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ABSTRACT. The non-uniform global spread of emergent infectious diseases of humans is closely

interrelated with the large-scale structure of the human population, and the human mobility process

in the population structure. The mobile population becomes the vector for the disease. We present

an SIRS stochastic dynamic epidemic process in a two scale structured population. The variability

caused by the fluctuating environment is assumed to manifest mainly in the transmission process. We

investigate the stochastic asymptotic stability of the disease free equilibrium of the scale structured

mobile population, under environmental fluctuations and its impact on the emergence, propagation

and resurgence of the disease. The presented results are demonstrated by numerical simulation

results.
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1. INTRODUCTION

The recent advent of high technology in the areas such as communication and

transportation has increased the rate and effects of globalization in many aspects of

the human species. Of particular importance is the rate of globalization of human

infectious diseases [4]. For instance, the 2009 H1N1 flu pandemic [26] is a result of the

many inter-patch connections facilitated human transportation. Several mathemati-

cal models describing the dynamics of infectious diseases of humans have been studied.

Models describing the dynamics of insect vector born diseases [10, 39], influenza [5],

HIV [35, 36, 38] and AIDS [37] are studied.

There has also been many studies [5, 6, 8, 9, 10, 16, 17, 12, 13, 29, 40, 41, 15]

describing the dynamics of human mobility and disease in meta-populations. Gen-

erally, these models can be called multi-group models as they describe the dynamics

of diseases in a network of the patches of a meta-population. These models can be

further categorized into two general classes based on the modeling approach, namely:

Langrangian [40, 41, 15, 10, 16, 17] and Eulerian [12, 13, 29, 8, 9, 5, 6] models. In
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addition, individuals in the population bases on their residence and also their current

location. In Langrangian models, individuals do not change their residence, but are

allowed to visit other patches in the meta-population. The Eulerian models on the

other hand label individuals in the population based only on the current location.

Moreover, this model can be considered to be migration models because only the

present location of individuals is important.

Many authors have investigated the dynamics of diseases described with SIRS

models. A significant portion of SIRS models study the dynamics of the disease under

variant incident rates [27, 28, 29, 30, 31, 32, 33]. Using Lyapunov functions, the local

nonlinear and global stability of the equilibria is established [27]. By constructing a

Lyapunov function based on the structure of the biological system [30, 18, 19], the

existence, uniqueness and global stability of the endemic equilibrium are investigated.

Furthermore, the bifurcation and stability analysis of the disease free and endemic

equilibria, are investigated in [29, 32, 33]. SIRS epidemic models have also been

described and studied using complex network of human contacts [34]. In [45], a

special SIRS epidemic model is formulated with a proportional direct transfer from

the infectious state to the susceptible state immediately after the infectious period.

Stochastic models offer a better representation of the reality. Several stochastic

models describing single and multi-group disease dynamics have been investigated [42,

43, 37, 38]. Assuming random perturbation about the endemic equilibrium of a two-

group SIR model, the stochastic asymptotic stability of the endemic equilibrium via

constructing a Lypunov function according to the structure the system is established

in [42]. Also, the stability of the competitive equilibrium [48], disease free equilibrium

for SIRS [44] and SIR [43] single-group epidemic models are studied. Furthermore, by

showing the existence of nonnegative solution for a stochastic model, the stochastic

asymptotic stability behavior of the equilibria is proved in [37, 38, 48, 49].

In more complex meta-population structures, the understanding of the dynamics

of infectious diseases is still in the infancy level. This is due to the high degree of

heterogeneities and complexity of spatial human population structures. Recently,

Wanduku and Ladde [1] characterized various patterns of static behavior of multi-

scale structured meta-population human mobility process described by the following

Langrangian type dynamic model.
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i ∈ I(1, nr), l ∈ Iri (1, nq); r, q ∈ Ir(1,M),

where for all r, u ∈ I(1,M), i ∈ I(1, nr), a ∈ I(1, nu), N
ru
ia is the number of residents of

site sri in region Cr visiting site sua in region Cu. Furthermore, the scale of this human

mobility dynamic model is two, where the scale represents the intra and inter-regional

levels of human interaction. All the parameters in (1.1)–(1.3) are nonnegative. More-

over, σrrij and γ
rq
il are the intra and inter-regional visiting rates of residents of site sri

in region Cr to sites srj and sql in regions Cr and Cq respectively. In addition, ρrrij and

ρ
rq
il are the intra and inter-regional return rates of residents of site sri in region Cr,

from sites srj and sql in regions Cr and Cq respectively. The probabilistic formulation

of these mobility rates is exhibited in [1].

In this paper we incorporate the multi-scale structured meta-population human

mobility process (1.1)–(1.3) into an SIRS human epidemic model under the influence

of random environmental fluctuations. The resulting two-scale network structured

SIRS human epidemic stochastic dynamic model is an extension, expansion and gen-

eralization of the structured deterministic epidemic model [15], under the influence

of mobility process.The presented stochastic two-scale network human dynamic epi-

demic process is described by a large-scale system of Ito-Doob stochastic differential

equations. In addition to well defined underlying system parameter domains for dis-

ease eradication in the large-scale two level dynamic structure, the results are alge-

braically simple, computationally attractive and explicit system parameter dependent

threshold values. Furthermore, the presented simulation results exhibit the fact that

the human mobility structure of the two-scale network dynamic epidemic model is

isomorphic to the human mobility structure of the simulated example in [1].

The work is organized as follows. In Section 2 we describe the general stochastic

SIRS epidemic process under the influence of mobility process [46]. In Section 3, the

model validation is exhibited. The existence and asymptotic stability of the disease

free equilibrium is shown in Section 4. We present simulation results in Section 5.

Finally a few conclusions are drawn in Section 6.

2. LARGE SCALE TWO LEVEL SIRS EPIDEMIC PROCESS

In this section, we define the structure of the SIRS epidemic dynamic process in

the two-scale network population dynamic structure. The human mobility dynamic

structure of the intra and inter-regional levels of the SIRS epidemic dynamic model

of this study are exhibited in [1, Fig. 1] and [1, Fig. 2] respectively. Furthermore, the

characterization of the human mobility hierarchic process in the two-scale population

dynamic structure is also exhibited in [1]. The general SIRS disease structure with

dual conversions to the susceptible class from the infectious and immune populations
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exhibited in this study is inspired by the work [45]. We make the following definitions

related to the SIRS disease process.

Definition 2.1 (Endemic population decomposition and aggregation). For each r ∈

I(1,M), let i ∈ Iri (1, nr). The total population N rr
i0 of residents of site sri at time

t is distributed among the sites in their intra and inter regional domain C(sri ), and

it is partitioned into three general disease compartments namely, susceptible (S),

infectious (I) and removals (R) (those who were previously sick and have acquired

immunity from the disease). That is, Arqil is the number of residents of site sri whose

disease status is of type A, A ∈ {S, I, R}, and are visiting to site sql , l ∈ I
q
i (1, nq)

in region Cq, where q ∈ Ir(1,M). Furthermore, when r = q, Arrik is the number

of residents of site sri with disease status A ∈ {S, I, R}, and are visiting to site

srk, k ∈ Iri (1, nr) in their home region Cr. Moreover, when k = i, Arrii is the number

of residents of site sri who have disease status of type A, A ∈ {S, I, R} and remain as

permanent residents at their home site. Hence N rr
i is given by

(2.1) N rr
i0 = Srri0 + Irri0 +Rrr

i0 ,

where

(2.2) Srri0 =

M
∑

q=1

nq
∑

k=1

S
rq
ik , Irri0 =

M
∑

q=1

nq
∑

k=1

I
rq
ik , and Rrr

i0 =

M
∑

q=1

nq
∑

k=1

R
rq
ik .

Remark 2.1. We note that the effective population eff(N rr
i0 ) present at the site sri

at anytime is different from the census population or the total number of residents

N rr
i0 (2.1) with permanent residence site sri . At anytime t, the effective community

size of site sri is made up of the permanent residents of site sri and all visitors of to

site sri . This is as given below

(2.3) eff(N rr
i ) =

M
∑

q=1

nq
∑

k=1

S
qr
ki +

M
∑

q=1

nq
∑

k=1

I
qr
ki +

M
∑

q=1

nq
∑

k=1

R
qr
ki .

eff(N rr
i ) represents the population that is at risk for infection at site sri and it is the

population size resulted by the mobility process in the two-scale network structure.

Definition 2.2 (Disease Transmission Process). The disease transmission process in

any site sri in region Cr in a mobile population necessitates: (1) a susceptible person

to travel from site suk in region Cu to site sri , (u = r and k = i if there is no traveling),

(2) an infectious person traveling from site sql in region Cq, q 6= r to site sri , (3) the

susceptible and infectious persons meeting at a contact zone z (which may be the

home, market place or recreational facility etc) in site sri with a probability p of a

person being at a zone z at anytime t, and (4) β is the probability of the infectious

agent being transmitted from the infectious person to the susceptible person knowing

that the contact between the susceptible and the infectious individual took place.
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Let nri be the number of contact zones denoted by zrib , b ∈ {1, 2, . . . , nri} ≡

I(1, nri) at each site sri . Furthermore, let prib be the probability that a member of

the effective population would be in a zone zrib at a time t; in addition, we assume

that the events of visiting contact zones are independent, and the probability prib of

being in a given zone zrib is independent of the permanent residence of the individual.

In each zone zrib , there is random mixing and transmission of the infectious agent

from an infectious person to a susceptible person via a direct contact between the

two individuals. Moreover, let βruv∗ikj be the probability that the transmission takes

place given that the contact occurs in any zone zrib , ∀ b ∈ I(1, nri) in site sri between

a susceptible Surki from site suk in region Cu and an infectious individual Ivrmi from site

svm in region Cv. Then the infectious rate (average number of contacts per individual

per unit time required to transmit the disease), βruv∗ibkm
, in zone zrib between Surki and

Ivrmi is given by

(2.4) βruv∗ibkm
= (prib)

2βruv∗ikm ,

whenever v, u ∈ I(1,M), and v 6= u. The infection process in zone zrib is illustrated

by the following transition.

(2.5) Surki + Ivrmi
βruv∗

ibkm

−−−→ Iurki + Ivrmi.

Hence, the net conversion rate to the infectious class from the susceptible class during

the disease transmission process at the site sri in region Cr of the meta-population

with M regions is given by

(2.6)
M
∑

v=1

M
∑

u=1

nv
∑

m=1

nu
∑

k=1

nri
∑

b=1

βruv∗ibkm
IvrmiS

ur
ki

We set

(2.7) βruvikm =

nri
∑

b=1

βruv∗ibkm

We further assume that the disease status of an individual in the population does not

affect travel rates and the mobility pattern.

A diagram illustrating the disease transmission and mobility processes in the two

scale dynamic structure described in Definition 2.2 is exhibited in Figure 1.

Definition 2.3 (Acquisition and Loss of Immunity Process). Environmental condi-

tions changes impact the immunity systems of individuals in the large scale two level

population dynamic structure. This leads to dependence of the acquisition and loss of

immunity rates of residents of all sites in all regions in the two-scale structured popu-

lation, on the current locations of the residents in the population dynamic structure.

In each site sri , let 1
̺r

i
be the average active infectious period of infected individual
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Figure 1. Shows the movement of susceptible (Surai ) and infective (Ivrmi)
from arbitrary home site sua in region Cu and from site svm in region Cv,
to visit an arbitrary contact zone zrib in site sri , which is in region Cr.
Disease transmission takes place in zone zrib .

(I) who recovered from the disease and acquired immunity (R),immediately after the

infectious period. Also, let 1
ηr

i
be the average infectious period of infected person in

site sri , who is recovered from the disease and become susceptible (S), immediately,

after the infectious period. Furthermore, let 1
αr

i
be the average immunity period of

removal person (R) in site sri , who has lost his/her their immunity and become sus-

ceptible (S) again immediately after the immunity period. The recovery process of

an infected person in site sri as well as the loss of immunity of a removal person is

illustrated in the following disease transition processes:

Iurki
̺r

i−→ Rur
ki , Iurki

ηr
i−→ Surki , Rur

ki

αr
i−→ Surki ,(2.8)

for u ∈ I(1,M) and k ∈ I(1, nu).

Definition 2.4 (Population Demography). The current SIRS infectious disease in-

volves time scales that are comparable with the life-time of individuals in the popula-

tion. Furthermore, all births occur at home site and deaths occur at current locations

of residents in the two-scale population structure. Let Br
i be a constant birthrate of

the human population at site sri and at time t. We assume that every new born is

a susceptible and becomes a resident of the site of birth. Let δri be the per capita

natural mortality rate, and let dri be the per capita disease related mortality rate of

all members of the effective population at site sri .

A compartmental framework illustrating the different process and stages in the

SIRS epidemic described above is exhibited in Figure 2.
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Figure 2. Compartmental framework summarizing the transition
stages in the SIRS epidemic process. All the parameters presented
in this figure are define in Section 2 for particular sites and regions.

From Definitions 2.1–2.4, the complete SIRS epidemic model under the influence

of a large scale two-level population mobility process[1] is described by:

(2.9)
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q 6=r

∑nq
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rq
iaS

rq
ia + ηri I

rr
ii + αriR

rr
ii

−(γri + σri + δri )S
rr
ii −

∑M

u=1

∑nu

a=1 β
rru
iia S

rr
ii I

ur
ai ], for q = r, l = i

[σrrij S
rr
ii + ηrj I

rr
ij + αrjR

rr
ij − (ρrrij + δrj )S

rr
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u=1

∑nu

a=1 β
rru
jia S

rr
ij I

ur
aj ], for q = r, l = j, j 6= i,

[γrqil S
rr
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q
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q
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rq
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q
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rq
il

−
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u=1

∑nu

a=1 β
qru
lia S

rq
il I

uq
al ], for q 6= r,

(2.10)
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∑nr

k=1 ρ
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ikI

rr
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∑M
q 6=r

∑nq

a=1 ρ
rq
iaI

rq
ia − ηri I

rr
ii − ̺ri I

rr
ii

−(γri + σri + δri + dri )I
rr
ii +

∑M

u=1

∑nu

a=1 β
rru
iia S

rr
ii I

ur
ai ], for q = r, l = i

[σrrij I
rr
ii − ηrj I

rr
ij − ̺rjI

rr
ij − (ρrrij + δrj + drj)I

rr
ij

+
∑M

u=1

∑nu

a=1 β
rru
jia S

rr
ij I

ur
aj ], for q = r, l = j, i 6= j,

[γrqil I
rr
ii − η

q
l I

rq
il − ̺

q
l I
rq
il − (ρrqil + δ

q
l + d

q
l )I

rq
il

+
∑M

u=1

∑nu

a=1 β
qru
lia S

rq
il I

uq
al ], for q 6= r,

(2.11)

dR
rq
il

dt
=



























[
∑nr

k=1 ρ
rr
ikR

rr
ik +

∑M
q 6=r

∑nq

l=1 ρ
rq
il R

rq
il + ̺ri I

rr
ii − (γri + σri + αri + δri )R

rr
ii ],

for q = r, l = i

[σrrij R
rr
ii + ̺rjI

rr
ij − (ρrrij + αrj + δrj )R

rr
ij ], for q = r, l = j, i 6= j,

[γrqil R
rr
ii + ̺

q
l I
rq
il − (ρrqil + α

q
l + δ

q
l )R

rq
il ], for q 6= r,

where i ∈ I(1, nr), l ∈ Iri (1, nq); r ∈ I(1,M), q ∈ Ir(1,M). Furthermore, the

parameters Br
i , η

u
a , α

u
a , δ

u
a and dua are nonnegative, and ̺ua is positive for r, u ∈ I(1,M),
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i ∈ I(1, nr), and a ∈ I(1, nu). Also, at time t = t0, and for each r ∈ I(1,M), and

i ∈ I(1, nr), (Srrii (t0), S
rr
ij (t0), S

rq
il (t0)) = (Srrii0, S

rr
ij0, S

rq
il0), (Irrii (t0), I

rr
ij (t0), I

rq
il (t0)) =

(Irrii0, I
rr
ij0, I

rq
il0), (Rrr

ii (t0), R
rr
ij (t0), R

rq
il (t0)) = (Rrr

ii0, R
rr
ij0, R

rq
il0), whenever j ∈ Iri (1, nr)

and l ∈ Iri (1, nq). Furthermore, we denote n =
∑M

u=1 nu. We now incorporate

the effects of the random environmental perturbations into the modeling epidemic

dynamic process described in (2.9)–(2.11).

The random fluctuations lead to variabilities in the disease transmission, human

mobility, birth and death processes of the system. In this work, we assume that the

effects of the fluctuating environment manifest mainly as variations in the infectious

rate β. Generally, we represent the variability in the infectious rate by a white noise

process as:

(2.12) β → β + vξ(t), dw(t) = ξ(t)dt, and var(β(t)) = v2,

where ξ(t) is the standard white noise process, and w(t) is corresponding normal-

ized Wiener process or a homogenous Brownian motion process with the following

properties: w(0) = 0, E(w(t)) = 0 and var(w(t)) = t.

Given t ≥ t0, we let (Ω,̥, P ) be a complete probability space, and ̥t is a

filtration (that is sub σ-algebra ̥t satisfies the following: given t1 ≤ t2 ⇒ ̥t1 ⊂ ̥t2 ;

E ∈ ̥t and P (E) = 0 ⇒ E ∈ ̥0), for each r ∈ I(1,M), and i ∈ I(1, nr), the

variability in the infectious process at sites sri , s
r
j and s

q
l between a susceptible from

site suk and an infective from an arbitrary site svm, can be represented as follows:

βruvikm → βruvikm + vruvikmξ
ruv
ikm(t), dwruvikm(t) = ξruvikm(t)dt

βruvjkm → βruvjkm + vruvjkmξ
ruv
jkm(t), dwruvjkm(t) = ξruvjkm(t)dt

β
quv
lkm → β

quv
lkm + v

quv
lkmξ

quv
lkm(t), dwquvlkm(t) = ξ

quv
lkm(t)dt(2.13)

and

(2.14) var(βruvikm(t)) = (vruvikm)2, var(βruvjkm(t)) = (vruvjkm)2, var(βquvlkm(t)) = (vquvlkm)2,

where q, u, v ∈ Ir(1,M), k ∈ Iui (1, nu), m ∈ Ivi (1, nv), and l ∈ Iri (1, nq).
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We substitute (2.13) into (2.9)–(2.11), and obtain the following two level large

scale stochastic epidemic model under the influence of human mobility process [1]

(2.15)

dS
rq
il =














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






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


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

























[

Br
i +

∑nr

k=1 ρ
rr
ikS

rr
ik +

∑M
q 6=r

∑nq

a=1 ρ
rq
iaS

rq
ia + ηri I

rr
ii + αriR

rr
ii

−(γri + σri + δri )S
rr
ii −

∑M

u=1

∑nu

a=1 β
rru
iia S

rr
ii I

ur
ai

]

dt

−
[
∑M

u=1

∑nu

a=1 v
rru
iia S

rr
ii I

ur
ai dw

rru
iia (t)

]

, for q = r, l = i,
[

σrrij S
rr
ii + ηrj I

rr
ij + αrjR

rr
ij − (ρrrij + δrj )S

rr
ij −

∑M
u=1

∑nu

a=1 β
rru
jia S

rr
ij I

ur
aj

]

dt

−
[
∑M

u=1

∑nu

a=1 v
rru
jia S

rr
ij I

ur
aj dw

rru
jia (t)

]

, for q = r, l = j, j 6= i,
[

γ
rq
il S

rr
ii + η

q
l I

rq
il + α

q
lR

rq
il − (ρrqil + δ

q
l )S

rq
il

−
∑M

u=1

∑nu

a=1 β
qru
lia S

rq
il I

uq
al

]

dt−
[
∑M

u=1

∑nu

a=1 v
qru
lia S
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il I

uq
al dw

qru
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]

, for q 6= r,

(2.16)
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∑nr

k=1 ρ
rr
ikI

rr
ik +

∑M

q 6=r

∑nq

a=1 ρ
rq
iaI

rq
ia − ηri I

rr
ii − ̺ri I

rr
ii

−(γri + σri + δri + dri )I
rr
ii +

∑M

u=1

∑nu

a=1 β
rru
iia S

rr
ii I

ur
ai

]

dt

+
[
∑M

u=1

∑nu

a=1 v
rru
iia S

rr
ii I

ur
ai dw

rru
iia (t)

]

, for q = r, l = i
[

σrrij I
rr
ii − ηrj I

rr
ij − ̺rjI

rr
ij − (ρrrij + δrj + drj)I

rr
ij +

∑M

u=1

∑nu

a=1 β
rru
jia S

rr
ij I

ur
aj

]

dt

+
[
∑M

u=1

∑nu

a=1 v
rru
jia S

rr
ij I

ur
aj dw

rru
jia (t)

]

, for q = r, l = j, j 6= i,
[

γ
rq
il I

rr
ii − η

q
l I

rq
il − ̺

q
l I
rq
il − (ρrqil + δ

q
l + d

q
l )I

rq
il

+
∑M

u=1

∑nu

a=1 β
qru
lia S

rq
il I

uq
al

]

dt+
[
∑M

u=1

∑nu

a=1 v
qru
lia S

rq
il I

uq
al dw

qru
lia (t)

]

, for q 6= r,

(2.17)

dR
rq
il =



























[
∑nr

k=1 ρ
rr
ikR

rr
ik +

∑M

q 6=r

∑nq

l=1 ρ
rq
il R

rq
il + ̺ri I

rr
ii − (γri + σri + αri + δri )R

rr
ii

]

dt,

for q = r, l = i
[

σrrij R
rr
ii + ̺rjI

rr
ij − (ρrrij + αrj + δrj )R

rr
ij

]

dt, for q = r, l = j, j 6= i,
[

γ
rq
il R

rr
ii + ̺

q
l I
rq
il − (ρrqil + α

q
l + δ

q
l )R

rq
il

]

dt, for q 6= r,

where i ∈ I(1, nr), l ∈ Iri (1, nq); r ∈ I(1,M), q ∈ Ir(1,M); all parameters are as

defined before. At time t = t0, for each r ∈ I(1,M) and i ∈ I(1, nr), (Srrii (t0), S
rr
ij (t0),

S
rq
il (t0)) = (Srrii0, S

rr
ij0, S

rq
il0), (Irrii (t0), I

rr
ij (t0), I

rq
il (t0)) = (Irrii0, I

rr
ij0, I

rq
il0), (Rrr

ii (t0), R
rr
ij (t0),

R
rq
il (t0)) = (Rrr

ii0, R
rr
ij0, R

rq
il0), whenever j ∈ Iri (1, nr) and l ∈ Iri (1, nq), where the ran-

dom variables (Srrii (0), Srrij (0), Srqil (0)), (Irrii (0), Irrij (0), Irqil (0)) and (Rrr
ii (0), Rrr

ij (0), Rrq
il (0))

are ̥0-measurable, and are independent of w(t) whenever t ≥ t0.

We express the state of system (2.15)–(2.17) in vector form and use it, subse-

quently. We denote

xruia = (Sruia , I
ru
ia , R

ru
ia )T ∈ R

3

xrui0 = (xruTi1 , xruTi2 , . . . , xruTi,nu)
T ∈ R

3nu ,

xru00 = (xruT10 , xruT20 , . . . , xruTnr0 )T ∈ R
3nrnu ,
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xr000 = (xr1T00 , xr2T00 , . . . , xrMT
00 )T ∈ R

3nr

PM
u=1 nu,

x00
00 = (x10

00, x
20
00, . . . , x

M0
00 )T ∈ R

3(
PM

r=1 nr)(
PM

u=1 nu),(2.18)

where r, u ∈ I(1,M), i ∈ I(1, nr), a ∈ Iri (1, nu). We set n =
∑M

u=1 nu.

Definition 2.5. 1. p-norm in R3n2
: Let z00

00 ∈ R3n2
be an arbitrary vector defined

in (2.18), where zruia = (zru0
ia1 , z

ru0
ia2 , z

ru0
ia3 )T whenever r, u ∈ I(1,M), i ∈ I(1, nr),

a ∈ Iri (1, nu). The p− norm on R3n2
is defined as follows

(2.19) ‖z00
00‖p =

(

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

3
∑

j=1

|zru0
iaj |

p

)
1
p

whenever 1 ≤ p <∞, and

(2.20) z̄ ≡ ‖z00
00‖p = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu,1≤j≤3
|zru0
iaj |,

whenever p = ∞. Let

(2.21) k ≡ k00
00min = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

|kruia |.

2. Closed Ball in R3n2
: Let z∗0000 ∈ R3n2

be fixed. The closed ball in R3n2
with center

at z∗0000 and radius r > 0 denoted B̄
R3n2 (z∗0000 ; r) is the set

(2.22) B̄
R3n2 (z∗0000 ; r) = {z00

00 ∈ R
3n2

: ‖z00
00 − z∗0000 ‖p ≤ r}

3. MODEL VALIDATION RESULTS

We now show that the initial value problem associated with the system (2.15)–

(2.17) has a unique solution. We observe that the rate functions of the system are

nonlinear and locally Lipschitz continuous with respect to x00
00 but do not satisfy the

linear growth condition. As a result of this the classical existence and uniqueness

results [46] are not applicable. Therefore, we use the Lyapunov energy function

method (cf. [37, 38, 46, 47]) to prove the existence and uniqueness of solution process

of the system. We first state and prove two lemmas that are useful for the proof of

the existence and uniqueness result. From (2.15)–(2.17), define the vector y00
00 ∈ Rn2

as follows: For i ∈ I(1, nr), l ∈ Iri (1, nq), r ∈ I(1,M) and q ∈ Ir(1,M),

yruia = Sruia + Iruia +Rru
ia ∈ R+ = [0,∞)

yrui0 = (yrui1 , y
ru
i2 , . . . , y

ru
i,nu)

T ∈ R
nu
+ ,

yru00 = (yruT10 , yruT20 , . . . , yruTnr0 )T ∈ R
nrnu

+ ,

yr000 = (yr1T00 , yr2T00 , . . . , yrMT
00 )T ∈ R

nr

PM
u=1 nu

+ ,

y00
00 = (y10T

00 , y20T
00 , . . . , yM0T

00 )T ∈ R
(

PM
r=1 nr)(

PM
u=1 nu)

+ ,(3.1)
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and obtain

(3.2)

dy
rq
il =



























[

Br
i +

∑nr

k 6=i ρ
rr
iky

rr
ik +

∑M
q 6=r

∑nq

a=1 ρ
rq
iay

rq
ia − (γri + σri + δri )y

rr
ii − dri I

rr
ii

]

dt,

for q = r, l = i
[

σrrij y
rr
ii − (ρrrij + δrj )y

rr
ij − drjI

rr
ij

]

dt, for q = r, a = j and i 6= j,
[

γ
rq
il y

rr
ii − (ρrqil + δ

q
l )y

rq
il − d

q
l I
rq
il

]

dt, for q 6= r, y
rq
il (t0) ≥ 0,

In the following, we show that the solution process of the initial value problem (3.2)

is nonnegative. That is for all t ≥ 0, yruia (t) ≥ 0 is nonnegative, whenever yruia (t0) ≥ 0.

Lemma 3.1. Let r, u ∈ I(1,M), i ∈ Ir(1, nr) and a ∈ Iri (1, nu). For all t ≥ t0, from

(3.1), if yruia (t0) ≥ 0, then yruia (t) ≥ 0.

Proof. It follows from (3.1) and (2.15)–(2.17) that the system (3.2) is of the form

u′ = A(t, u)w(t, u), u(t0) ≥ 0, in [20, equation (8)], and satisfies the quasimonotonicity

condition. Furthermore, from Remark 4 in [20], we assert that this system (3.2) has

nonnegative solutions whenever yrqil (0) ≥ 0, ∀ i ∈ I(1, nr), l ∈ Iri (1, nq), r ∈ I(1,M),

and q ∈ Ir(1,M).

Remark 3.1. From the decomposition described in (2.1), we observe that yruia (t) =

N ru
ia = Sruia (t) + Iruia (t) + Rru

ia (t). Furthermore, that N rr
i0 =

∑M
u=1

∑nu

a=1 y
ru
ia . There-

fore, Lemma 3.1 established that for any nonnegative initial endemic population, the

number of residents of site sri present at home, yrrii , or visiting any given site sruia in

any other region Cu, y
ru
ia , is nonnegative. This implies that the total population of

residents of site sri present at home and also visiting sites in regions in their intra

and intra-regional accessible domains, N rr
i0 (t), is nonnegative. Moreover, Lemma 3.1

exibits that the effective population at any site in any region given by (2.3) is non-

negative at all time t ≥ t0. Furthermore, Rn2

+ = {y ∈ Rn2
: y ≥ 0} is a self-invariant

set with respect to (3.2).

In the following lemma, we use Lemma 3.1 to find an upper bound for the solution

process of (2.15)–(2.17)

Lemma 3.2. Let µ = min1≤u≤M,1≤a≤nu(δua). If

(3.3)
M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

yruia (t0) ≤
1

µ

M
∑

r=1

nr
∑

i=1

Br
i ,

then

(3.4)
M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

yruia (t) ≤
1

µ

M
∑

r=1

nr
∑

i=1

Br
i , for t ≥ 0, a.s.
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Proof. From 3.1, define

(3.5)

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

dyruia =

M
∑

r=1

nr
∑

i=1

[

dyrrii +

nr
∑

a6=i

dyrria +

M
∑

u 6=r

nr
∑

a=1

dyruia

]

From (2.15)–(2.17) and (3.5), one can see that

(3.6)
M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

dyruia =

[

M
∑

r=1

nr
∑

i=1

Br
i −

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

(δuay
ru
ia + duaI

ru
ia )

]

dt

From Lemma 3.1, and (3.6), we have

(3.7) d

{

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

yruia

}

≤

[

M
∑

r=1

nr
∑

i=1

Br
i − µ

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

yruia

]

dt

for a nonnegative differential of t. We note that (3.7) is a first order deterministic

differential inequality [46], and its solution is given by

(3.8)

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

yruia (t) ≤
1

µ

M
∑

r=1

nr
∑

i=1

Br
i +

[

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

yruia (t0)

]

e−µt

Therefore, (3.4) is satisfied provided (3.3) is valid.

Remark 3.2. From Lemma 3.2, we conclude that a closed ball in R3n2
under the

sum norm with radius r = 1
µ

∑M
r=1

∑nr

i=1B
r
i is self-invariant with regard to a two-scale

network dynamic of human epidemic process that is under the influence of human

mobility process [1].

Prior to presenting the model validation result, we need to establish an auxiliary

result. this result provides a fundamental tool in the context of the energy Lyapunov

function approach.

Lemma 3.3. Let us assume that the hypotheses of Lemma 3.2 be satisfied. Let V be

a function defined by V : R3n2

+ × R+ → R̄+ as follows

(3.9) V (x00
00) =

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

V ru
ia (xruia ),

where

(3.10) V ru
ia (xruia ) = [(Sruia − 1 − logSruia ) + (Iruia − 1 − log Iruia ) + (Rru

ia − 1 − logRru
ia )] .

Furthermore, let us denote

M00
001 = max

1≤r,q≤M,q 6=r,1≤l≤nq

1 +
S
rq
il

I
rq
il

,

M00
002 = max

1≤r,q≤M,q 6=r,1≤l≤nq

1 +
(Srqil )2

(Irqil )2
,

N00
00 = max

1≤r,q≤M,q 6=r,1≤l≤nq

1 + S
rq
il ,
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β000
000 = max

1≤r,q,u≤M,q 6=r,1≤l,a≤nq,u

β
urq
ail

v000
000 = max

1≤r,q,u≤M,q 6=r,1≤l,a≤nq,u

v
urq
ail

(ρ00
00, α

0
0, δ

0
0 , d

0
0, σ

00
i0 , ̺

0
0) = max

1≤r,u≤M,1≤a≤nu

(ρruia , α
u
a , δ

u
a , d

u
a, σ

ru
ia , ̺

u
a),(3.11)

Then there exists K̃ > 0 such that

(3.12) dV (x00
00) ≤ K̃dt+

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib

Proof. For r, u ∈ I(1,M), i ∈ Ir(1, nr) and a ∈ Iri (1, nu), under the assumptions

of Lemma 3.2, and the definitions of Suia, I
u
ia and Ru

ia, the function defined in (3.9)

belongs to V ∈ C2,1(R3n2

+ × R+, R̄+). Moreover, we rewrite (3.9) as

V (x00
00) =

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

V ru
ia (x00

00),

=
M
∑

r=1

nr
∑

i=1

{

V rr
ii (x00

00) +
nr
∑

a6=i

V rr
ia (x00

00) +
M
∑

u 6=r

nu
∑

a=1

V ru
ia (x00

00)

}

,(3.13)

where

(3.14) V ru
ia (x00

00) = (Sruia − 1 − logSruia ) + (Iruia − 1 − log Iruia ) + (Rru
ia − 1 − logRru

ia ).

From (3.13) and (3.14), it follows that

(3.15) dV (x00
00) =

M
∑

r=1

nr
∑

i=1

{

dV rr
ii (x00

00) +

nr
∑

a6=i

dV rr
ia (x00

00) +

M
∑

u 6=r

nu
∑

a=1

dV ru
ia (x00

00)

}

,

where

dV ru
ia (x00

00) =

[(

1 −
1

Sruia

)

dSruia +
1

2(Sruia )2
(dSruia )2

]

+

[(

1 −
1

Iruia

)

dIruia +
1

2(Iruia )2
(dIruia )2

]

+

[(

1 −
1

Rru
ia

)

dRru
ia +

1

2(Rru
ia )2

(dRru
ia )2

]

.(3.16)

In the following, by considering positive differential of t (0 < ∆t ≈ dt), using the

nature of the rate coefficients of (2.15)–(2.17) and definitions (3.11), we carefully

estimate the three terms in the righthand side of (3.16). This is achieved by the

usage of nested argument process.

Site level: the estimates on terms in the righthand side of (3.16) for the case of

u = r, and a = i
[(

1 −
1

Srrii

)

dSrrii +
1

2(Srrii )2
(dSrrii )2

]
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≤

{

Br
i +

nr
∑

b=1

ρrrib S
rr
ib +

M
∑

v 6=r

nv
∑

b=1

ρrvib S
rv
ib + ηri I

rr
ii + αriR

rr
ii + (γri + σri + δri + dri )

+
M
∑

v=1

nv
∑

b=1

βrrviib I
vr
bi +

1

2

M
∑

v=1

nv
∑

b=1

(vrrviib )2(Ivrbi )2

}

dt

+

[

(1 − Srrii )
M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]

,(3.17)

[(

1 −
1

Irrii

)

dIrrii +
1

2(Irrii )2
(dIrrii )2

]

≤

{

nr
∑

b=1

ρrrib I
rr
ib +

M
∑

v 6=r

nv
∑

b=1

ρrvib I
rv
ib

+ (̺ri + ηri + γri + σri + δri + dri ) +

M
∑

v=1

nv
∑

b=1

βrrviib

Srrii I
vr
bi

Irrii

+
1

2(Irrii )2
(Srrii )2

M
∑

v=1

nv
∑

b=1

(vrrviib )2(Ivrbi )2

}

dt

+

(

Srrii −
Srrii
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]

,(3.18)

and

(3.19)
(

1 −
1

Rrr
ii

)

dRrr
ii ≤

[

nr
∑

b=1

ρrribR
rr
ib +

M
∑

v 6=r

nv
∑

b=1

ρrvibR
rv
ib + ̺ri I

rr
ii + (γri + αri + σri + δri + dri )

]

dt.

Regional Level: The estimated on terms in the righthand side of (3.16) for the case

of u = r and a 6= i:

nr
∑

a6=i

[(

1 −
1

Srria

)

dSrria +
1

2(Srria )2
(dSrria )2

]

(3.20)

≤
nr
∑

a6=i

{[

σrriaS
rr
ii + ηraI

rr
ia + αraR

rr
ia +

M
∑

v=1

nv
∑

b=1

βrrvaib I
vr
ba + (σrria + δra + dra)

+
1

2

(

M
∑

v=1

nv
∑

b=1

(vrrvaib )
2(Ivrbi )2

)]

dt+ (1 − Srria )
M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
bi dw

rrv
aib

}

,

nr
∑

a6=i

[(

1 −
1

Irria

)

dIrria +
1

2(Irria )2
(dIrria )2

]

(3.21)

≤
nr
∑

a6=i

{[

σrria I
rr
ii +

M
∑

v=1

nv
∑

b=1

βrrvaib S
rr
ia I

vr
ba + (̺ra + ηra + ρrria + δra + dra)
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+
(Srria )2

2(Irria )2

M
∑

v=1

nv
∑

b=1

(vrrvaib )
2(Ivrba )2

]

dt+

(

Srria −
Srria
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
badw

rrv
aib

]}

,

and

(3.22)

nr
∑

a6=i

(

1 −
1

Rrr
ia

)

dRrr
ia ≤

nr
∑

a6=i

[σrriaR
rr
ii + ̺raI

rr
ia + (ρrria + αra + δra + dra)] dt.

Interregional Level: the estimate on terms in the righthand side of (3.16) for the

case of u 6= r, a ∈ I(1, nu):

M
∑

u 6=r

nu
∑

a=1

[(

1 −
1

Sruia

)

dSruia +
1

2(Sruia )2
(dSruia )2

]

≤
M
∑

u 6=r

nu
∑

a=1

{[γruia S
rr
ii + ηuaI

rr
ia + αuaR

ru
ia

(3.23)

+ (ρruia + δua + dua) +

M
∑

v=1

nv
∑

b=1

βurvaib I
vr
ba +

1

2

[

M
∑

v=1

nv
∑

b=1

(vurvaib )2(Ivrba )2

]]

dt

+ (1 − Sruia )

M
∑

v=1

nv
∑

b=1

vurvaib I
vr
badw

urv
aib

}

,

M
∑

u 6=r

nu
∑

a=1

[(

1 −
1

Iruia

)

dIruia +
1

2(Iruia )2
(dIruia )2

]

(3.24)

≤

M
∑

u 6=r

nu
∑

a=1

{[

γruia I
rr
ii +

M
∑

v=1

nv
∑

b=1

βurvaib S
ru
ia I

vu
ba

+ (ηra + ̺ua + ρruia + δua + dua) +
(Sruia )2

2(Iruia )2

(

M
∑

v=1

nv
∑

b=1

(vurvaib )2(Ivrba )2

)]

dt

+

(

Sruia −
Sruia
Iruia

) M
∑

v=1

nv
∑

b=1

vurvaib I
vr
ba dw

urv
aib

}

,

and

(3.25)

M
∑

u 6=r

nu
∑

a=1

(

1 −
1

Rru
ia

)

dRru
ia ≤

M
∑

u 6=r

nu
∑

a=1

[γruiaR
rr
ii + ̺uaI

ru
ia + (ρruia + αuaδ

u
a + dua)] dt.

From (3.16) and (3.17)–(3.19), the first term in the righthand side of (3.13) can be

estimated as follows:

M
∑

r=1

nr
∑

i=1

dV rr
ii (x00

00) =
M
∑

r=1

nr
∑

i=1

{[(

1 −
1

Srrii

)

dSrrii +
1

2(Srrii )2
(dSrrii )2

]

(3.26)

+

[(

1 −
1

Irrii

)

dIrrii +
1

2(Irrii )2
(dIrrii )2

]
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+

[(

1 −
1

Rrr
ii

)

dRrr
ii +

1

2(Rrr
ii )

2
(dRrr

ii )
2

]}

≤
M
∑

r=1

nr
∑

i=1

{[

Br
i +

nr
∑

b=1

ρrrib (S
rr
ib + Irrib +Rrr

ib ) +
M
∑

b6=r

nv
∑

b=1

ρrvib (S
rv
ib + Irvib +Rrv

ib )

+ (̺ri + ηri + αri )(S
rr
ii + Irrii +Rrr

ii ) + 3(γri + σri + αri + δri + dri )

+

(

1 +
Srrii
Irrii

) M
∑

v=1

nv
∑

b=1

βrrviib (Svrbi + Ivrbi +Rvr
bi )

+
1

2

(

1 +
(Srrii )2

(Irrii )2

) M
∑

v=1

nv
∑

b=1

(vrrviib )2(Svrbi + Ivrbi +Rvr
bi )

2

]

dt

+

(

1 −
Srrii
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]}

,

≤

{[

M
∑

r=1

nr
∑

i=1

Br
i + ρ00

00

M
∑

r=1

nr
∑

i=1

M
∑

v=1

nv
∑

b=1

(Srvib + Irvib +Rrv
ib )

+ (̺0
0 + η0

0 + α0
0)

M
∑

r=1

nr
∑

i=1

(Srrii + Irrii +Rrr
ii ) + 3

M
∑

r=1

nr
∑

i=1

(γ0
0 + σ0

0 + α0
0 + δ0

0 + d0
0)

+M00
001β

000
000

M
∑

r=1

nr
∑

i=1

M
∑

v=1

nv
∑

b=1

(Svrbi + Ivrbi +Rvr
bi )

+ M00
002(v

000
000)

2
M
∑

r=1

nr
∑

i=1

M
∑

v=1

nv
∑

b=1

(Svrbi + Ivrbi +Rvr
bi )

2

]

dt

+
M
∑

r=1

nr
∑

i=1

(

1 −
Srrii
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]}

From Lemma 3.2, (3.26) becomes

(3.27)
M
∑

r=1

nr
∑

i=1

dV rr
ii ≤ K̃1dt+

M
∑

r=1

nr
∑

i=1

(

1 −
Srrii
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]

,

where

K̃1 =

{[

M
∑

r=1

nr
∑

i=1

Br
i + ρ00

00

1

µ

M
∑

r=1

nr
∑

i=1

Br
i (̺

0
0 + η0

0 + α0
0)

1

µ

M
∑

r=1

nr
∑

i=1

Br
i(3.28)

+ 3
M
∑

r=1

nr
∑

i=1

(γ0
0 + σ0

0 + α0
0 + δ0

0 + d0
0)

+M00
001β

000
000

1

µ

M
∑

r=1

nr
∑

i=1

Br
i
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+ M00
002(v

000
000)

2 1

µ2

(

M
∑

r=1

nr
∑

i=1

Br
i

)2










> 0.

Similarly from (3.16) and (3.20)–(3.22) the second term in the righthand side of (3.13)

is estimated as

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

dV rr
ia

(3.29)

=

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

[(

1 −
1

Srria

)

dSrria +
1

2(Srria )2
(dSrria )2

]

+
nr
∑

a6=i

[(

1 −
1

Irria

)

dIrria +
1

2(Irria )2
(dIrria )2

]

+
nr
∑

a6=i

[(

1 −
1

Rrr
ia

)

dRrr
ia +

1

2(Rrr
ia)

2
(dRrr

ia)
2

]

≤
M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

{

σ00
00(S

rr
ii + Irrii +Rrr

ii ) + (η0
0 + α0

0 + ̺0
0)(S

rr
ia + Irria +Rrr

ia )

+β000
000N

00
00

M
∑

v=1

nv
∑

b=1

(Svrba + Ivrba +Rvr
ba)

+ 3(ρ00
00 + ̺0

0 + η0
0 + α0

0 + δ0
0 + d0

0) +
M00

002(v
000
000)

2

2

[

M
∑

v=1

nv
∑

b=1

(Svrba + Ivrba +Rvr
ba)

2

]}

dt

+

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(

1 −
Srria
Irria

)

[

M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
badw

rrv
aib

]

=

{

σ00
00

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(Srrii + Irrii +Rrr
ii ) + (η0

0 + α0
0 + ̺0

0)

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(Srria + Irria +Rrr
ia )

+ β000
000N

00
00

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

M
∑

v=1

nv
∑

b=1

(Svrba + Ivrba +Rvr
ba)

+

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

3(ρ00
00 + ̺0

0 + η0
0 + α0

0 + δ0
0 + d0

0)

+
M00

002(v
000
000)

2

2

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

[

M
∑

v=1

nv
∑

b=1

(Svrba + Ivrba +Rvr
ba)

2

]}

dt

+

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(

1 −
Srria
Irria

)

[

M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
badw

rrv
aib

]

.
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Again from and Lemma 3.2, the above random differential inequality reduces to

(3.30)

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

dV rr
ia ≤ K̃2dt+

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(

1 −
Srria
Irria

)

[

M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
badw

rrv
aib

]

.

where

K̃2 =

{

σ00
00

1

µ

M
∑

r=1

nr
∑

i=1

Br
i + (η0

0 + α0
0 + ̺0

0)
1

µ

M
∑

r=1

nr
∑

i=1

Br
i + β000

000N
00
00

1

µ

M
∑

r=1

nr
∑

i=1

Br
i

(3.31)

+

M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

3(ρ00
00 + ̺0

0 + η0
0 + α0

0 + δ0
0 + d0

0) +
M00

002(v
000
000)

2

2

1

µ2

(

M
∑

r=1

nr
∑

i=1

Br
i

)2






Finally from (3.13), (3.16) and (3.23)–(3.25), the third term in (3.13) is estimated as

below we get

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

dV ru
ia

(3.32)

=
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

[(

1 −
1

Sruia

)

dSruia +
1

2(Sruia )2
(dSruia )2

]

+
M
∑

u 6=r

nu
∑

a=1

[(

1 −
1

Iruia

)

dIruia +
1

2(Iruia )2
(dIruia )2

]

+

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

[(

1 −
1

Rru
ia

)

dRru
ia +

1

2(Rru
ia )2

(dRru
ia )2

]

≤

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

{γruia (Srrii + Irrii +Rrr
ii ) + (ηua + αua + ̺ua)(S

ru
ia + Iruia +Rru

ia )

+ 3(ηua + ̺ua + αua + ρruia + δua + dua)

+ (1 + Sruia )
M
∑

v=1

nv
∑

b=1

βurvaib (Svuba + Ivuba +Rvu
ba )

+
1

2

(

1 +
(Sruia )2

(Iruia )2

) M
∑

v=1

nv
∑

b=1

(vurvaib )2(Svuba + Ivuba +Rvu
ba )2

}

dt

+
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib

≤

{

γ00
00

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

(Srrii + Irrii +Rrr
ii ) + (η0

0 + α0
0 + ̺0

0)
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

(Sruia + Iruia +Rru
ia )
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+
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

3(η0
0 + ̺0

0 + α0
0 + ρ00

00 + δ0
0 + d0

0)

+ N00
00β

000
000

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(Svuba + Ivuba +Rvu
ba )

+
M00

002(v
000
000)

2

2

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(Svuba + Ivuba +Rvu
ba )2

}

dt

+
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib .

By using Lemma 3.2, differential inequality (3.33) becomes

(3.33)
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

dV ru
ia ≤ K̃3dt+

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib ,

where

K̃3 =

{

γ00
00

1

µ

M
∑

r=1

nr
∑

i=1

Br
i + (η0

0 + α0
0 + ̺0

0)
1

µ

M
∑

r=1

nr
∑

i=1

Br
i(3.34)

+
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

3(η0
0 + ̺0

0 + α0
0 + ρ00

00 + δ0
0 + d0

0)

+ N00
00β

000
000

1

µ

M
∑

r=1

nr
∑

i=1

Br
i +

M00
002(v

000
000)

2

2

1

µ2

(

M
∑

r=1

nr
∑

i=1

Br
i

)2






Hence, from (3.27), (3.30) and (3.33), we arrive at the following stochastic differential

inequality

dV (x00
00(t)) ≤ (K̃1 + K̃2 + K̃3) dt+

M
∑

r=1

nr
∑

i=1

(

1 −
Srrii
Irrii

)

[

M
∑

v=1

nv
∑

b=1

vrrviib I
vr
bi dw

rrv
iib

]

(3.35)

+
M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

(

1 −
Srria
Irria

)

[

M
∑

v=1

nv
∑

b=1

vrrvaib I
vr
badw

rrv
aib

]

+
M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib .

Therefore choosing K̃ = K̃1+K̃2+K̃3 > 0, and combining the last three summations,

concludes the proof of the theorem.

We now show the existence of a unique solution of the system (2.15)–(2.17) in

the following theorem.
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Theorem 3.1. Given any initial condition x00
00(t0) ∈ R3n2

+ under the assumptions of

Lemma 4.1, there is a unique solution process of the system (2.15)–(2.17) in R3n2

+ , for

t ≥ t0, almost surely.

Proof. Given that the rate functions of the system are locally Lipschitz continuous in

x00
00, it follows that for any initial value x00

00(t0) ∈ R3n2

+ , there is a unique local solution

of the system (2.15)–(2.17) x00
00(t), for t ∈ (t0, te), where at t = te is the first exit time

of x00
00. Therefore to show the solution process of the system exists for all t ≥ t0, it

suffices to show that te = ∞.

Let k00
00 ∈ Rn2

+ . From (2.20) and (2.21), we have

(3.36) ‖k00
00‖∞ = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu

|kruia |, k00
00min = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

|kruia |.

We denote

(3.37) k ≡ k00
00min.

We choose k∗0000 ∈ Rn2

+ with each component k∗ruia , sufficiently large such that Sruia (t0),

Iruia (t0), R
ru
ia (t0) ∈ [ 1

k∗ru
ia

, k∗ruia ] ≡ B̄R(
1

k∗ru
ia

+k∗ru
ia

2
;

1
k∗ru
ia

−k∗ru
ia

2
), for i ∈ I(1, nr), a ∈ I(1, nu),

and r, u ∈ I(1,M). In other words, from (2.18), x00
00(t0) ∈

∏M

r=1

∏M

u=1

∏ni

i=1

∏nu

a=1[
1

k∗ru
ia

,

k∗ruia ] × [ 1
k∗ru

ia
, k∗ruia ] × [ 1

k∗ru
ia
, k∗ruia ]. From (3.37) let k0 ≡ k∗0000min.

Let k00
00 ∈ Rn2

+ be an arbitrary vector whose components kruia satisfy kruia ≥

k∗ruia , ∀i ∈ I(1, ni), a ∈ I(1, nu), and r, u ∈ I(1,M)). And let the local solution

x00
00(t) ∈

∏M
r=1

∏M
u=1

∏ni

i=1

∏nu

a=1[
1
kru

ia
, kruia ] × [ 1

kru
ia
, kruia ] × [ 1

kru
ia
, kruia ], for t ∈ (0, te) where

te is the first hitting time of the solution process. For t ≤ te, it follows that

Sruia (t), Iruia (t), Rru
ia (t) ∈ [ 1

||k00
00||∞

, k00
00min], for all i ∈ I(1, nr), a ∈ I(1, nu), r, u ∈ I(1,M).

Using (3.37), define a stoping time for the process as follows

τk = inf

{

t ∈ (0, te) : min
1≤r,u≤M,1≤i≤nr,1≤a≤nu

(Sruia (t), Iruia (t), Rru
ia (t))(3.38)

≤
1

||k00
00||∞

, max
1≤r,u≤M,1≤i≤nr,1≤a≤nu

(Sruia (t), Iruia (t), Rru
ia (t)) ≥ k

}

, and

τk(t) = min{t, τk}, for t ≥ t0

where k is defined in (3.37). Furthermore, we set inf∅ = ∞.

It follows from (3.38) that τk increases as k → ∞. We let τ∞ = limk→∞ τk. From

(3.38) it implies that

(3.39) τ∞ ≤ te a.s.

Therefore to show te = ∞, we only show that τ∞ = ∞ a.s.
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On the contrary suppose τ∞ <∞, then ∃ T > 0, such that for a given 0 < ǫ < 1,

P (τ∞ ≤ T ) > ǫ. This means that {τk} is a finite sequence. Moreover, from the

definition of a finite sequence there exists a vector k100
00 ∈ Rn2

, with k100
00min ≡ k1 ≥ k0,

(where k1 ≡ k100
00min is defined by (3.37) and (3.36)),

(3.40) P (τk ≤ T ) ≥ ǫ,

whenever k ≥ k1. From (3.14), (3.13) can be rewritten as

V (x00
00) =

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

[(Sruia − 1 − logSruia ) + (Iruia − 1 − log Iruia )(3.41)

+(Rru
ia − 1 − logRru

ia )] .

From Lemma 3.2& 3.3, the stopped solution process (2.15)–(2.17) satisfies the follow-

ing stochastic inequality for some K̃ > 0.

(3.42) dV (x00
00(τk(t))) ≤ K̃dt+

M
∑

r=1

nr
∑

i=1

M
∑

u=1

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

(

1 −
Sruia
Iruia

)

vurvaib I
vu
ba dw

urv
aib

Furthermore, for t1 ≤ T , integrating both sides of (3.42) on [0, t1 ∧ τk], and taking

the expected values of both sides, it implies that

E(V (x00
00(t))) ≤ V (x00

00(0)) + K̃(t1 ∧ τk)

≤ V (x00
00(t)) + K̃T(3.43)

Given that k ≥ k1, we set Ek = {τk ≤ T}. Then from (3.40), we see that P (Ek) ≥ ǫ.

If ω ∈ Ek, then ω is an event at the stopping time where at least one of Sruia (τk, ω),

Iruia (τk, ω), or Rru
ia (τk, ω) whenever r, u ∈ I(1,M), i ∈ I(1, nr) and a ∈ I(1, nu) is

1
||k00

00||∞
or k ≡ kmin. This implies from (3.41) that

(3.44) V (x00
00(τk, ω)) ≥ [kmin − 1 − log kmin] ∧

[

1

‖k00
00‖∞

− 1 − log ‖k00
00‖∞

]

, ∀ω ∈ Ek.

It follows from (3.43) and (3.44) that

V (x00
i0 (0)) + K̃T ≥ E(IEk(ω)V (x00

00(τk, ω)))

≥ ǫ

{

[kmin − 1 − log kmin] ∧

[

1

‖k00
00‖∞

− 1 − log ‖k00
00‖∞

]}

,

(3.45)

where IEk(ω) is the indicator function of Ek.

Hence as k = kmin → ∞, (3.45) implies that V (x00
00(t0))+K̃T → ∞ which leads to

a contradiction to the existence of a local solution. Therefore, we must have τ∞ = ∞,

and the rest of the proof follows.
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Remark 3.3. For any r ∈ I(1,M) and i ∈ I(1, nr), Lemmas 3.1, 3.2, 3.3 and

Theorem 3.1 show that there exists a positive self-invariant set for system (2.15)–

(2.17) given by

(3.46)

A =

{

(Sruia , I
ru
ia , R

ru
ia ) : yruia (t) ≥ 0 and

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

yruia (t) ≤
1

µ

M
∑

r=1

nr
∑

i=1

Br
i

}

whenever u ∈ Ir(1,M) and a ∈ Iri (1, nu). We shall denote

(3.47) B̄ ≡
1

µ

M
∑

r=1

nr
∑

i=1

Br
i

4. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF DISEASE FREE

EQUILIBRIUM

In this section, we study the existence and the asymptotic behavior of the disease

free equilibrium state of the system (2.15)–(2.17). The disease free equilibrium is

obtained by solving the system of algebraic equations obtained by setting the drift

and the diffusion parts of the system of stochastic differential equations to zero. In

addition, conditions that I = R = 0 in the event when there is no disease in the

population. We summarize the results as follows.

For any r, u ∈ I(1,M), i ∈ I(1, nr) and a ∈ I(1, nu), let

(4.1) Dr
i = γri + σri + δri −

nr
∑

a=1

ρrriaσ
rr
ia

ρrria + δra
−

M
∑

u 6=r

nu
∑

a=1

ρrriaγ
ru
ia

ρruia + δua
> 0.

Furthermore, let (Sru∗ia , Iru∗ia , Rru∗
ia ), be the equilibrium state of the system (2.15)–

(2.17). One can see that the disease free equilibrium state is given by Eru
ia =

(Sru∗ia , 0, 0), where

(4.2) Sru∗ia =



















Br
i

Dr
i
, for u = r, a = i,

Br
i

Dr
i

σrr
ij

ρrr
ij +δr

j
, for u = r, a 6= i,

Br
i

Dr
i

γru
ia

ρru
ia +δu

a
, for u 6= r.

The asymptotic stability property of Eru
ia will be established by verifying the condi-

tions of the stochastic version of the Lyapunov second method given in [21, Theo-

rem 2.4], [46], and [21, Theorem 4.4], [46] respectively. In order to study the qualita-

tive properties of (2.15)–(2.17) with respect to the equilibrium state (Sru∗ia , 0, 0), first,

we to use the change of variable. For this purpose, we use the following transforma-

tion:

(4.3)











U ru
ia = Sruia − Sru∗ia

V ru
ia = Iruia

W ru
ia = Rru

ia .
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By employing this transformation, system (2.15)–(2.17) is transformed into the fol-

lowing forms

(4.4)

dU
rq
il =











































































[
∑M

q 6=r

∑nq

a=1 ρ
rq
iaU

rq
ia + ηri V

rr
ii + αriW

rr
ii

−(γri + σri + δri )U
rr
ii −

∑M

u=1

∑nu

a=1 β
rru
iia (Srr∗ii + U rr

ii )V ur
ai

]

dt

−
[
∑M

u=1

∑nu

a=1 v
rru
iia (Srr∗ii + U rr

ii )V ur
ai dw

rru
iia (t)

]

, for q = r, l = i
[

σrrij U
rr
ii + ηrjV

rr
ij + αrjW

rr
ij − (ρrrij + δrj )U

rr
ij −

∑M
u=1

∑nu

a=1 β
rru
jia (Srr∗ij + U rr

ij )V ur
aj

]

dt

−
[
∑M

u=1

∑nu

a=1 v
rru
jia (Srr∗ij + U rr

ij )V ur
aj dw

rru
jia (t)

]

, for q = r, l = j, j 6= i,
[

γ
rq
il U

rr
ii + η

q
l V

rq
il + α

q
lW

rq
il − (ρrqil + δ

q
l )U

rq
il

−
∑M

u=1

∑nu

a=1 β
qru
lia S

rq
il I

uq
al

]

dt−
[
∑M

u=1

∑nu

a=1 v
qru
lia (Srq∗il + U

rq
il )V uq

al dw
qru
lia (t)

]

,

for q 6= r,

(4.5)

dV
rq
il =











































































[
∑M

q=1

∑nq

a=1 ρ
rq
iaV

rq
ia − (ηri + ̺ri + γri + σri + δri + dri )W

rr
ii

+
∑M

u=1

∑nu

a=1 β
rru
iia (Srr∗ii + U rr

ii )V ur
ai

]

dt

+
[
∑M

u=1

∑nu

a=1 v
rru
iia (Srr∗ii + U rr

ii )V ur
ai dw

rru
iia (t)

]

, for q = r, l = i
[

σrrij V
rr
ii − (ηrj + ̺rj + ρrrij + δrj + drj)V

rr
ij +

∑M

u=1

∑nu

a=1 β
rru
jia (Srr∗ij + U rr

ij )V ur
aj

]

dt

+
[
∑M

u=1

∑nu

a=1 v
rru
jia (Srr∗ij + U rr

ij )V ur
aj dw

rru
jia (t)

]

, for q = r, l = j, j 6= i,
[

γ
rq
il V

rr
ii − (ηql + ̺

q
l + ρ

rq
il + δ

q
l + d

q
l )V

rq
il

∑M
u=1

∑nu

a=1 β
qru
lia (Srq∗il + U

rq
il )V uq

al

]

dt

+
[
∑M

u=1

∑nu

a=1 v
qru
lia (Srq∗il + U

rq
il )V uq

al dw
qru
lia (t)

]

, for q 6= r,

and

(4.6)

dW
rq
il =



















[
∑M

q 6=r

∑nq

l=1 ρ
rq
ilW

rq
il + ̺riV

rr
ii − (γri + σri + αri + δri )W

rr
ii

]

dt, for q = r, l = i
[

σrrijW
rr
ii + ̺rjV

rr
ij − (ρrrij + αrj + δrj )W

rr
ij

]

dt, for q = r, l = j, j 6= i
[

γ
rq
il W

rr
ii + ̺

q
lV

rq
il − (ρrqil + α

q
l + δ

q
l )W

rq
il

]

dt, for q 6= r

We state and prove the following lemmas that would be useful in the proofs of the

stability results.

Lemma 4.1. Let V : R3n2
× R+ → R+ be a function defined by

(4.7) V (x̃00
00) =

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

V (x̃ruia ),

where,

V (x̃ruia ) = (Sruia − Sru∗ia + Iruia )2 + cruia (Iruia )2 + (Rru
ia )2(4.8)

x̃00
00 = (U ru

ia , V
ru
ia ,W

ru
ia )T and cruia ≥ 0.
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Then V ∈ C2,1(R3n2
× R+,R+), and it satisfies

(4.9) b(‖x̃00
00‖) ≤ V (x̃00

00(t)) ≤ a(‖x̃00
00‖)

where

b(‖x̃00
00‖) = min

1≤r,u≤M,1≤i≤nr,1≤a≤nu

{

cruia
2 + cruia

} M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2

]

(4.10)

a(‖x̃00
00‖) = max

1≤r,u≤M,1≤i≤nr,1≤a≤nu

{cruia + 2}

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2

]

.

Proof. From (4.6), (4.7) can be written as

V (xruia ) = (U ru
ia + V ru

ia )2 + cruia (V ru
ia )2 + (W ru

ia )2

= (U ru
ia )2 + 2U ru

ia V
ru
ia + (cruia + 1)(V ru

ia )2 + (W ru
ia )2

= (U ru
ia )2 + (cruia + 1)(V ru

ia )2 + 2





1
√

1 +
cru
ia

2

U ru
ia





(

√

1 +
cruia
2
V ru
ia

)

+ (W ru
ia )2

=

(

−
1

1 +
cru
ia

2

+ 1

)

(U ru
ia )2 +

(

−

(

1 +
cruia
2

)

+ cruia + 1

)

(V ru
ia )2 + (W ru

ia )2

+









1
√

1 +
cru
ia

2

U ru
ia



+

(

√

1 +
cruia
2
V ru
ia

)





2

Therefore, by nothing the fact that min{1 − 1

1+
cru
ia
2

,
cru
ia

2
, 1}, we have

(4.11) V (xruia ) ≥
cruia

2 + cruia

[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2

]

Hence from (4.11) we have

V (x̃00
00) ≥

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

cruia
2 + cruia

[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2)

]

(4.12)

≥ b(‖x̃00
00‖).

On the other hand, it follows from (4.7) that

V (xruia ) = (U ru
ia )2 + 2U ru

ia V
ru
ia + (cruia + 1)(V ru

ia )2 + (W ru
ia )2(4.13)

≤ 2(U ru
ia )2 + (cruia + 2)(V ru

ia )2 + (W ru
ia )2

≤ (cruia + 2)
[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2

]
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Thus, from (4.11) and (4.13) we have

V (x00
00(t)) ≤

M
∑

r=1

M
∑

u=1

nr
∑

i=1

nu
∑

a=1

(cruia + 2)
[

(U ru
ia )2 + (V ru

ia )2 + (W ru
ia )2

]

(4.14)

≤ a(‖x̃00
00‖)

Therefore from (4.7), (4.12) and (4.14), we establish the desired inequality.

Remark 4.1. Lemma 4.1 shows that the Lyapunov function V defined in (4.7) is

positive definite ((4.12)), decrescent and radially unbounded ((4.14)) function [21, 46].

We now state the following lemma

Lemma 4.2. Assume that the hypothesis of Lemma 4.1 are satisfied. For each

r, u, v ∈ I(1,M), i ∈ I(1, nr), a ∈ I(1, nu) and b ∈ I(1, nv), let

(4.15) durai =

M
∑

v=1

nr
∑

b=1

cvuba

[

βuvrabi (
Svu∗ba

µvuba
+
B̄2

µvuba
) + (vuvrabi )2(Svu∗ba + B̄)2

]

.

for some positive numbers cruia . Furthermore, let

(4.16) U
ru
ia =







































»

2
PM

u=1

Pnu
a=1 µ

ru
ia +

PM
u 6=r

Pnr
a=1

(γru
ia )2

µrr
ii

+
Pnr

a 6=i

(σrr
ia )2

µrr
ii

+ 3
2
µrr

ii

–

(γr
i +σr

i +δr
i )

for u = r, i = a
»

(ρrr
ia )2

µrr
ia

+µrr
ii + 3

2
µrr

ia

–

(ρrr
ia +δr

a)
, for u = r, a 6= i

»

(ρru
ia )2

µru
ia

+µrr
ii + 3

2
µru

ia

–

(ρru
ia +δu

a )
, for u 6= r,

(4.17) V
ru
ia =























PM
u=1

Pnu
a=1

1
2
µru

ia +
PM

v=1

Pnv
b=1

1
2
βrrv

iib (Srr∗
ii +µrr

ii )+ 1
2
drr

ii

ηr
i +̺r

i +γr
i +σr

i +δr
i +dr

i
, for a = i, u = r

1
2
µrr

ii +
PM

v=1

Pnv
b=1

1
2
βrrv

aib (Srr∗
ia +µrr

ia )+ 1
2
drr

ai

ηr
a+̺r

a+ρrr
ia+δr

a+dr
a

, for a 6= i, u = r

1
2
µrr

ii +
PM

v=1

Pnv
b=1

1
2
βurv

aib (Sru∗
ii +µru

ia )+ 1
2
dur

ai

ηu
a+̺u

a+ρru
ia +δu

a+du
a

, for u 6= r.

and

(4.18)

W
ru
ia =







































»

1
2

PM
u=1

Pnu
a=1 µ

ru
ia + 1

2
µrr

ii + 1
2

Pnr
a 6=i

(σrr
ia )2

µrr
ii

+ 1
2

PM
u 6=r

Pnr
a=1

(γru
ia )2

µrr
ii

+
(αr

i )2

µrr
ii

–

(γr
i +σr

i +αr
i +δr

i )
, for u = r, a = i,

»

1
2

(ρrr
ia )2

µrr
ia

+ 1
2
µrr

ii + 1
2
µrr

ia +
(αr

a)2

µrr
ia

–

(ρrr
ia +αr

a+δr
a)

, for u = r, a 6= i,
»

1
2

(ρru
ia )2

µru
ia

+ 1
2
µrr

ii + 1
2
µru

ia +
(αu

a )2

µru
ia

–

(ρru
ia +αu

a+δu
a )

, for u 6= r

for some suitably defined positive number µruia , depending on δua , for all r, u ∈ Ir(1,M),

i ∈ I(1, n) and a ∈ Iri (1, nr). Assume that Uruia ≤ 1, Vru
ia < 1 and Wru

ia ≤ 1.

There exist positive numbers φruia , ψ
ru
ia and ϕruia such that the differential operator LV
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associated with Ito-Doob type stochastic system (2.15)–(2.17) satisfies the following

inequality

LV (x̃00
00) ≤

M
∑

r=1

nr
∑

i=1

[

−[φrrii (U
rr
ii )2 + ψrrii (V

rr
ii )2 + ϕrrii (W

rr
ii )2]

−

nr
∑

a6=i

[φrria(U
rr
ia )2 + ψrria (V

rr
ia )2 + ϕrria(W

rr
ia )2]

−

M
∑

u 6=r

nu
∑

a=1

[φruia (U rr
ia )2 + ψruia (V ru

ia )2 + ϕruia (W ru
ia )2]

]

.(4.19)

Moreover,

(4.20) LV (x̃00
00) ≤ −cV (x̃00

00)

where a positive constant c is defined by

(4.21) c =
min1≤r,u≤M,1≤i≤nr,1≤a≤nu(φruia , ψ

ru
ia , ϕ

ru
ia )

max1≤r,u≤M,1≤i≤nr,1≤a≤nu {C
ru
ia + 2}

Proof. The computation of differential operator [46, 21] applied to the Lyapunov

function V in (4.7) with respect to the large-scale system of Ito-Doob type stochastic

differential equation (2.15)–(2.17) is as follows:

LV (x̃rrii ) = 2
M
∑

u=1

nu
∑

a=1

[(1 + Crr
ii )ρruia V

ru
ia V

rr
ii + ρruiaU

ru
ia U

rr
ii + ρruia V

ru
ia U

rr
ii + ρruiaU

ru
ia V

rr
ii

(4.22)

+ρruiaW
ru
ia W

rr
ii ] + 2αriU

rr
ii W

rr
ii + 2(αri + ̺ri )V

rr
ii W

rr
ii

− 2[̺ri + dri + 2(γri + σri + δri )]V
rr
ii U

rr
ii − 2(γri + σri + δri )(U

rr
ii )2

− 2[crrii η
r
i + 2(crrii + 1)(̺ri + γri + σri + δri + dri )](V

rr
ii )2

− 2(γri + σri + αri + δri )(W
rr
ii )2

+ 2

M
∑

u=1

nu
∑

a=1

crrii β
rru
iia (Srr∗ii + U rr

ii )V ur
ai V

rr
ii

+ crrii

M
∑

u=1

nu
∑

a=1

(vrruiia )2(Srr∗ii + U rr
ii )2(V ur

ai )2,

for u = r, a = i

nr
∑

a6=i

LV (x̃rria) =

nr
∑

a6=r

{2(1 + crria)σ
rr
iaV

rr
ia V

rr
ii + 2σrriaU

rr
ia U

rr
ii + 2σrriaV

rr
ia U

rr
ii + 2σrriaU

rr
ia V

rr
ii

(4.23)

+ 2σrriaW
rr
iaW

rr
ii
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− 2[crriaη
r
a + 2(crria + 1)(̺ra + ρrria + δra)](V

rr
ia )2 − 2(ρrria + δra)(U

rr
ia )2

− 2(ρrria + αra + δra)(W
rr
ia )2 + 2αraW

rr
ia U

rr
ia + 2(αra + ̺ra)V

rr
ia W

rr
ia

− 2[̺ra + dra + 2(ρrria + δra)]V
rr
ia U

rr
ia }

+ 2
nr
∑

a6=r

M
∑

v=1

nv
∑

b=1

crriaβ
rrv
aib (Srr∗ia + U rr

ia )V vr
ba V

rr
ia

+
nr
∑

a6=r

crria

M
∑

v=1

nv
∑

b=1

(vrrvaib )
2(Srr∗ia + U rr

ia )2(V vr
ba )2 , for u = r, a 6= i

M
∑

u=1

nr
∑

a=1

LV (x̃ruia ) =
M
∑

u=1

nu
∑

a=1

{

2(1 + cruia )γruia V
ru
ia V

rr
ii + 2γruia U

ru
ia U

rr
ii

(4.24)

+ 2γruia V
ru
ia U

rr
ii + 2γruia U

ru
ia V

rr
ii

+ 2γruiaW
ru
ia W

rr
ii − 2[cruia η

u
a + 2(cruia + 1)(̺ua + ρruia + δua + dua)](V

ru
ia )2

− 2(ρruia + δua )(U
ru
ia )2

− 2(ρruia + αua + δua )(W
rr
ia )2 + 2αuaW

ru
ia U

ru
ia + 2(αua + ̺ua)V

ru
ia W

ru
ia

− 2[̺ua + dua + 2(ρruia + δua )]V
ru
ia U

ru
ia

}

+ 2
M
∑

u=1

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

cruiaβ
urv
aib (Sru∗ia + U ru

ia )V vu
ba V

ru
ia

+
M
∑

u=1

nr
∑

a=1

cruia

M
∑

v=1

nv
∑

b=1

(vurvaib )2(Sru∗ia + U ru
ia )2(V vu

ba )2, for u 6= r

By using (3.46) and the algebraic inequality

(4.25) 2ab ≤
a2

g(c)
+ b2g(c)

where a, b, c ∈ R, and the function g is such that g(c) ≥ 0. The sixth term in (4.22),

(4.23) and (4.24) is estimated as follows:

2
M
∑

v=1

nv
∑

b=1

crrii β
rrv
iib (Srr∗ii + U rr

ii )V vr
bi V

rr
ii(4.26)

≤
M
∑

v=1

nv
∑

b=1

crrii β
rrv
iib (Srr∗ii g

r
i (δ

r
i ) + gri (δ

r
i ))(V

rr
ii )2

+

M
∑

v=1

nv
∑

b=1

crrii β
rrv
iib

(

Srr∗ii

gri (δ
r
i

) +
B̄2

gri (δ
r
i )

)

(V vr
bi )2



256 D. WANDUKU AND G. S. LADDE

nr
∑

a6=r

2
M
∑

v=1

nv
∑

b=1

crriaβ
rrv
aib (Srr∗ia + U rr

ia )V vr
ba V

rr
ia

≤
nr
∑

a6=r

M
∑

v=1

nv
∑

b=1

crriaβ
rrv
aib (Srr∗ia g

r
i (δ

r
a) + gri (δ

r
a))(V

rr
ia )2

+
nr
∑

a6=r

M
∑

v=1

nv
∑

b=1

crriaβ
rrv
aib

(

Srr∗ia

gri (δ
r
a

) +
B̄2

gri (δ
r
a)

)

(V vr
bi )2

and

2
M
∑

u=1

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

cruia β
urv
aib (Sru∗ia + U ru

ia )V vu
ba V

ru
ia(4.27)

≤
M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

cruia β
urv
aib (Sru∗ia gri (δ

u
a ) + gri (δ

u
a ))(V

ru
ia )2

+
M
∑

u 6=r

nu
∑

a=1

M
∑

v=1

nv
∑

b=1

cruia β
urv
aib

(

Sru∗ia

gri (δ
u
a

) +
B̄2

gri (δ
u
a )

)

(V vu
ba )2

From (4.22), (4.23) and repeated usage of inequality (4.25) and (4.27) coupled with

algebraic manipulations and simplifications, we have the following inequality

LV (x̃00
00) ≤

M
∑

r=1

nr
∑

i=1

{[

2

M
∑

u=1

nu
∑

a=1

µruia + 3µrrii + 2

nr
∑

a6=i

(σrria )
2

µrrii
+ 2

M
∑

a6=r

nr
∑

a=1

(γruia )2

µrrii

(4.28)

−2(γri + σri + δri )] (U
rr
ii )2

+

[

M
∑

u=1

nu
∑

a=1

[(2 + crrii )µ
ru
ia ] + µrrii +

(̺ri )
2

µrrii
+

(̺ri + dri )
2

µrrii
+ 4

(γri + σri + δri )
2

µrrii

− 2[crrii η
r
i + (crrii + 1)(̺ri + γri + σri + δri + dri )] +

nr
∑

a6=r

(2 + crria)(σ
rr
ia )

2

µrrii

+

M
∑

u 6=r

nr
∑

a=1

(2 + cruia )(γruia )2

µrrii
+ crrii

M
∑

v=1

nr
∑

b=1

βrrviib (Srr∗ii µ
rr
ii + µrrii )

]

(V rr
ii )2

+

[

M
∑

u=1

nu
∑

a=1

µruia + 2
(αri )

2

µrrii
+ µrrii +

nr
∑

a6=i

(σrria )
2

µrrii
+

M
∑

a6=r

nr
∑

a=1i

(γruia )2

µrrii

−2(γri + σri + αri + δri )] (W
rr
ii )2

+
nr
∑

a6=i

{[

2
(ρrria)

2

µrria
+ 2µrrii + 3µrria − 2(ρrria + δra)

]

(U rr
ia )2 +

[

(2 + crrii )
(ρrria)

2

µrria

(2 + crria)µ
rr
ii − 2[crriaη

r
a + (1 + crria)(η

r
a + ρrria + δra + dra)] +

(̺ra + dra)
2

µrria
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+4
(ρrria + δra)

2

µrria
+ µrria + crria

M
∑

v=1

nr
∑

b=1

βrrvaib (Srriaµ
rr
ia + µrria)

]

(V rr
ia )2

+

[

(ρrria)
2

µrria
+ µrrii + µrria +

2(αra)
2

µrria
− 2(ρrria + αra + δra)

]

(W rr
ia )2

}

+

M
∑

u 6=r

nu
∑

a=1

{[

2
(ρruia )2

µruia
+ 2µrrii + 3µruia − 2(ρruia + δua )

]

(U ru
ia )2

+

[

(2 + crrii )
(ρruia )2

µruia
+ (2 + cruia )µrrii − 2[cruia η

u
a + (1 + cruia )(ηua + ρruia + δua + dua)]

+
(̺ua + dua)

2

µruia
+ 4

(ρruia + δua )
2

µruia
+ µruia + cruia

M
∑

v=1

nr
∑

b=1

βurvaib (Sru∗ia µruia + µruia )

]

(V ru
ia )2

+

[

(ρruia )2

µruia
+ µrrii + µruia +

2(αua)
2

µruia
− 2(ρruiaα

u
a + δua )

]

(W ru
ia )2

}}

+
M
∑

r=1

nr
∑

i=1

crrii

M
∑

v=1

nr
∑

b=1

[

βrrviib (
Srr∗ii

µrrii
+
B̄2

µrrii
) + (vrrviib )2(Srr∗ii + B̄)2

]

(V vr
bi )2

+
M
∑

r=1

nr
∑

i=1

nr
∑

a6=i

crria

M
∑

v=1

nr
∑

b=1

[

βrrvaib (
Srr∗ia

µrria
+
B̄2

µrria
) + (vrrvaib )

2(Srr∗ia + B̄)2

]

(V vr
ba )2

+

M
∑

r=1

nr
∑

i=1

M
∑

u 6=r

nr
∑

a=1

cruia

M
∑

v=1

nr
∑

b=1

[

βurvaib (
Sru∗ia

µruia
+
B̄2

µruia
) + (vurvaib )2(Sru∗ia + B̄)2

]

(V vu
ba )2,

where µruia = gri (δ
u
a ), g

r
i is appropriately defined by (4.25).

For each r, u ∈ I(1,M), i ∈ I(1, nr), and a ∈ I(1, nu), using algebraic manipu-

lations and (4.16), (4.17) and (4.18), the coefficients of (U ru
ia )2, (V ru

ia )2 and (W ru
ia )2 in

(4.28) defined by φruia , ψruia and ϕruia respectively:

(4.29) φruia =



















2(γri + σri + δri )(1 − Uruia ), for u = r, a = i

2(ρrria + δra + δra)(1 − Uruia ), for u = r, a 6= i

2(ρruia + δua + δua )(1 − Uruia ), for u 6= r,

(4.30) ψruia =



















































[2crrii (1 − V
rr
ii )(η

r
i + ̺ri + γri + σri + δri + dri ) − E

rr
ii ]

+2(̺ri + γri + σri + δri + dri ), for u = r, a = i

[2crria(1 − Vrr
ia)(η

r
a + ̺ra + ρrria + δra + dra) − Err

ia ]

+2(̺ra + ρrria + δra + dra), for u = r, a 6= i

[2cruia (1 − Vru
ia )(ηua + ̺ua + ρruia + δua + dua) − Eru

ia ]

+2(̺ua + ρruia + δua + dua), for u 6= r
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and

(4.31) ϕruia =



















2(γri + σri + αri + δri )(1 − Wru
ia ), for u = r, a = i,

2(ρrria + δra)(1 − Wru
ia ), for u = r, a 6= i,

2(ρruia + δua )(1 − W
ru
ia ), for u 6= r

where

(4.32)

E
ru
ia =



































































[

2
∑M

u=1

∑nu

a=1 µ
ru
ia + µrrii +

(̺r
i )2

µrr
ii

+
(̺r

i +dr
i )2

µrr
ii

+ 4
(γr

i +σr
i +δr

i

µrr
ii

+
∑nr

a6=r
(2+crr

ia )(σrr
ia )2

µrr
ii

+
∑M

u 6=r

∑nr

a=1

(

(2+cru
ia )(γru

ia )2

µrr
ii

)

+
∑nr

b6=i c
rr
bi d

rr
ii +

∑M

v 6=r

∑nr

b=1 c
vr
bi d

rr
ii

]

,

for u = r, a = i,

(2 + crrii )
(ρrr

ia )2

µrr
ia

+ (̺r
a)2

µrr
ia

+ 2µrrii + (̺r
a+dr

a)2

µrr
ia

+4
(ρrr

ia+δr
a)2

µrr
ia

+ µrria +
∑nr

b6=i c
rr
bad

rr
ia +

∑M
v 6=r

∑nr

b=1 c
vr
bad

rr
ia , for u = r, a 6= i,

(2 + crrii )
(ρru

ia )2

µru
ia

+ (̺u
a)2

µru
ia

+ 2µrrii + (̺u
a+du

a)2

µru
ia

+4
(ρru

ia +δu
a )2

µru
ia

+ µruia +
∑nr

b6=i c
ru
bad

ru
ia +

∑M
v 6=r

∑nr

b=1 c
vu
bad

ru
ia , u 6= r

Under the assumptions on Uruia , Vru
ia and Wru

ia , it is clear that φruia , ψ
ru
ia and ϕruia are

positive for suitable choice of cruia defined in (4.8). We substitute (4.15), (4.29), (4.30)

and (4.32) into (4.28). Thus inequality (4.28) can be rewritten as

LV (x̃00
00) ≤

M
∑

r=1

nr
∑

i=1

−
{

[φrrii (U
rr
ii )2 + ψrrii )(V

rr
ii )2 ϕrrii (W

rr
ii )2](4.33)

+

nr
∑

a6=r

[φrria(U
rr
ia )2 + ψrria (V

rr
ia )2 + ϕrria(W

rr
ia )2]

+

M
∑

u 6=r

nu
∑

a=1

[φruia (U ru
ia )2 + ψruia (V ru

ia )2 + ϕruia (W ru
ia )2]

}

This proves the inequality (4.19). Now, the validity of (4.20) follows from (4.19), that

is,

LV (x̃00
00) ≤ −cV (x̃00

00),

where c =
min1≤r,u≤M,1≤i≤nr,1≤a≤nu (φru

ia ,ψ
ru
ia ,ϕ

ru
ia )

max1≤r,u≤M,1≤i≤nr,1≤a≤nu{Cru
ia +2}

. This establishes the result.

We now formally state the stochastic stability theorems for the disease free equi-

libria.

Theorem 4.1. Given r, u ∈ I(1,M), i ∈ I(1, nr) and a ∈ I(1, nu). Let us assume

that the hypotheses of Lemma 4.2 are satisfied. Then the disease free solutions Eru
ia ,

are asymptotically stable in the large. Moreover, the solutions Eru
ia are exponentially

mean square stable.
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Proof. From the application of comparison result [21, 46], the proof of stochastic

asymptotic stability follows immediately Moreover, the disease free equilibrium state

is exponentially mean square stable. We now consider the following corollary to

Theorem 4.1.

Corollary 4.1. Let r ∈ I(1,M) and i ∈ I(1, nr). Assume that σri = γri = 0, for all

r ∈ I(1,M) and i ∈ I(1, nr).

(4.34) U
ru
ia =



































1
(δr

i
)

»

1

2
PM

u=1
Pnu

a=1
µru

ia
+ 3

2 µrr
ii

– for u = r, i = a

1
(δr

a)
1

[µrr
ii

+µrr
ia ]
, for u = r, a 6= i

1
(δu

a )
1

[µrr
ii

+µru
ia ]
, for u 6= r,

(4.35) V
ru
ia =























PM
u=1

Pnu
a=1

1
2
µru

ia +
PM

v=1

Pnv
b=1

1
2
βrrv

iib (Srr∗
ii +µrr

ii )+ 1
2
drr

ii

ηr
i +̺r

i +δr
i +dr

i
, for a = i, u = r

1
2
µrr

ii +
PM

v=1

Pnv
b=1

1
2
βrrv

aib (Srr∗
ia +µrr

ia )+ 1
2
drr

ia

ηr
a+̺r

a+δr
a+dr

a
, for a 6= i, u = r

1
2
µrr

ii +
PM

v=1

Pnv
b=1

1
2
βurv

aib
(Sru∗

ii +µru
ia )+ 1

2
dru

ia

ηu
a+̺u

a+δu
a +du

a
, for u 6= r.

and

(4.36) W
ru
ia =



































»

1
2

PM
u=1

Pnu
a=1 µ

ru
ia +

(αr
i )2

µrr
ii

+ 1
2
µrr

ii

–

(αr
i +δr

i )
, for u = r, a = i,

1
2
µrr

ii + 1
2
µrr

ia+
(αr

a)2

µrr
ia

(αr
a+δr

a)
, for u = r, a 6= i,

»

1
2
µrr

ii + 1
2
µru

ia +
(αu

a )2

µru
ia

–

αu
a+δu

a
, for u 6= r

The equilibrium state Err
ii is stochastically asymptotically stable provided that Uruia ,

Wru
ia ≤ 1 and Vru

ia < 1, for all u ∈ Ir(1,M) and a ∈ Iri (1, nu).

Proof. Follows immediately from the hypotheses of Lemma 4.2, (letting σri = γri = 0),

the conclusion of Theorem 4.1 and some algebraic manipulations.

Remark 4.2. The presented results about the two-level large scale SIRS disease

dynamic model depend on the underlying system parameters. In particular, the

sufficient conditions are algebraically simple, computationally attractive and explicit

in terms of the rate parameters. As a result of this, several scenarios can be discussed

and exhibit practical course of action to control the disease. For simplicity, we present

an illustration as follows: the conditions of σri = γri = 0, ∀ r, i in Corollary 4.1 signify

that the arbitrary site sri is a sink[18, 19] for all other sites in the inter and intra-

regional accessible domain. This scenario is displayed in Figure 3. The condition

Uruia ≤ 1 exhibits that the average infectious period is smaller than the joint average

life span of individuals in the intra and inter-regional accessible domain of site sri .
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Figure 3. Shows that residents of site sri are present only at their
home site sri . Hence they isolate every site from their inter and intra
reginal accessible domain C(sri ). Site sri is a ‘sink’ in the context of
the compartmental system [18, 19]. The arrows represent a transport
network between any two sites and regions. Furthermore, the dotted
lines and arrows indicate connection with other sites and regions.

Furthermore, the condition V
ru
ia < 1 signifies that the magnitude of disease inhibitory

processes for example, the magnitude of the recovery process is greater than the

disease transmission process. A future detailed study of the disease dynamics in the

two scale network dynamic structure for many real life scenarios using the presented

two level large-scale SIRS disease dynamic model will appear elsewhere.

5. EXAMPLE

By using the two scale mobility model [1], the mobility dynamic structure de-

termined by the respective intra and interregional mobility data recorded in [1, Ta-

bles 1& 2, Section 6], and also the influenza pandemic simulation model in [22],

we develop a two-scale SIR influenza epidemic dynamic model. The compartmental

framework for the SIR epidemic model is exhibited in Figure 2, where ηri = αri = 0,

∀ r ∈ I(1,M), i ∈ I(1, nr). Furthermore, a diagram illustrating the inter-patch con-

nections in the example for two scale dynamic epidemic model represented in this

example is shown in Figure 4. In the absence of intra and interregional mobility

return rates, based on the mobility structure and the probabilistic formulation of the

mobility process, we simulate intra and interregional mobility return rates. We display

the intra and inter-regional mobility return rates in Table 1 and Table 2 respectively.

The following assumptions are made concerning the influenza epidemic process

represented in this example: (a1)The population structure and influenza transmission

process at every site sri , r = 1, 2, 3, i = 1, 2, 3 in region Cr, r = 1, 2, 3 is similar to

the population structure and the influenza transmission process represented in the

simulation model of [22]. That is, we assume that every person in site sri belongs

to one age dependent stratum (ages≥ 0). In addition, each individual belongs to

three mixing or contact groups zj , j = 1, 2, 3, for example, household, marketplace,
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Figure 4. A two scale network of three spatial regions Cr, r = 1, 2, 3
of human habitation and three interconnected sites sri , i = 1, 2, 3 in
each region. The arrows represent direction of human mobility and
summarize the homogeneities in the epidemic process at each site and
region. C1 & C2, and C2 & C3 are symmetric in the human mobility
process. C1 is a sink for C3 in human mobility. All sites in each region
are completely symmetric in the human mobility process. The details
of the two scale human mobility process represented in this example
are given in [1].

(ρ11
12, ρ

11
13, ρ

11
21, ρ

11
23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ11
31, ρ

11
32) (0.013230408,0.001305838)

(ρ22
12, ρ

22
13, ρ

22
21, ρ

22
23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ22
31, ρ

22
32) (,0.013230408,0.001305838)

(ρ33
12, ρ

33
13, ρ

33
21, ρ

33
23) (0.000092504,0.000177496,0.164327,0.0001173)

(ρ33
31, ρ

33
32) (0.013230408,0.001305838)

Table 1. The intra-regional return rates of residents of sites in the two
scale network of spatial patches illustrated in Figure 4 are simulated
based on the mobility structure and the probabilistic formulation for
the mobility process cf. [1].

and the community. In each day, a susceptible person, A, has contacts with other

individuals in his or her contact zones. The probability of acquiring infection depends

on (a) the number of different persons A has contacts within the contact group, (b)

the time duration, in minutes, of all contacts (c) the rate of infection transmission

per-minute if the contacted person is infectious (see [22]). We assume that in a given

day, a susceptible person makes three contacts in mixing group z1, ten contacts in

mixing group z2, and three contacts in mixing group z3. In addition, each contacted

person is infectious. Furthermore, the time duration d and the per minute influenza

transmission rate λ per contact in all contact zones are [zone z1: d ≈ 92 minutes,
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(ρ12
11, ρ

12
12, ρ1213, ρ1221, ρ1222) (0.1995,0.035,0.0985,0.007892,0.02748)

(ρ1223, ρ1231, ρ1232, ρ1233) (0.075824,0.04256,0.009616,0.028628)

(ρ21
11, ρ

21
12, ρ2113, ρ2121, ρ2122) (0.002096896,0.00175424,0.003460864,0.00043856,0.0001664)

(ρ2123, ρ2131, ρ2132, ρ2133) (0.00071504, 0.001944052,0.00119788,0.0001713912)

(ρ23
11, ρ

23
12, ρ2313, ρ2321, ρ2322) (0.018512, 0.03290368,0.0272192,0.04883712,0.00151648)

(ρ2323, ρ2331, ρ2332, ρ2333) (0.0219232, 0.00383316,0.0025404,0.000414644)

(ρ31
11, ρ

31
12, ρ3113, ρ3121, ρ3122) (0.001285712, 0.00085328, 0.001725008, 0.0004380944, 0.000379536)

(ρ3123, ρ3131, ρ3132, ρ3133) (0.0005991696, 0.000000371428, 0.00000026332, 0.000000281252)

(ρ32
11, ρ

32
12, ρ3213, ρ3221, ρ3122) (0.0003230096, 0.00036224, 0.0004619664, 0.00043146104, 0.0003741576)

(ρ3223, ρ3231, ρ3232, ρ3233) (0.00059126136, 0.000498339428, 0.00042838332, 0.000070993252)

Table 2. The inter-regional return rates of residents of sites in the two
scale network of spatial patches illustrated in Figure 4 are simulated
based on the mobility structure and the probabilistic formulation for
the mobility process cf. [1].

λ = 0.00062], [zone z2: d ≈ 120 minutes, λ = 0.00061] and [zone z3: d ≈ 51

minutes, λ = 0.00061]. Furthermore, we assume that the number and duration of

contacts are the same on weekdays and weekend days. We utilize the probability

model 1 − exp(−λd) for the influenza transmission occurring during a contact of d

minutes and a transmission rate λ (see [22]) to find the infection probability βurvaib of the

two-scale SIRS epidemic dynamic model. It is easy to see that the infection probability

per day for a susceptible person at site sri is βurvaib = 0.6277. (a2) In the absence of

data for the recovery and disease related death processes, we take the recovery and

disease mortality rate to be ̺ua = 0.05067 and dua = 0.01838, u = 1, 2, 3; a, i = 1, 2, 3

respectively. (a3) The population in this example assumed to be remote and lacking

the high technological facilities found in the developed world. Furthermore, we assume

that influenza is highly endemic in this population. As a result, we can assume

that the time duration of the epidemic is comparable with the average life span of

individuals in the population. In the absence of data concerning average birth rates,

we use the yearly birth rate data from [23] for the people of the Dominican republic,

B = births
1000

= 22.39
1000

as an estimate. Furthermore, we assume this birth rate is the

same for all residents of sites in the population. That is, the constant birth rate is

Bu
a = births

1000
= 22.39

1000
per year, for u = 1, 2, 3; a, i = 1, 2, 3. (a4) In addition, using the

average life span of the people of Dominican Republic [24], the natural death rate of

the residents at all sites and regions are the same and is calculated as the reciprocal of

the average life span of individuals in the population, that is, δua = 1
77.15×365

, u = 1, 2, 3;

a, i = 1, 2, 3 per day. (a5) The effects of the fluctuating environment on the dynamics

of the influenza epidemic is assumed to be the same at all sites and regions. We

take the standard deviation of the environmental fluctuations to be vurvaib = 0.5, r, u,

v = 1, 2, 3; a, b, i = 1, 2, 3.
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Using the standard Euler-Maruyama method stochastic approximation scheme

[25], we generate the trajectories for the residents of sites s1
1, s

2
1 and s3

1in regions C1,

C2 and C3 respectively, for the different population diseases classification (S, I, R),

and current locations at some sites in the intra and inter-regional accessible domain of

the sites. The solutions are displayed in Figure 5, Figure 6 and Figure 7 respectively.

We note that the following initial conditions were used: for r, u ∈ I(1, 3), i, a ∈ I(1, 3),

Sruia (0) =



















9, for r = u, i = a

8, for r = u, i 6= a

7, for r 6= u,

Iruia (0) =



















6, for r = u, i = a

4, for r = u, i 6= a

3, for r 6= u

and Rru
ia (0) = 2, ∀r, u, i, a ∈ I(1, 3). Furthermore, the trajectories were generated over

the time interval t ∈ [0, 1].

6. CONCLUSION

The recent high technological changes and scientific developments have led to

many\variant structure types inter-patch connections interactions in the global hu-

man population. This has further afforded efficient mass flow of human beings, ani-

mals, goods and equipments between patches thereby causing the appearance of new

disease strains and infectious agents at non-endemic zones. The presented two-scale

network disease dynamic model characterizes the dynamics of an SIRS epidemic in a

population with various scale levels created by the heterogeneities in the population.

Moreover, the disease dynamics is subject to random environmental perturbations at

the disease transmission stage of the disease. Furthermore, the SIRS epidemic has a

proportional transfer to the susceptible class immediately after the infectious period.

This work provides a mathematical and probabilistic algorithmic tool to develop dif-

ferent levels nested type disease transmission rates as well as the variability in the

transmission process in the framework of the network-centric Ito-Doob type dynamic

equations.
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Figure 5. Trajectories of the disease classification (S, I, R) for resi-
dents of site s1

1 in region C1 at their current location in the two-scale
spatial patch dynamic structure. Figures (a), (b) & (c) represent the
trajectories of the different disease classes of residents of site s1

1 at
home. Figures (d), (e) & (f) represent the trajectories of the different
disease classes of residents of site s1

1 visiting site s1
2 in home region C1.

These two groups of figures are representative of the disease dynamics
of influenza affecting the residents of site s1

1 at the intra-regional level.
Figures (g), (h) & (i) represent the trajectories of the different disease
classes of residents of site s1

1 visiting site s2
1 in region C2. These figures

reflect the behavior of the disease affecting the residents of site s1
1 at

the inter-regional level. Furthermore, we observe that the trajectories
of the susceptible (S) and infectious (I) populations saturate to their
equilibrium states. We further note that the trajectory paths are ran-
dom in character but because of the scale of the pictures presented in
this figure, they appear to be smooth.
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Figure 6. Trajectories of the disease classification (S, I, R) for resi-
dents of site s2

1 in region C2 at their current location in the two-scale
spatial patch dynamic structure. Figures (a), (b) & (c) represent the
trajectories of the different disease classes of residents of site s2

1 at
home. Figures (d), (e) & (f) represent the trajectories of the different
disease classes of residents of site s2

1 visiting site s2
2 in home region C2.

These two groups of figures are representative of the disease dynamics
of influenza affecting the residents of site s2

1 at the intra-regional level.
Figures (g), (h) & (i) represent the trajectories of the different disease
classes of residents of site s2

1 visiting site s1
1 in region C1. Figures (j),

(k) & (l) represent the trajectories of the different disease classes of res-
idents of site s2

1 visiting site s3
1 in region C3. These last two groups of

figures reflect the behavior of the disease affecting the residence of site
s2
1 at the inter-regional level. Furthermore, we observe that the trajec-

tories of the susceptible (S) and infectious (I) populations saturate to
their equilibrium states. We further note that the trajectory paths are
random in character but because of the scale of the pictures presented
in this figure, they appear to be smooth.
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Figure 7. Trajectories of the disease classification (S, I, R) for resi-
dents of site s3

1 in region C3 at their current location in the two-scale
spatial patch dynamic structure. Figures (a), (b) & (c) represent the
trajectories of the different disease classes of residents of site s3

1 at
home. Figures (d), (e) & (f) represent the trajectories of the different
disease classes of residents of site s3

1 visiting site s3
2 in home region C3.

These two groups of figures are representative of the disease dynamics
of influenza affecting the residents of site s3

1 at the intra-regional level.
Figures (g), (h) & (i) represent the trajectories of the different disease
classes of residents of site s3

1 visiting site s1
1 in region C1. Figures (j),

(k) & (l) represent the trajectories of the different disease classes of
residents of site s3

1 visiting site s2
1 in region C2. The last two groups of

figures reflect the behavior of the disease affecting the residence of site
s3
1 at the inter-regional level. Furthermore, we observe that the trajec-

tories of the susceptible (S) and infectious (I) populations saturate to
their equilibrium states. We further note that the trajectory paths are
random in character but because of the scale of the pictures presented
in this figure, they appear to be smooth.

The model validation results are developed and a positively invariant set for the

dynamic model is defined. Moreover, the globalization of the solution existence is

obtained via the construction of the two-scale dynamic structure motivated Lypunov
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function. The detailed stochastic asymptotic stability results of the disease free equi-

librium are also exhibited in this paper. Moreover, the system parameter dependent

threshold values controlling the stochastic asymptotic stability of the disease free

equilibrium are also defined. Furthermore, a deduction to the stochastic asymptotic

stability results for a simple real life scenario is illustrated. Further detail study of the

SIRS disease dynamic model the two scale network dynamic mobility structure real

life scenarios will appear elsewhere. Simulation results for an SIR influenza epidemic

represented by the two-scale network dynamic epidemic model for a specific scenario

having a dynamic structure parallel to the earlier study [1] is also presented.

We note that the disease dynamics is subject to random environmental pertur-

bations from other related processes such as the mobility, recovery, birth and death

processes. The stochastic variability due to the disease transmission incorporated

in the epidemic dynamic model will be extended to the stochastic variability in the

mobility, recovery and birth and death processes. A further detailed study of the

oscillation of the epidemic process about the ideal endemic equilibrium of the dy-

namic epidemic model will also appear else where. In addition, a detailed study of

the hereditary features of the infectious agent such as the time-lag to infectiousness

of exposed individuals in the population is currently underway and it will also appear

elsewhere.
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