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ABSTRACT. In this paper we consider a new type of the Apostol Bernoulli numbers and polyno-

mials. We call them the second kind λ-Bernoulli numbers Bn,λ and polynomials Bn,λ(x). We also

observe the behavior of complex roots of the second kind λ-Bernoulli polynomials Bn,λ(x), using

numerical investigation. Finally, we give a table for the solutions of the second kind λ-Bernoulli

polynomials Bn,λ(x).

AMS (MOS) Subject Classification. 11B68, 11S40, 11S80

1. INTRODUCTION

Several mathematicians have studied the Bernoulli numbers and polynomials, Eu-

ler numbers and polynomials, Genocchi numbers and polynomials, q-Bernoulli num-

bers and polynomials (see [1–16]). These numbers and polynomials possess many

interesting properties and arising in many areas of mathematics and physics. In

this paper, we introduce the second kind λ-Bernoulli numbers Bn,λ and polynomials

Bn,λ(x). In order to study the second kind λ-Bernoulli numbers Bn,λ and polynomials

Bn,λ(x), we must understand the structure of the second kind λ-Bernoulli numbers

Bn,λ and polynomials Bn,λ(x). Therefore, using computer, a realistic study for the

second kind λ-Bernoulli numbers En,q and polynomials Bn,λ(x) is very interesting.

It is the aim of this paper to observe an interesting phenomenon of ‘scattering’ of

the zeros of the second kind λ-Bernoulli polynomials Bn,λ(x) in complex plane. The

outline of this paper is as follows. We introduce the second kind λ-Bernoulli numbers

Bn,λ and polynomials Bn,λ(x). In section 2, we construct the λ-Bernoulli numbers

and polynomials. Some interesting results are obtained. In Section 3, we describe the

beautiful zeros of the second kind λ-Bernoulli polynomials Bn,λ(x) using a numerical

investigation. Finally, we investigate the roots of the second kind λ-Bernoulli poly-

nomials Bn,λ(x). Also we carried out computer experiments for doing demonstrate

a remarkably regular structure of the complex roots of the second kind λ-Bernoulli

polynomials Bn,λ(x). Throughout this paper, we always make use of the following
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notations: N = {1, 2, 3, . . .} denotes the set of natural numbers, R denotes the set of

real numbers, C denotes the set of complex numbers.

The classical Bernoulli polynomials Bn(x) are usually defined by means of the

following generating functions:

t

et − 1
ext =

∞
∑

n=0

Bn(x)
tn

n!
(|z| < 2π)

The classical Bernoulli numbers Bn := Bn(0).

We begin by recalling here Apostol’s definitions as follows:

Definition 1 (Apostol [1]). The Apostol-Bernoulli polynomials Bn(x; λ) are defined

by means of the generating function:

t

λet − 1
ext =

∞
∑

n=0

Bn(x; λ)
tn

n!
(|t + log λ| < 2π) (1)

with of course,

Bn(x) = Bn(x; 1) and Bn(λ) := Bn(0; λ),

where Bn(λ) denotes the so-called λ-Bernoulli numbers.

2. THE SECOND KIND λ-BERNOULLI NUMBERS AND

POLYNOMIALS

In this section, we introduce the second kind λ-Bernoulli numbers Bn,λ and poly-

nomials Bn,λ(x) and investigate their properties. Based on Apostol’s idea, it follows

that we define the second kind λ-Bernoulli polynomials and numbers.

Definition 2. The second kind λ-Bernoulli polynomials Bn,λ(x) and numbers Bn,λ

are defined by means of the generating functions

2tet

λe2t − 1
ext =

∞
∑

n=0

Bn,λ(x)
tn

n!
, (|2t + log λ| < 2π), (2)

and
2tet

λe2t − 1
=

∞
∑

n=0

Bn,λ
tn

n!
, (3)

respectively.

Setting λ = 1 in (2) and (3), we can obtain the corresponding definitions for the

second kind Bernoulli polynomials Bn(x) and numbers Bn respectively. More studies

and results in this subject we may see reference [13].

By simple calculation, the second kind λ-Bernoulli polynomials tune into the

following generating function:
∞
∑

n=0

Bn,λ(x)
tn

n!
=

2tet

λe2t − 1
ext = −2t

∞
∑

n=0

λne(2n+1+x)t (4)
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Setting x = 0 in above generating function, we can obtain the corresponding

definitions for the second kind λ-Bernoulli numbers as following generating function:
∞
∑

n=0

Bn,λ
tn

n!
= −2t

∞
∑

n=0

λne(2n+1)t (5)

By using computer, the second kind λ-Bernoulli numbers Bn,λ can be determined

explicitly. A few of them are

B0,λ = 0,

B1,λ =
2

−1 + λ
,

B2,λ =
4

−1 + λ
−

8λ

(−1 + λ)2
,

B3,λ =
6

−1 + λ
−

48λ

(−1 + λ)2
+

48λ2

(−1 + λ)3

B4,λ =
8

−1 + λ
−

208λ

(−1 + λ)2
+

576λ2

(−1 + λ)3
−

384λ3

(−1 + λ)4
.

By the above definition, we obtain

∞
∑

n=0

Bn,λ(x)
tn

n!
=

2tet

λe2t − 1
ext =

∞
∑

n=0

Bn,λ
tn

n!

∞
∑

k=0

xk tk

k!

=
∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Bk,λx
n−k
) tn

n!
.

(6)

By using comparing coefficients of
tn

n!
, we have the following theorem.

Theorem 3. For any positive integer n, we have

Bn,λ(x) =

n
∑

k=0

(

n

k

)

Bk,λx
n−k. (7)

The second kind λ-Bernoulli polynomials Bn,λ(x) can be determined explicitly.

A few of them are

B0,λ(x) = 0,

B1,λ(x) =
2

−1 + λ
,

B2,λ(x) =
4

−1 + λ
−

8λ

(−1 + λ)2
+

4x

−1 + λ
,

B3,λ(x) =
6

−1 + λ
−

48λ

(−1 + λ)2
+

48λ2

(−1 + λ)3
+

12x

−1 + λ
−

24λx

(−1 + λ)2
+

6x2

−1 + λ
.

For n = 1, . . . , 10, we can draw a plot of the second kind λ-Bernoulli polynomials

Bn,λ(x), respectively. This shows the ten plots combined into one. We display the

shape of Bn,λ(x), λ = −1/2, −6 ≤ x ≤ 6 (Figure 1).
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Figure 1. Curve of Bn,λ(x)

The following basic properties of the second kind λ- Bernoulli polynomials Bn,λ(x)

are derived from (2), (3), (4), and (5). We, therefore, choose to omit the details

involved.

Proposition 4 (Difference equation).

λBn,λ(x + 2) − Bn,λ(x) = 2n(x + 1)n−1.

Proposition 5 (Differential relation).

∂

∂x
Bn,λ(x) = nBn−1,λ(x).

Proposition 6 (Integral formula).
∫ b

a

Bn−1,λ(x)dx =
1

n

(

Bn,λ(b) − Bn,λ(a)
)

.

Proposition 7 (Complement formula).

Bn,λ(x) =
(−1)n

λ
Bn,λ−1(−x).

Since
∞
∑

n=0

Bn,λ(x + y)
tn

n!
=

2tet

λe2t − 1
e(x+y)t

=

∞
∑

n=0

Bn,λ(x)
tn

n!

∞
∑

k=0

yn tk

k!

=
∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Bk,λ(x)yn−k
) tn

n!
,

we have the following addition theorem.
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Theorem 8. The second kind λ-Bernoulli polynomials Bn,λ(x) satisfies the following

relation:

Bn,λ(x + y) =

n
∑

k=0

(

n

k

)

Bk,λ(x)yn−k.

It is easy to see that

∞
∑

n=0

Bn,λ(x)
tn

n!
=

2tet

λe2t − 1
ext =

2t

λme2mt − 1
e(1+x)t

m−1
∑

k=0

(λe2t)k

=

m−1
∑

k=0

λk 2t

λme2mt − 1
e(2k+1+x)t

=
1

m

m−1
∑

k=0

λk
∞
∑

n=0

Bn,λm

(2k + 1 + x − m

m

)(mt)n

n!

=

∞
∑

n=0

(

mn−1

m−1
∑

k=0

λkBn,λm

(2k + 1 + x − m

m

)

)

tn

n!
.

Hence we have the below distribution theorem.

Theorem 9. For n ∈ N, we have

Bn,λ(x) = mn−1
m−1
∑

k=0

λkBn,λm

(2k + 1 + x − m

m

)

.

By using generating functions, we also obtain the following λ-odd sum.

Theorem 10. For n ∈ N, we have

m−1
∑

j=0

λj(2j + 1)n−1 =
λmBn,λ(2m) − Bn,λ

2n

3. ZEROS OF THE SECOND KIND λ-BERNOULLI

POLYNOMIALS Bn,λ(x)

In this section, we investigate the zeros of the second λ-Bernoulli polynomi-

als Bn,λ(x). We investigate the beautiful zeros of the Bn,λ(x) by using a com-

puter. We plot the zeros of the second kind λ-Bernoulli polynomials Bn,λ(x) for

n = 15, 20, 25, 30, λ = −1/2 and x ∈ C (Figure 2).

In Figure 2 (top-left), we choose n = 15 and λ = −1/2. In Figure 2 (top-right),

we choose n = 20 and λ = −1/2. In Figure 2 (bottom-left), we choose n = 25 and

λ = −1/2. In Figure 2 (bottom-right), we choose n = 30 and λ = −1/2.

We plot the zeros of the second kind λ-Bernoulli polynomials Bn,λ(x) for n = 30,

λ = −5,−10,−20,−30 and x ∈ C (Figure 3). In Figure 3 (top-left), we choose n = 30

and λ = −5. In Figure 3 (top-right), we choose n = 30 and λ = −10. In Figure 3
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Figure 2. Zeros of Bn,λ(x) for n = 15, 20, 25, 30

(bottom-left), we choose n = 30 and λ = −20. In Figure 3 (bottom-right), we choose

n = 30 and λ = −30.

The real zeros of B30,λ(x) for λ → −1 structure are presented (Figure 4). Stacks

of zeros of Bn,−1/2(x) for 1 ≤ n ≤ 30 from a 3-D structure are presented (Figure 5).

Plot of real zeros of Bn,λ(x) for 1 ≤ n ≤ 30 and λ = −2,−1/2 structure are presented

(Figure 6). In Figure 6 (left), we choose 1 ≤ n ≤ 30 and λ = −2. In Figure 6

(right), we choose 1 ≤ n ≤ 30 and λ = −1/2. Plot of real zeros of Bn,λ(x) for

λ → −1, 1 ≤ n ≤ 30 structure are presented (Figure 7). Our numerical results for

approximate solutions of real zeros of Bn,w(x) are displayed (Tables 1, 2).
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Figure 3. Zeros of Bn,λ(x) for λ = −5,−10,−20,−30

Table 1. Numbers of real and complex zeros of Bn,λ(x)

λ = −2 λ = −1/2

n real zeros complex zeros real zeros complex zeros

2 1 0 1 0

3 2 0 2 0

4 3 0 3 0

5 2 2 2 2

6 3 2 3 2

7 4 2 4 2

8 3 4 3 4

9 4 4 4 4

10 3 6 3 6

11 4 6 4 6

12 5 6 5 6

13 6 6 6 6

14 5 8 5 8
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Figure 4. Real zeros of Bn,λ(x) for λ → −1

Table 2. Approximate solutions of Bn,λ(x) = 0, x ∈ R

n x

2 −0.33333

3 −0.6095, 1.276

4 −1.401, 0.560, 1.841

5 −2.055, −0.309

6 −2.573, −1.171, 0.829

7 −2.92, −2.056, −0.0320, 1.94

8 −0.894, 1.106, 2.68

9 −1.756, 0.244, 2.26, 3.0

10 −2.61, −0.618, 1.38

11 −3.39, −1.479, 0.521, 2.5

12 −4.01, −2.34, −0.341, 1.66, 3.4

We observe a remarkably regular structure of the complex roots of the second kind

λ-Bernoulli polynomials Bn,λ(x). We hope to verify a remarkably regular structure

of the complex roots of the second kind λ-Bernoulli polynomials Bn,λ(x) (Table 1).

Next, we calculated an approximate solution satisfying Bn,λ(x), λ = −2, x ∈ R. The

results are given in Table 2.
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Figure 5. Stacks of zeros of Bn,−1/2(x) for 1 ≤ n ≤ 30
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Figure 6. Real zeros of Bn,λ(x) for 1 ≤ n ≤ 30

The plot above shows Bn,λ(x) for real −7/10 ≤ λ ≤ 7/10 and −5 ≤ x ≤ 5,

with the zero contour indicated in black (Figure 8). In Figure 8 (top-left), we choose

n = 2. In Figure 8 (top-right), we choose n = 3. In Figure 8 (bottom-left), we choose

n = 4. In Figure 8 (bottom-right), we choose n = 5.

4. DIRECTIONS FOR FURTHER RESEARCH

In the special case, λ = 1, Bn(x) are called the second Bernoulli polynomials (see

[13]).
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Figure 7. Real zeros of Bn,λ(x) for λ → −1 and 1 ≤ n ≤ 30
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Figure 8. Zero contour of Bn,λ(x)

Since

∞
∑

n=0

Bn(−x)
(−t)n

n!
=

−2te−t

e−2t − 1
e(−x)(−t) =

2tet

e2t − 1
ext =

∞
∑

n=0

Bn(x)
tn

n!
,
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we have

Bn(x) = (−1)nBn(−x) for n ∈ N.

Prove that Bn(x), x ∈ C, has Re(x) = 0 reflection symmetry in addition to the usual

Im(x) = 0 reflection symmetry analytic complex functions. The obvious corollary is

that the zeros of En(x) will also inherit these symmetries.

If Bn(x0) = 0, then Bn(−x0) = 0 = Bn(x∗

0) = Bn(−x∗

0).

∗ denotes complex conjugation.

The question is: what happens with the reflection symmetry (3.1), when one

considers the second kind λ-Bernoulli polynomials Bn,λ(x)?

Finally, we shall consider the more general problems. How many roots does

Bn,λ(x) have in general? This is an open problem. Prove or disprove: Bn,λ(x) = 0

has n − 1 distinct solutions. Find the numbers of complex zeros CBn,λ(x) of Bn,λ(x),

Im(x) 6= 0. Since n − 1 is the degree of the polynomial Bn,λ(x), the number of real

zeros RBn,λ(x) lying on the real plane Im(x) = 0 is then RBn,λ(x) = n − 1 − CBn,λ(x),

where CBn,λ(x) denotes complex zeros. See Table 1 for tabulated values of RBn,λ(x)

and CBn,λ(x). Observe that the structure of the zeros of the second kind Genocchi

polynomials Gn(x) resembles the structure of the zeros of the second kind λ-Bernoulli

polynomials Bn,λ(x) as λ → −1 (see Figures 3, 4, 6, 7, [12]). Find the equation of

envelope curves bounding the real zeros lying on the plane. The theoretical prediction

on the zeros of Bn,λ(x) is await for further study. We plot the zeros of Bn,λ(x),

respectively (Figures 2–8). These figures give mathematicians an unbounded capacity

to create visual mathematical investigations of the behavior of the roots of the Bn,λ(x).

Moreover, it is possible to create a new mathematical ideas and analyze them in ways

that generally are not possible by hand. The authors have no doubt that investigation

along this line will lead to a new approach employing numerical method in the field of

research of the second kind λ-Bernoulli polynomials Bn,λ(x) to appear in mathematics

and physics. The reader may refer to [11–15] for the details.
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