  
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be reduced by an order of magnitude if the orthogonal matrix U0 is judiciously chosen. In 

particular, if U
T

0 AU0 = H0 = (hij) is upper Hessenberg (hij = 0, i > j +1), then each subsequent 

Hk requires only O(n
2
) flops to calculate. To see this we look at the computations H = QR and 

H+ = RQ when H is upper Hessenberg. As we can always upper triangularize H with a 

sequence of n - 1 Givens rotations:  

Q
T
H = G

T
n-1.....G

T
1H =R. Here, Gi = G(i, i + 1,θi). this being known as the Hessenberg QR 

step. Hence reducing A to Hessenberg form using ‗Hessenberg QR step‘ and then iterating 

with QR algorithm using the deflation technique to produce the real Schur form is the 

standard means by which the dense nonsymmetric eigenproblem is solved.  

Although the reduction to Hessenberg form which enables us to carry out each step of the QR 

algorithm with order n
2 

rather than n
3
, multiplications and additions, for some matrices this is 

not sufficient to insure rapid convergence of the algorithm and so shifts of origin are 

necessary [Francis( p271), 1961] and [Parlett(p118),1967] 

Another reason for introducing origin shifts is to get around the problem of convergence 

when distinct eigenvalues have the same modulus. Such eigenvalues lie on circle in the 

complex plane (with centre at the origin) and shifting the origin by appropriately can change 

the fact that their moduli are equal. 

It should be pointed out that when the algorithm converges [Nasier(p. 40), 1967] it is 

observed that the convergence of the sub-diagonal elements  depends on the ration of the 

eigenvalues |λi/ λi-1 |, and unless this ratio is small the rate of convergence can be very 

unsatisfactory. 

Therefore by means of incorporating shifts (viz. Single shift, Double shift) in the QR 

algorithm convergence rate to upper quasi-triangular form can be accelerated. 

Explicitly Shifted QR  

The lineage of the QR algorithm can be traced back to a theorem of [Konig, 1884], which 

states that if the function defined by the power series  

 a0 + a1 +a2z
2
 +…. 

has one simple pole r at its radius of convergence then r =  limk


∞ ak/ak+1. Later [Hadamard, 

1892] gave detrimental expressions in terms of the coefficients of the above equation for 

poles beyond the radius of convergence. [Aitken, 1926] independently derived these 

expressions and gave recurrences for their computation. [Rutishauser, 1954a, 1954b] 

consolidated and extended the recurrences in his QD-algorithm. In 1955, [Rutishauser, 1955] 

then showed that if the numbers from one stage of the QD algorithm were arranged in a 

tridiagonal matrix T then the numbers for the next stage could be found by computing the LU 

factorization of T and multiplying the factors in reverse order. He generalized the process to a 

full matrix and showed that under certain conditions the iterates converged to an upper 

triangular matrix whose diagonals were the eigenvalues of the original matrix. The result was 

what is known as the LR algorithm. Later [Rutishauser, 1958] introduced a shift to speed 

convergence. Except for special cases, like positive definite matrices, the LU algorithm is 

numerically unstable. [Kublanovskaya, 1961] and [Francis, 1961] independently proposed 

substituting the stable QR decomposition for the LU decomposition. However, Francis went 

beyond a simple substitution and produced the algorithm that we use today, complete with a 

preliminary reduction to Hessenberg form and the implicit double shift for real matrices. 

The name of the QR decomposition comes from the fact that in Francis's notation the basic 

step was to decompose the matrix A into the product QR of an orthogonal matrix and an 

upper triangular matrix. Thus the algorithm preceded the decomposition. It is also interesting  
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to note that Q was originally O for "orthogonal" and was changed to Q to avoid confusion 

with zero. For more see Parlett's survey [Parlett, 1964] and the paper by [Fernando and 

Parlett, 1994]. The relation of the QR algorithm to the inverse power method was known to J. 

H. Wilkinson and W. Kahan [Parlett, p. 173, 1980], although the first explicit statement of the 

relation is in a textbook by [Stewart p. 352, 1973]. The relation to the power method was also 

known from first, as was the convergence which was originally established using 

determinants.[Wilkinson, 1965b], [Wilkinson(Sec. 29-30 Ch. 8), 1965a]. The iteration 

converges quadratically to a non-defective multiple eigenvalue. For the special case of the 

Rayleigh-quotient shift, this result is implied by work of Ostrowski on the Rayleigh-quotient 

method [Ostrowski, 1959], however, no general analysis seems to have appeared in the 

literature. [Watkins and Eisner, 1991] have given a very general convergence theory that 

holds for both the QR and LR algorithms.  

The Hessenberg QR algorithm  

The reduction of general matrix to Hessenberg form is due to [Householder, 1958] and 

[Wilkinson, 1960], who worked out the numerical details. The stability analysis is due to 

Wilkinson. His general approach to backward error analysis of orthogonal transformations is 

given in his Algebraic Eigenvalue Problem (1965) and is the basis for most of the rounding-

error results [Wilkinson(Sec. 6.8-19), 1965]. It is possible to use non-orthogonal 

transformations to reduce a symmetric matrix (as already seen) to tridiagonal form, a process 

that bears the same relation to Givens' and Householder's method as Gaussian elimination 

bears to orthogonal triangularization. The case for non-orthogonal reduction, however, is not 

as compelling as the case for  Gaussian elimination, and the method is not used in the major 

packages. 

The implementation of the QR algorithm is a large task, and most of the algorithms do not 

serve as  a complete implementation. For further details, there is little to do but go to the 

better packages and look at the code. The Handbook ALGOL codes [Wilkinson, 1971] are 

well documented but show their age, as do their EISPACK translations into FORTRAN 

[Garbow, Boyle, Dongarra, and Moler, 1977]. The LAPACK [Andersan et. al, 1995] codes 

are state of the art, at least for large matrices but they are undocumented, sparsely 

commented, and difficult to read. The observation that the QR step preserves Hessenberg 

form is due to [Francis, 1961].  

The Wilkinson shift, Deflation and Preprocessing 

The Wilkinson shift was proposed by [Wilkinson, 1968] for symmetric tridiagonal matrices, 

where it insures global convergence of the QR algorithm. Its use in the general QR algorithm 

is traditional. 

A personal anecdote may illustrate the difficulties in finding satisfactory criteria for declaring 

a sub-diagonal element zero. The idea of deflating when there are two consecutive small sub-

diagonal elements is due to [Francis, 1961]. The computational advantages of this procedure 

are obvious. In addition, many people felt that such small elements could retard the 

convergence of the implicitly shifted QR algorithm (to be discussed in the next section). 

However, [Watkins, 1995] has shown that the shift is accurately transmitted through the small 

elements. A personal anecdote may illustrate the difficulties in finding satisfactory criteria for 

declaring a sub-diagonal element zero.  

The balancing algorithm [Stewart(p. 107), 2001] is due to [Osborne, 1960] and was used, 

along with the strategy for the initial deflation of eigenvalues, in the Handbook [Parlett and 

Reinsch, 1969] and in subsequent packages.  
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Implicitly Shifted QR 

The ideas in this section, from the real Schur form to the implicit double shift, are due to 

[Francis, 1961], Although focus has been more on the double shift version, there is a single 

shift variant, which we still in use to compute eigenvalues of a symmetric tridiagonal matrix. 

There is also a multishift variant (see below), which is implemented in the LAPACK routine 

xHSEQR. The idea of an implicit shift has consequences extending beyond the computation 

of a real Schur form.  

When a 2 x 2 block has converged, it should be split if it has real eigenvalues. The LAPACK 

routine XLANV2 does this. It also transforms a block with complex eigenvalues into one in 

which the diagonal elements are equal. The implicit QR shifts can be also be done by 

incorporating multiple shifts, there is no need to confine ourselves to two shifts. For   

example, when we treat the symmetric eigenvalue problem, we will use single shifts. We can 

also use more than two shifts. Specifically, suppose that we have chosen m shifts k1, k2, 

k3,...km. We compute the first column c of (A – kmI)...... (A – k1I), which will have m + 1 

leading nonzero components. We then determine an (m+l) x (m+l) Householder 

transformation Q0 that reduces c to e1 and then apply it to A. The matrix Q0AQ0 has an (m+l) 

x (m+l) bulge below its diagonal, which is chased down out of the matrix in a generalization 

of Algorithm. The shifts can be computed as the eigenvalues of the trailing m x m sub-matrix. 

This algorithm, proposed by [Bai and Demmel, 1989] and implemented in the LAPACK 

routine HSEQR, can take advantage of level-3 BLAS, the larger m the greater the advantage. 

Unfortunately, [Watkins, 1996] has shown that if the number of shifts is great they are not 

transmitted accurately through the bulge chasing process. An alternative exists if the bulge 

from a 2 x 2 shift is chased two steps down the diagonal then another double shift can be 

started after it. If this process is continued, the result is a sequence of small, adjacent bulges 

being chased down the matrix. This algorithm and a new deflation procedure is treated by 

[Braman, Byers, and Mathias, 1999]. The paper also contains an extensive bibliography on 

the subject. 

There also exist variants to the QR algorithm. There can be four factorizations of a matrix into 

a unitary and a triangular matrix, which are represented symbolically by QR, QL, RQ, and 

LQ, where R and L stand for upper and lower triangular. The theory of the QR algorithm, 

applies to the other three variants. The shifted variants of the QR and QL algorithms exhibit 

fast convergence in the last and first rows; those of the RQ and the LQ, in the first and last 

columns. See [Stewart Sec. 1.3, Chapter 3, 2001] for details on QL algorithm. 

 

Non-Symmetric Lanczos Method and Arnoldi Iteration 

For nonsymmetric matrices it took longer for the Krylov subspace methods to gain popularity. 

An influential paper, that helped to promote Arnoldi's method as a useful tool, was published 

by [Saad, 1980]. The Arnoldi method, for orthogonal reduction to upper Hessenberg form, 

was not only too expensive if one wanted to know only a few eigenpairs, it also suffered from 

poor convergence for specific eigenvalue distributions. Well-known is the [Saad-Schultz, 

1986] example, which is a permuted identity matrix. The method leads to trivial 

approximations after the first n − 1 steps and after n steps all eigenpairs suddenly appear. This 

however, is at a much higher cost than for Householder's reduction. Lanczos is seen as the 

extension of Arnoldi for the non-hermitian matrices; however, the non-hermitian Lanczos 

algorithm is an oblique projection technique and is quite different in concept from Arnoldi's 

method. From the practical point of view, a big difference between the non-Hermitian 

Lanczos procedure and the Arnoldi methods is that we now only need to save a few vectors in 

memory to execute the algorithm if no re-orthogonalization is performed. More precisely, we  
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need 6 vectors of length n plus some storage for the tri-diagonal matrix, no matter how large 

m is. This is clearly a significant advantage. 

Lanczos Method for non-Hermitian matrices 

Non-Symmetric Lanczos process, also referred to as the two-sided Lanczos method, received 

quite a lot of attention. Initially, the method was notorious for its break-down possibilities, its 

behaviour in finite precision arithmetic and the fact that the reduction operators to tridiagonal 

form are non-orthogonal. During the 1980s, much work was devoted to exploiting the basic 

non-Hermitian Lanczos algorithm by [Parlett, Taylor and Liu, 1985] and by [Cullum and 

Willoughby, 1984, 1985] and [Cullum, Kerner and Willoughby, 1989]. The first successful 

application of the code in a real life problem seems to be in the work by [Carnoy and Geradin, 

1982], who used a version of the algorithm in a finite element model. [Cullum and 

Willoughby, 1986], presented a code based on the two-sided Lanczos method, in which they 

solved a number of practical problems; this included a clever trick for identifying the spurious 

eigenvalues due to rounding errors. The code gained some popularity, for instance for plasma-

physics eigenvalue computations [Parlett, 1986]. [Parlett and co-workers, 1985] introduced 

the concept of ―look-ahead", mainly in order to improve the numerical stability of the process. 

The look-ahead strategy, introduced in order to prevent breakdown, was further perfected by 

[Freund and Nachtigal, 1996]. They published a code based on quasi-minimization of 

residuals, and included look-ahead strategies, in which most of the original Lanczos problems 

were repaired (but the non-orthogonal reductions were still there). [Gutknecht, 1992] 

published a thorough theoretical overview of the two-sided Lanczos algorithm and exploited 

its relation to Pade approximations. This gave a better understanding of look-ahead strategies 

and the convergence behaviour of the method (in the context of solving linear systems). Block 

variants of the two-sided Lanczos process [Demmel et. al., 1999] were discussed in Day's 

Ph.D. thesis in 1993.  

Arnoldi Iteration 

Arnoldi Iteration technique finds the eigenvalues of general (possibly non-Hermitian) 

matrices (an analogous method for Hermitian matrices is the Lanczos iteration). The Arnoldi 

iteration was invented by W. E. Arnoldi in 1951. We mention firstly polynomial 

preconditioning, discussed extensively in Saad's book [Saad, 1992], which damps unwanted 

parts of the spectrum, and secondly, sophisticated restarting strategies. The method becomes 

effective for matrices for which shift-and-invert operations can be applied for given vectors. 

But the many (increasingly expensive) iterations for relevant problems were a bottleneck. A 

real breakthrough for the Arnoldi method was realized by [Sorensen, 1991] with the so-called 

Implicit Restart Technique. This is a clever technique by which unwanted information can be 

filtered away from the process. This leads to a reduced subspace with a basis, for which the 

matrix still has a Hessenberg form, so that Arnoldi's process can be continued with a subspace 

(rather than with a single vector as with the more classical restart techniques). 

The equivalent Block Arnoldi algorithm, has not been given much attention, except in control 

problems where it is closely associated with the notion of controllability for the multiple-input 

case [Boley and Golub, 1987]. In fact Arnoldi's method (single input case) and its block 

analogue (multiple input case) are useful in many areas in control; see for example [Saad, 

1990a, 1990b]. 

The term iterative method, used to describe Arnoldi, can perhaps be somewhat confusing. 

Note that all general eigenvalue algorithms must be iterative. This is not what is referred to 

when we say Arnoldi is an iterative method. Rather, Arnoldi belongs to a class of linear 

algebra algorithms (based on the idea of Krylov subspaces) that give a partial result after a  
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relatively small number of iterations. This is in contrast to so-called direct methods, which 

must complete to give any useful results.[Wikipedia-6]  

Arnoldi iteration is a typical large sparse matrix algorithm: It does not access the elements of 

the matrix directly, but rather makes the matrix map vectors and makes its conclusions from 

their images. This is the motivation for building the Krylov subspace. There have been 

several papers published on Arnoldi's method and its variants for solving eigenproblems. The 

original paper by [Arnoldi, 1951] came out about one year after Lanczos' breakthrough paper 

[Lanczos, 1950] and is quite different in nature. The author hints that his method can be 

viewed as a projection method and that it might be used to approximate eigenvalues of large 

matrices. Note that the primary goal of the method is to reduce an arbitrary (dense) matrix to 

Hessenberg form. At the time, the QR algorithm was not yet invented, so the Hessenberg 

form was desired only because it leads to a simple recurrence for the characteristic 

polynomial. The 1980 paper by [Saad, 1980] showed that the method could indeed be quite 

useful as a projection method to solve large eigenproblems, and gave a few variations of it. 

Later, sophisticated versions have been developed and used in realistic applications, see 

[Natarajan, 1992], [Natarajan and Acrivos, 1992], [Papanastasiou, 1990], [Parlett and Saad, 

1987]. 

4. THE GENERALIZED EIGENVALUE PROBLEM 

 

The generalized eigenvalue problem (regarded as a pair of bilinear forms) for finding 

nontrivial solutions of the equations  

Ax = λBx, Ax +λBx+ λ
2 
Cx=0  

goes back at least to [Weierstrass,1 868], who established the equivalent of the Jordan form 

for regular matrix pencils. In [Gantmacher, 1959] the matrix A - λB is called a matrix pencil. 

The rather strange use of the word "pencil" comes from optics and geometry: an aggregate of 

(light) rays converging to a point does suggest the sharp end of a pencil and, by a natural 

extension, the term came to be used for any one parameter family of curves, spaces, matrices, 

or other mathematical objects. [Jordan, 1874] later gave a new proof for singular pencils. The 

problem reduces to the ordinary eigenvalue problem when B = I, which is why it is called a 

generalized eigenvalue problem. Although the generalization results from the trivial 

replacement of an identity matrix by an arbitrary matrix B, the problem has many features not 

shared with the ordinary eigenvalue problem. For example, a generalized eigenvalue problem 

can have infinite eigenvalues. In spite of the differences between the two problems, the 

generalized eigenvalue problem has the equivalents of a Hessenberg form and a Schur form. 

Moreover, the QR algorithm can be adapted to compute the latter; the resulting algorithm is 

widely known as the QZ algorithm. The power method and RQI are techniques for solving 

the homogeneous system of equations (A -λB)X = O (or the matrix pencils). Of course A is 

unknown and so the problem is not linear. Nevertheless almost every known technique for 

solving linear systems yields an analogous iteration for the Non-Linear eigenvalue problem. 

For example, there is a successive overrelaxation (SOR) method which can be very effective 

for special problems when triangular factorization is not possible. See [Ruhe, 1975 and 1977] 

for a full treatment of these ideas. [Kronecker, 1890] extended the result to rectangular 

pencils. For modern treatments refer to some of the advanced texts: [Wilkinson, 1979], 

[Dooren, 1979], [ Gantmacher, 1959], [Kagstrom and Wiberg, 1999] and [Stewart, 1990]. The 

generalized Schur form is due to [Stewart, 1972].   
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Linear Eigenvalue Problem 

In linear eigenvalue problems Ax = λx or Ax = λBx, well established methods are available, 

that include error and condition estimates. These methods are able to deal with most of the 

small or large scale problems in practice and specific methods have been developed to handle 

extra structures [Anderson et. al., 1995], [Benner et. al., 2002], [Benner and Faßbender, 

1998], [Mehrmann, 1991], [Mehrmann and Watkins, 2001 and 2002]. 

Generalized Schur form 

Just as we can reduce a matrix to simpler forms by similarity transformations, so can we 

simplify a pencil by equivalence transformations. For example, there is an analogue of the 

Jordan form for regular pencils called the Weierstrass form. Unfortunately, this form, like the 

Jordan form, is not numerically well determined, and the transformations that produce it can 

be ill conditioned [Stewart(Sec. 1.6, Chapter 1), 2000]. Fortunately, if we restrict ourselves to 

unitary equivalences, which are well conditioned, we can reduce the matrices of a pencil to 

triangular form. 

The Schur form has enabled us to solve the mathematical problem of defining the multiplicity 

of generalized eigenvalues—finite or infinite. It also suggests how to put finite and infinite 

eigenvalues on the same notational footing. 

Perturbation Theory 

For a general treatment of the perturbation theory of the generalized eigenvalue problem 

along with a bibliography see [Stewart, 1990]. The use of the chordal metric in generalized 

eigenvalue problems is due to [Stewart, 1975], who is happy to acknowledge a broad hint 

from W. Kahan. For a chordless perturbation theory and backward error bounds see [Higham 

and Higham, 1998]. 

QZ Algorithm 

Like the QR algorithm, the doubly shifted QZ algorithm is an iterative reduction of a real 

Hessenberg-triangular pencil to real generalized Schur form. The QZ algorithm, including the 

preliminary reduction to Hessenberg-triangular form, is due to [Moler and Stewart, 1973]. 

The double shift strategy, of course, works when the eigenvalues of the trailing pencil are 

real. However, [Ward, 1975] has observed that the algorithm performs better if real shifts are 

treated by a single shift strategy. This option has been incorporated into the EISPACK and 

LAPACK codes. The balancing algorithm is due to [Ward, 1981], who builds on earlier work 

of [Curtis and Reid, 1972].  [Ward, 1975] and [Watkins, 2000] consider the problem of 

infinite eigenvalues.  In particular, both the reduction to Hessenberg-triangular form and the 

steps of the QZ algorithm move zero elements on the diagonal of B toward the top. Moreover, 

Watkins shows that the presence of small or zero elements on the diagonal of B does not 

interfere with the transmission of the shift. Thus an alternative to deflating infinite 

eigenvalues from the middle of the pencil is to wait until they reach the top, where they can 

be deflated by a single rotation. For the treatment of 2x2 blocks see the EISPACK code qzval 

or the LAPACK codeSLAG2. 

There does not seem to be any exhaustive coverage of the generalized eigenvalue problems, 

theory and algorithms. In addition, there seems to be a dichotomy between the need of users, 

mostly in finite elements modeling, and the numerical methods that numerical analysts 

develop. One of the first papers on the numerical solution of quadratic eigenvalue problems is 

[Borri and Mantegazza, 1977]. Quadratic eigenvalue problems are rarely solved in structural 

engineering. The models are simplified first by neglecting damping and the leading 

eigenvalues of the resulting generalized eigenproblem are computed. Then the eigenvalues of 

the whole problem are approximated by performing a projection process onto the computed  
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invariant subspace of the approximate problem [Jennings, 1981]. This may very well change 

in the future, as models are improving and computer power is making rapid gains. 

 

Reduction to Hessenberg-triangular form 

The first step in the solution of the ordinary eigenvalue problem by the QR algorithm is a 

reduction of the matrix in question to Hessenberg form, followed by  a reduction of a pencil 

(A, B) to a form in which A is upper Hessenberg and B is triangular. Note that if A is upper 

Hessenberg and B is lower triangular, then AB
-1

 is upper Hessenberg. Thus the reduction to 

Hessenberg-triangular form corresponds to the reduction to Hessenberg form of the matrix 

AB
-1

. The process begins by determining an orthogonal matrix Q such that Q
T
B is upper 

triangular. The matrix Q can be determined as a product of Householder transformations 

[Refer any book] .The transformation Q
T
 is also applied to A (considering a 5 x 5 matrix). 

Now plane rotations are used to reduce A to Hessenberg form while reserving the upper 

triangularity of B. The reduction proceeds by columns. Zeros are introduced in A beginning at 

the bottom of the first column. The elimination of the (5, l)-element of A by pre-

multiplication by the rotation Q45 in the (4, 5)-plane introduces a nonzero into the (5,4)-

element of B. This nonzero element is then annihilated by post-multiplication by a rotation 

Z54 in the (5,4)-plane. The annihilation of the (4, 1) and (3, l) elements of A proceeds 

similarly. 

 
 

 

\ 
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This process is repeated on columns 2 through n-2 of the pencil, to obtain the Hessenberg-

triangular form.  

Iterative projection methods for linear problems 

For sparse linear eigenvalue problems Ax = λBx, iterative projection methods like the 

Lanczos, Arnoldi, rational Krylov or Jacobi–Davidson method are well established. The basic 

idea of all these methods is the construction of a search space (typically a Krylov subspace) 

followed by projection of the problem into this subspace. This leads to a small dense problem 

that is then handled by a dense solver and the eigenvalues of the projected problem are used 

as approximations to the eigenvalues of the large sparse problem. The main feature of all 

these methods is that matrix factorizations are avoided as much as possible (except in the 

context 

of preconditioning) and the generation of the search space is usually done via an iterative 

procedure that is based on matrix vector products that can be cheaply obtained.  

Two basic types of iterative projection methods are in use: The first type consists of methods 

which expand the subspaces independently of the eigenpair of the projected problem and 

which use Krylov subspaces of A or (A –σI)
-1

 for some shift σ. These methods include the 

Arnoldi, Lanczos or rational Krylov method. The Arnoldi method together with its variants is 

today a standard solver for sparse linear eigenproblems. It is implemented in the package 

ARPACK [Davidson, 1975] and the MATLAB command eigs, see also [Baglama, Calvetti 

and Reichel, 1996]. The method typically converges to the extreme eigenvalues first. 

The other type of methods like the Jacobi-Davidson, aim at a particular eigenpair and choose 

the expansion q such that it has a high approximation potential for a desired 

eigenvalue/eigenvector or invariant subspace. 

 

Non Linear Eigenvalue Problem  

 

For nonlinear eigenvalue problems, there are essentially no analogous packages that reach the 

standard of those for linear problems. However, there is a vast literature on numerical 

methods for nonlinear eigenvalue problems. In general, one has to distinguish between dense 

and large sparse problems. For dense problems, the size of the problems that can be treated 

with numerical methods is limited to a few thousand depending on the available storage 

capacities. Methods for small dense problems, however, are needed in most of the iterative 

projection methods for large sparse problems.  

The theoretical analysis and the numerical methods for polynomial eigenvalue problems 

usually proceed via linearization, i.e. via the embedding of the nonlinear eigenvalue problem 

into a larger linear eigenvalue problem [Gohberg, Lancaster and Rodman, 1982]. 

Newton type methods and inverse Iteration 

For general nonlinear eigenvalue problems, the classical approach is to formulate the 

eigenvalue problem as a system of nonlinear equations and to use variations of Newton‘s 

method or the inverse iteration method. An improved version of this method was suggested in 

[Jain, Singhal and Huseyin, 1983], [Jain and Singhal, 1983] and also quadratic convergence 

was shown. A similar approach was presented in [Yang, 1983], via a representation of 

Newton‘s method using the LU-factorization. Other variations of this method can be found in 

[Zurm and Falk, 1984, 1986]. However, this relatively simple idea is not efficient, since it 

computes eigenvalues one at a time and needs several O (n
3
) factorizations per eigenvalue. It 

is, however, useful in the context of iterative refinement of computed eigenvalues and 

eigenvectors. 
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Another method that also serves the purpose of iterative refinement is the nonlinear version of 

inverse iteration. The disadvantage of inverse iteration with respect to efficiency is the large 

number of factorizations that are needed for each of the eigenvalues. The obvious idea then is 

to use a version of a simplified Newton method, where the shift σ is kept fixed during the 

iteration. 

Iterative projection methods for nonlinear problems 

Arnoldi type methods are quite efficient in solving sparse nonlinear eigenproblems if an 

accurate 

preconditioner is at hand. If this is not the case, then the convergence deteriorates 

considerably. In this situation Jacobi–Davidson type methods offer an appealing alternative. 

As in the linear case the correction equation does not have to be solved exactly to maintain 

fast convergence, but usually a few steps of a Krylov solver with an appropriate 

preconditioner suffice to obtain a good expansion direction of the search space. 

A different approach was developed in [Ruhe, 1996a, 1996b, 2000, 2004], which generalizes 

the rational Krylov method for linear eigenproblems [Ruhe, 1998] to sparse nonlinear 

eigenvalue problems by nesting the linearization of problem (by regula falsi) and the solution 

of the resulting linear eigenproblem (by Arnoldi‘s method). Hence, in this approach the two 

numerical subtasks, i.e. reducing the large dimension to a much smaller one and solving a 

nonlinear eigenproblem are attacked simultaneously. This method was applied in [Hager and 

Wiberg, 2000], [Hager, 2001] to the rational eigenvalue problem governing damped 

vibrations of a structure. 

Iterative projection methods for nonlinear eigenvalue problems have been studied extensively 

in recent years, but still have not reached a stage of maturity as have the methods for linear 

problems. More research is needed to improve the current methods, to analyse their stability 

and convergence behavior, in particular in finite precision, and to generate implementations 

that can be used in a simple and robust way by non-experts. 

5. MODERN APPROACHES 

 

In the last few years, rapid improvement in computer architecture and substantial advances in 

algorithmic research have enabled application scientists to tackle eigenvalue problems with 

tens of millions degrees of freedom. In this section we briefly discuss the recent developments 

in the solution of large scale eigenvalue problems giving the state of art of the algorithms that 

are in practical use for solving the problems and providing proper references to places with 

more extensive coverage on the subject. The detailed discussion on this topic can be found in 

[Yang, 2005]. 

 

Krylov Subspace Method 
Krylov subspace methods (KSM) remain the most reliable and effective tools for solving 

large-scale eigenvalue problems. In a KSM, approximations to the desired eigenpairs of an n 

by n matrix A are extracted from a k-dimensional Krylov subspace 

  K(v0,A; k) = span{v0,Av0, · · · ,A
(k−1)

v0},  

where v0 is often a randomly chosen starting vector and k ≪ n. It is well known that dominant 

eigenvalues well separated from the rest of the spectrum of A converge rapidly in a standard 

KSM (e.g., the Lanczos or Arnoldi iteration). Furthermore, if the starting vector v0 contains a 

linear combination of a few eigenvectors corresponding to the desired eigenvalues, then 

K(v0,A; k) becomes invariant for a small value of k, and the eigenvalues of the projected 

matrix Hk are indeed the eigenvalues of A. 
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Two types of strategies have been developed to accelerate the convergence of KSM. The 

implicitly restarting technique originally developed in [Sorensen, 1992] and implemented in 

ARPACK [Lehoucq, 1998 ]is designed to gradually filter out the unwanted spectral 

components from v0 by applying the implicitly shifted QR algorithm to the projected matrix 

Hk. The filter applied in ARPACK is a polynomial filter with roots set near the unwanted 

eigenvalues. This technique can be extended to include rational filters with poles set near the 

eigenvalues of interest [Sorensen and Yang, 1998], [Yang, 1998]. The use of implicit restart 

enables one to extract desired eigenpairs from a Krylov subspace of small dimension, thereby 

keeping the cost of orthogonalization low. 

The second type of techniques for enhancing the convergence of KSM involves transforming 

the original eigenvalue problem into one that has a more favourable eigenvalue distribution. 

This technique is particularly helpful when the eigenvalues of interest are near a target shift σ 

in the interior of the spectrum. In this case, computing the largest eigenvalues of the shifted 

inverse (A−σI)
−1

 is often more effective than computing those of A directly. Although rational 

transformation is the most commonly used spectral transformation, one may also use 

polynomial transformations [Sorensen and Yang, 1997] when it is prohibitively expensive to 

factor A−σI into a product of triangular matrices. 

 

Alternative Methods 
The difficulty of introducing a preconditioner into a KSM in a straightforward fashion is 

fundamentally related to the fact that the eigenvectors of a preconditioned matrix P
−1

A is 

generally different from the eigenvectors of A. Thus, building a Krylov subspace in terms of 

P
−1

A does not readily provide approximation to the eigenvectors of A directly.   

Two Alternatives have been pursued in the last few years to overcome this problem. 

Solving the Eigenvalue Problem as an Optimization Problem 

For problems in which A or K is symmetric (or Hermitian) and the eigenvalues of interest are 

the smallest or the largest, one may solve the eigenvalue problem as a constrained 

optimization problem.  

min x
T

 x=1 ρ(x) = x
T
Ax  

The use of a preconditioner in this formulation simply amounts to a change of variable. The 

constrained optimization approach has been effective for solving large-scale eigenvalue 

problems arising from the self-consistent field iteration used in electronic structure 

calculation. 

Solving the Eigenvalue Problem as a System of Non-linear Equations 

An eigenvalue problem can also be viewed as a set of nonlinear equations  

Ax = (x
T
Ax)x, x

T
 x = 1.  

By treating an eigenvalue problem as a nonlinear system, one can exploit the possibility of 

using Newton‘s method to compute the desired eigenvalues and eigenvectors. Although 

significant progress has been made in large-scale eigenvalue calculation research, a number of 

challenges still remain. This is particularly true in the area of non-linear eigenvalue problems.  

This approach leads to the Jacobi-Davidson (JD) [Sleijpen and Vorst, 1996] algorithm, which 

is an extension of the [Davidson, 1975] and [Olsen, Jorgensen and Simons, 1990] algorithms. 

The method can be described as an inner-outer iteration. Approximations to the desired 

eigenvalues and eigenvectors are computed in the outer iteration by projecting A into a 

subspace V. 
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Successive Eigenvalue Relaxation  

[Ovtchinnikov and Xanthis, 2000] presented a new subspace iteration method for the efficient 

computation of several smallest eigenvalues of the generalized eigenvalue problem Ax = λBx 

for symmetric positive definite operators A and B. The SER method is the homoechon of the 

classical successive over-relaxation, or SOR method for linear systems. In particular, there are 

two significant features of SER which render it computationally attractive: (i) it can 

effectively deal with preconditioned large-scale eigenvalue problems, and (ii) its practical 

implementation does not require any information about the preconditioner used: it can 

routinely accommodate sophisticated preconditioners designed to meet more exacting 

requirements (e.g. three-dimensional elasticity problems with small thickness parameters). 

SER is endowed with theoretical convergence estimates which cover the case of multiple 

eigenvalues and eigenvalue clusters and identify the important parameters essentially 

affecting the convergence. 

Given an approximation I
n
 to the invariant subspace I corresponding to the first m eigenvalues 

of  

Ax = λBx, we choose a number kn, 0 < kn < m, and define the new approximation as  

I
n+l

 = span{ui(I
n
)}i=0, m-1,   I

n
 = I

n
 + span{rkn (I

n
). 

In other words, we add the residual on the Ritz vector ukn (I
n
) to the set of Ritz vectors in I

n
, 

then we apply the Rayleigh-Ritz projection onto the subspace I
n
 spanned by these m + 1 

vectors and we define the new approximation I
n+1

 to the invariant subspace I as the span of the 

first m Ritz eigenvectors in In (the last one is discarded so that the dimension of I
n+l

 is the 

same as I
n
). The above iterative procedure is known as the successive eigenvalue relaxation, 

or SER method. The convergence rate of SER iterations depends on the choice of kn. The 

purpose of introducing the auxiliary subspaces is to ensure that on each step we 'relax' the 

Ritz eigenvalues corresponding to Ritz eigenvectors which approximate different 

eigenvectors of Ax = λBx. For full computational details see the paper by [Ovtchinnikov and 

Xanthis, 2000]. 

SER radically overcomes difficulties highlighted above, thus eloquently justifying its raison d 

'etre and unique role amongst other eigensolvers (cf. Prolegomena and Introduction). 

Although SER is particularly attractive for pre- conditioned large-scale problems, it also 

performs reasonably well for other classes of problems unrelated to preconditioning. The full 

computational capabilities of SER will emerge when one undertakes extensive numerical 

(large-scale) computations to demonstrate its performance and relative merits compared with 

other methods (eigensolvers). 
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