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ABSTRACT. In this paper, we derive an exponentially fitted difference scheme using spline in

compression technique for singularly perturbed ordinary differential equation with two small pa-

rameters affecting the convection and diffusion terms. The solution of the problem exhibits the

boundary layer on the left hand side of the domain. Bounds on the derivatives of the solution are

derived. A first order monotone numerical method is constructed. Numerical results are presented

to authenticate the theoretical results and to establish the efficiency of the method.
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1. INTRODUCTION

Consider the singularly perturbed convection diffusion problem

(1.1) Ly ≡ −ǫy′′ − µa(x)y′ = f(x) on Ω = (0, 1)

(1.2) y(0) = y0; y(1) = y1; y0, y1 ∈ R

with two small parameters 0 < ǫ ≪ 1 and 0 < µ ≪ 1. The functions a(x) and f(x)

are assumed to be sufficiently smooth with a(x) ≥ α > 0; α ∈ R for x ∈ [0, 1].

When the parameter µ = 1, the problem is well studied as one parameter con-

vection diffusion singularly perturbed problem. Only few people have discussed two-

parameter singular perturbation problem This class of problems occur in dc motor

theory, biology, chemical reactor theory and lubrication theory [4], [12], [13], [14].

The asymptotic nature of the solution of two parameter problem is studied exten-

sively by O’Malley, [5], [1], [2], [3].The solution not only depends on the parameters

ǫ and µ but also on the ratio ǫ/µ2. Not much work has been done numerically. In

[17] second order parameter uniform methods on a uniform mesh was constructed. In

[20], [21] the authors showed that standard upwind finite difference operator on two

different choices of Shishkin mesh is first order parameter uniform. In [22] authors
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constructed a second order parameter uniform method on Shishkin mesh. An almost

first order convergent method using upwind difference scheme on Shishkin mesh was

obtained in [19]. In [16] the author developed non standard finite difference method

to tackle two parameter problems.

Spline techniques for numerical solution of singularly perturbed two point bound-

ary value problems have been extensively used. Flaherty and Mathon [23] used tension

splines, Sakai and Usmani [24] have used exponential splines to solve one parameter

singulary perturbed problems.

There are two ways to obtain small truncation error inside the boundary layer.

The first is to use a non-uniform mesh (eg. Shishkin mesh) in the region with more

mesh points in the boundary layer region than the rest of the region. The second

approach is fitted operator method which is so developed that it reflects the behavior

of the solution in the boundary layer region.

In this paper we use spline in compression [6] with a fitting factor, an extension of

the approach given in [15], for solving two parameter problems for the case ǫ/µ2 → 0

as µ → 0. The fitting factor is obtained using exponential fitting. A monotone

tridiagonal difference scheme is obtained and the method is first order accurate.

The paper is organized as follows. Section 2 has results on the bounds of the

derivatives of the solution of the SPP (1.1 )–(1.2). In Section 3 the numerical method

is discussed and the fitting factor is obtained for the parameter ǫ. Convergence results

are discussed in Section 4. Section 5 has some numerical results to testify the claims

made in Section 4. The paper concludes with a discussion.

Notation: For any given function g(x) ∈ Ck(Ω) (k is a non negative integer),

‖g‖ is a global maximum norm over the domain Ω given by

‖g‖ = max
x∈Ω

|g(x)|

Throughout the paper C denotes a generic positive constant independent of ǫ, µ, n.

2. PROPERTIES OF EXACT SOLUTION

Lemma 2.1 (Continuous Maximum principle). Assume that Φ(x) be any sufficiently

smooth function satisfying Φ(0) ≥ 0 and Φ(1) ≥ 0. Then LΦ(x) ≥ 0 for all x ∈ (0, 1)

implies that Φ(x) ≥ 0 ∀ x ∈ [0, 1]

Proof. Let x∗ ∈ [0, 1] be such that Φ(x∗) < 0 and

Φ(x∗) = min
x∈[0,1]

Φ(x)

So x∗ /∈ {0, 1} and Φ′(x∗) = 0 and Φ′′(x∗) ≥ 0

=⇒ LΦ(x)|x=x∗ ≤ 0, which is a contradiction.
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Thus, Φ(x) ≥ 0 ∀ x ∈ [0, 1]

Lemma 2.2. Let u(x) be a solution of (1.1)–(1.2), then

‖u‖ ≤ C(1 + 1/µ)

Proof. Consider two barrier functions defined by

Ψ±(x) = max{y0, y1} +
1

αµ
‖f‖(1 − x) ± u(x)

then, Ψ±(0) ≥ 0 and Ψ±(1) ≥ 0

L(Ψ±(x)) = −ǫ(Ψ±(x))
′′
− µa(x)(Ψ±(x))

′

=
a(x)

α
‖f‖ ± f(x)

≥ ‖f‖ ± f(x) ≥ 0 ( since a(x) ≥ α)

Hence by maximum principle,

Ψ±(x) ≥ 0

=⇒ |u(x)| ≤ max{y0, y1} +
1

αµ
‖f‖(1 − x)

≤ max{y0, y1} +
1

αµ
‖f‖

≤ C(1 + 1/µ)

Theorem 2.3. Assuming that a(x) and f(x) are sufficiently smooth. Then the solu-

tion u(x) of the boundary value problem (1.1)–(1.2) satisfies

(2.1) |u(k)(x)| ≤ C

(

1

µk+1
+

1

ǫk
e

−µα
ǫ

x

)

∀ x ∈ [0, 1]

for all 0 ≤ k ≤ 3.

Proof. We follow the method of proof adopted in [11] and prove this by induction.

By previous lemma

‖u‖ ≤ C(1 + 1/µ) ∀ x ∈ [0, 1]

We first find the differential equation satisfied by the derivatives of u(x) by differ-

entiating k times the original equation (1.1) to obtain the bounds on derivatives of

u(x)

(2.2) Lu(k) = fk

where,

fk = f0 = f, for k = 0.
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and

fk = f (k) + µ

k−1
∑

s=0

(

k

s

)

a(k−s)u(s+1) ∀ 1 ≤ k ≤ 3

The inhomogeneous term fk of the equation satisfied by u(k) depends on the deriva-

tives of u up to order k, the coefficient a and its derivatives along with the kth order

derivative of f .

Assume that for all j; 0 ≤ j ≤ k, the following estimates hold

(2.3) |u(j)(x)| ≤ C

(

1

µj+1
+

1

ǫj
e

−µα
ǫ

x

)

∀ x ∈ [0, 1]

Thus, the above assumption (2.3) gives

Lu(k) = fk

where

|u(k)(x)| ≤ C

(

1

µk+1
+

1

ǫk
e

−µα
ǫ

x

)

and

|f (k)(x)| ≤ C

(

1

µk+1
+

1

ǫk
e

−µα
ǫ

x

)

In particular

|u(k)(0)| ≤ C

(

1

µk+1
+

1

ǫk

)

(2.4)

|u(k)(1)| ≤ C

(

1

µk+1
+

1

ǫk
e

−µα
ǫ

)

≤ C

(

1

µk+1
+

1

µǫk−1

)

(2.5)

(as, µ
ǫ
e

−µα
ǫ ≤ C)

Define

θk(x) = −
1

ǫ

∫ x

0

e−(A(x)−A(t))dt

where A(x) = µ
ǫ

∫ x

0
a(s)ds. Then

u(k)
p (x) :=

∫ x

0

θk(t)dt

is a particular solution of (2.2). So, the general solution of (2.2) could be written as

u(k) = u(k)
p + u

(k)
h

where, homogeneous solution u
(k)
h satisfies

Lu
(k)
h = 0, u

(0)
h = u(k)(0), u

(1)
h = u(k)(1) − u(k)

p (1)

Introducing the function

ϕ(x) =

∫ x

0
e−A(t)dt

∫ 1

0
e−A(t)dt

also,

Lϕ(x) = 0 ; ϕ(0) = 0 ; 0 ≤ ϕ(x) ≤ 1
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Now, u
(k)
h can be written as

(2.6) u
(k)
h = u(k)(0)(1 − ϕ(x)) + (u(k)(1) − u(k)

p (1))ϕ(x)

This leads to

u(k+1) = u(k+1)
p + u

(k+1)
h = θk + (u(k)(1) − u(k)

p (1) − u(k)(0))ϕ′(x)

As

ϕ′(x) =
e−A(x)

∫ 1

0
e−A(t)dt

the bounds on a(x) leads to

(2.7) |ϕ′(x)| ≤ C
µ

ǫ
e

−µα
ǫ

x

Also, the lower bound on a(x) and bounds on fk gives

(2.8) |θk(x)| ≤ C

(

1

αµk+2
+

1

ǫk+1
e

−µα
ǫ

x

)

Since, u
(k)
p (1) =

∫ 1

0
θk(t)dt, it gives

(2.9) |u(k)
p (1)| ≤ C

(

1

µk+2
+

1

µǫk+1

)

From (2.6)

|u(k+1)| ≤ |θk| + (|u(k)(1)| + |u(k)
p (1)| + |u(k)(0)|)|ϕ′(x)|

Hence, by using the fact that ǫ/µ2 → 0 as µ → 0 and the equations (2.4), (2.5), (2.7),

(2.8), (2.9), we obtain

|u(k+1)(x)| ≤ C

(

1

µk+2
+

1

ǫk+1
e

−µα
ǫ

x

)

Hence the proof.

3. DESCRIPTION OF THE METHOD

Let 0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1 be the mesh points. For

x ∈ [xj−1, xj ], we define αj = (aj−1 + aj)/2 and γj = (fj−1 + fj)/2. We define the

fitting factor problem associated with (1.1) by

(3.1) Ly ≡ −σ(x, ǫ, µ)y′′ − µa(x)y′ = f(x) on Ω = (0, 1)

(3.2) y(0) = y0; y(1) = y1; y0, y1 ∈ R

where σ(x, ǫ, µ) is an exponential fitting factor to be determined later.

The approximate solution of this problem (1.1) is sought in the form of the func-

tion S(x), which on each interval [xj−1, xj], (denoted by Sj(x)) satisfies the following

relations:
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(i) the differential equation

(3.3) −σjS
′′

j (x) − µαjSj(x) = γj

(ii) the interpolation condition

(3.4) Sj(xj−1) = uj−1, Sj(xj) = uj

(iii) the continuity condition

(3.5) S ′

j(x
+
j ) = S ′

j(x
−

j )

(iv) the consistency condition

(3.6)
pj

2
= tan

pj

2
, pj = hµ

(aj−1 + aj)

2σj

= hµ
αj

σj

where,

x ∈ [xj−1, xj], xj = jh j = 0(1)n, h = 1/n

Solving (3.3) with the help of (3.4), we obtain

Sj(x) =
1

Fj

[

Djexp

(

−µαjxj−1

σj

)

− Ejexp

(

−µαjxj

σj

)]

(3.7)

+
Ej −Dj

Fj

exp

(

−µαjx

σj

)

+
γj

µαj

(

−x+
σj

µαj

)

where,

Dj = uj +
γj

µαj

(

xj −
ǫ

µαj

)

Ej = uj−1 +
γj

µαj

(

xj−1 −
ǫ

µαj

)

and, Fj = exp(−µxj−1αj/ǫ) − exp(−µxjαj/ǫ)

3.1. Derivation of the scheme. Since S(x) ∈ C2[0, 1], hence we have

(3.8) S ′

j(xj) = S ′

j+1(xj)

Using (3.7) and (3.8), we obtain
(

−pj

epj − 1

)

uj−1 +

(

pj

epj − 1
+

pj+1

1 − e−pj+1

)

uj(3.9)

+

(

pj+1

1 − e−pj+1

)

uj+1 =

(

1 −
pj

epj − 1

)

h

2µαj

fj−1

+

(

pj+1

1 − e−pj+1
− 1

)

h

2µαj+1
fj+1

+
h

2µ

[

1

αj

(

1 −
pj

epj − 1

)

+
1

αj+1

(

pj+1

1 − e−pj+1
− 1

)]

fj

Now by using (3.6), we obtain the following difference scheme,

(3.10) Ruj = Qfj j = 1, 2, . . . , n− 1,
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where,

Ruj = r−j uj−1 + rc
juj + r+

j uj+1

Qfj = q−j fj−1 + qc
jfj + q+

j fj+1

where, u0 = y0 and u1 = y1 and

r−j = −1 + pj/2; r+
j = −(1 + pj+1/2); rc

j = −(r−j + r+
j )

and

q−j =
h2

4σj
; q+

j =
h2

4σj+1
; qc

j = q+
j + q−j

where σj is to be determined.

Remark 3.1. The consistency condition (3.6) can be replaced by (1, 1) order Padé

Approximate for exp(x) in (3.9) and rewriting all other terms in form of exp(x). The

resulting scheme is identical to (3.10)

3.2. Determination of fitting factor. If a(x) ≡ a = constant in (1.1), then the

asymptotic behavior of the solution [1] for ǫ/µ2 → 0 as µ → 0 is

(3.11) y(x) = exp(−µxα/ǫ)

To find the fitting factor we require the truncation error for the boundary layer

function to be zero when a(x) ≡ a

(T )iy = R(yi) −Qfi = R(yi) −Q(Ly)i

With y as in (3.11), Q(Ly)i = 0. So,

(T )iy = 0 =⇒ R(yi) = 0

which gives the fitting factor as

σ =
hµα

2
coth

(

µhα

2ǫ

)

, when a(x) ≡ a = constant(3.12)

and

σj =
hµαj

2
coth

(

µhαj

2ǫ

)

, when a(x) 6= constant(3.13)

4. ANALYSIS OF THE NUMERICAL METHOD

The resulting system of equation generated by (3.10) for j = 1, 2, . . . , n−1, after

incorporating the boundary conditions and taking them to right hand side, is denoted

by the matrix A.

Lemma 4.1. For all ǫ, µ > 0 and all h = 1/n, the matrix A is monotone.
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Proof. Clearly, A is a tridiagonal matrix. Hence, A is irreducible if its co-diagonals

contains non zero elements only. The co-diagonals contain 1 ± tanh(µh/2ǫαj). As

0 ≤ tanh(x) < 1 ∀ x ≥ 0, the co-diagonal elements are always non-zero. Hence A is

irreducible.

Now consider a row of A, but not the first or the last row. Then the sum of

two off-diagonal elements equals the modulus of the diagonal element. Only in the

first and the last row the modulus of the diagonal element dominates the off-diagonal

element. Thus A is irreducibly diagonally dominant. In addition the off-diagonal

elements are positive and the diagonal elements are negative. Thus A is non-singular

and A−1 > 0. This implies A is an M-Matrix and thus monotone.

Also by [10], the numerical scheme satisfies discrete maximum principle.

4.1. Proof of uniform convergence. For error analysis we use the comparison

function method developed by Berger et al. [7] and Kellogg and Tsan [8]. By a

comparison function we mean a function φ such that Lφi > 0 and φ±n > 0, where L

is a differential operator and n is a positive integer. These functions are used together

with the maximum principle to convert the bounds on truncation error to bounds on

discretization error. We use the following two lemma.

Lemma 4.2 (Discrete maximum principle). Let {uj} be a set of values at the grid

points {xj}, satisfying u0 ≤ 0, u1 ≤ 0 and Ruj ≥ 0, j = 1(1)n − 1 then uj ≤ 0,

j = 1(1)n.

Lemma 4.3. If K1(h, ǫ, µ) ≥ 0; K2(h, ǫ, µ) ≥ 0 are such that

R(K1(h, ǫ, µ) φj +K2(h, ǫ, µ) ψj) ≥ R(±ej) = ±τj(y)

for each j = 1, 2, . . . , n− 1, then the discrete maximum principle implies that

|ej| ≤ K1(h, ǫ, µ) |φj| +K2(h, ǫ, µ) |ψj |

where, |ej | = |uj − y(xj)|, for each j and φ and ψ are two comparison function.

Theorem 4.4. Let y(x) be the solution of (1.1) and {uj}; j = 0, 1, . . . , n, be a set

of values of the approximate solution to y(x), obtained by using (3.10). Then there

are positive constants β and M (independent of h, ǫ and µ) such that the following

estimate holds:

|uj − y(xj)| ≤ Ch

(

1

µ3
+

1

µǫ
e

−µβ
ǫ

xj

)

Proof. By (3.12) we have,

|σj − ǫ| =

∣

∣

∣

∣

hµαj

2
coth(

hµαj

2ǫ
) − ǫ

∣

∣

∣

∣
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Using the expansion for x coth(x) = 1 + x2

3
+O(x4) and the consistency condition for

this case requires h < ǫ/αj , we obtain

(4.1) |σj − ǫ| ≤ Ch

We use two comparison function φ = 2 − x and ψ = e−βµx/ǫ, where β will be taken

as the minimum of all the constants appearing in the proof. Using (4.1), we obtain

(4.2) Rφj ≥ Ch2µ/ǫ , Rψj ≥ C(e−βµh/ǫ)jh2µ2/ǫ2

Now we estimate the truncation error of the scheme (3.10)

τj(y) = Ryj −Q(Ly)j

= T0yj + T1y
′

j + T2y
′′

j + remainder terms

where

T0 = r−j + rc
j + r+

j

T1 = h(r+
j − r−j ) − µ(q−j aj−1 + qc

jaj + q+
j aj+1)

T2 =
h2

2
(r+

j − r−j ) + ǫ(q−j + qc
j + q+

j ) − hµ(q−j aj−1 − q+
j aj+1)

Using (3.10), we obtain T0 = 0, T1 = 0 and

T2 =
h2

2

{(

−1 +
hµαj

2σj

)

+

(

−1 −
hµαj+1

2σj+1

)}

+ǫ
h2

2

(

1

σj
+

1

σj+1

)

−µ
h3

4

(

αj−1

σj
−
αj+1

σj+1

)

now, using (4.1), we get,

|T2| ≤ Cµ
h3

ǫ
(2.3) gives,

|y(2)| ≤ C

(

1

µ3
+

1

ǫ2
e

−µα
ǫ

x

)

Using Theorem 2.3, we get,

|T2y
(2)
j | ≤ Ch3

(

1

ǫµ2
+
µ

ǫ3
e

−µα
ǫ

x

)

So,

|τj(y)| ≤ Ch3

(

1

ǫµ2
+
µ

ǫ3
e

−µα
ǫ

x

)

By choosing K1 = h
µ3 and K2 = h

µǫ
, the Lemma 4.3 is satisfied, we get,

|ej | = |y(xj) − uj| ≤ K1|φj| +K2|ψj |

which on simplification gives,

|y(xj) − uj| ≤ Ch

(

1

µ3
+

1

µǫ
e

−µβ
ǫ

xj

)

Hence the theorem.
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5. NUMERICAL RESULTS

This section presents numerical examples to show the applicability of the method.

The maximum nodal errors and the order of convergence is calculated using the exact

solution (when available) or by using the double mesh principle (when exact solution

is not known).

The numerical rate of convergence (if exact solution is known) is calculated as

follows. Let uj ≡ approximate solution for given value of ǫ, µ and n and u(xj) ≡

exact solution for given value of ǫ, µ and n. Maximum error at all mesh points:

Eǫ,µ,n = max
j

|u(xj) − uj|

The numerical rate of convergence is given as

rn = log2(Eǫ,µ,n/Eǫ,µ,2n)

If exact solution is not known then the rate of convergence is calculated as follows:

Un = max
j

|u
h/2n

j − u
h/2n+1

2j |

where, u
h/2n

j denotes the value of uj for the mesh length h/2n.

rn = log2(Un/Un+1)

where, rn denotes the numerical rate of convergence.

Example 1: −ǫy′′ − µy′ = 2x; x ∈ (0, 1) with y(0) = 0; y(1) = 0 the exact

solution is

y(x) = −
x2

µ
+

(2ǫ− µ)

µ2(exp(−µ/ǫ) − 1)
(1 − exp(−xµ/ǫ)) +

2ǫx

µ2

Table 1. Computed order of convergence for µ = 10(−1) for Example 1

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9531 0.9778 0.9904 0.9980 1.0046 1.0139

10(−7) 0.9527 0.9770 0.9989 0.9947 0.9979 1.0001

10(−8) 0.9527 0.9769 0.9986 0.9944 0.9972 .9987

10(−9) 0.9527 0.9769 0.9986 0.9943 0.9972 .9986

10(−10) 0.9527 0.9769 0.9986 0.9943 0.9972 .9986

10(−11) 0.9527 0.9769 0.9986 0.9943 0.9972 .9986

10(−12) 0.9527 0.9769 0.9986 0.9943 0.9972 .9986

Example 2: −ǫy′′ − µy′ = ex; x ∈ (0, 1) with y(0) = 0; y(1) = 1 the exact

solution is

y(x) = −
ex

ǫ+ µ
+

(ǫ+ µ+ e− 1)

(ǫ+ µ)(exp(−µ/ǫ) − 1)
exp(−xµ/ǫ) −

(ǫ+ µ+ e− e−µ/ǫ)

(ǫ+ µ)(exp(−µ/ǫ) − 1)
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Table 2. Computed order of convergence for µ = 10(−2) for Example 1

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9573 0.9862 1.0074 1.0327 1.0077 1.0173

10(−8) 0.9527 0.9770 0.9888 0.9947 0.9979 1.0001

10(−10) 0.9527 0.9769 0.9886 0.9943 0.9972 0.9986

10(−12) 0.9527 0.9769 0.9886 0.9943 0.9972 0.9986

Table 3. Computed order of convergence for µ = 10(−4) for Example 1

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−10) 0.9527 0.9770 0.9889 0.9447 0.9979 1.0001

10(−12) 0.9769 0.9769 0.9886 0.9943 0.9972 0.9986

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2
computed solution and exact soln for ε/(µ)2 =1e−001

 

 

computed
exact

Figure 1. Exact and Com-

puted solution of Example 1

for ǫ = 10−3, µ = 10−1

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2
computed solution and exact soln for ε/(µ)2 =1e−003

 

 

computed
exact

Figure 2. Exact and Com-

puted solution of Example 1

for ǫ = 10−5, µ = 10−1

Table 4. Computed order of convergence for µ = 10(−1) for Example 2

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9646 0.9835 0.9933 0.9994 1.0053 1.0139

10(−7) 0.9642 0.9827 0.9916 0.9961 0.9986 1.0004

10(−8) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9990

10(−9) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9989

10(−10) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9989

10(−11) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9989

10(−12) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9990

Example 3: −ǫy′′ −µ(1+x)y′ = (1+x)2; x ∈ (0, 1) with y(0) = 0; y(1) = 0 the

exact solution is not known so we use double mesh principle to calculate the order of

convergence.
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Figure 3. Exact and Com-

puted solution of Example 1

for ǫ = 10−7, µ = 10−1
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Figure 4. Exact and Com-

puted solution of Example 1

for ǫ = 10−9, µ = 10−1
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Figure 5. Exact and Computed solution of Example 2 for ǫ =

10−3, µ = 10−1

Table 5. Computed order of convergence for µ = 10(−2) for Example 2

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9919 0.9919 1.0102 1.0341 1.0077 1.0135

10(−8) 0.9641 0.9827 0.9916 0.9961 0.9986 1.0004

10(−10) 0.9641 0.9826 0.9914 0.9957 0.9979 0.9990

10(−12) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9990

6. DISCUSSION

In this paper we presented an approximate method based on exponentially fit-

ted spline in compression for solving two parameter singularly perturbed two point

boundary value problem. The spline in compression was used for their ease in use
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Figure 6. Exact and Computed solution of Example 2 for ǫ =

10−5, µ = 10−1
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Figure 7. Exact and Computed solution of Example 2 for ǫ =

10−7, µ = 10−1

Table 6. Computed order of convergence for µ = 10(−4) for Example 2

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−10) 0.9641 0.9827 0.9916 0.9961 0.9986 1.0004

10(−12) 0.9641 0.9826 0.9914 0.9958 0.9979 0.9990

and easy computer implementation. The difference scheme obtained was monotone.

The method also leads to tridiagonal matrix as opposed to full matrices using poly-

nomials, trigonometric functions as approximates. Test examples have been given to

show the efficiency of the proposed method. To substantiate the suitability of the

proposed method, graphs have been plotted for Examples 1 and 2 for different values

of the parameter ǫ and µ. As the mesh is refined for a fixed value of the parameter ǫ

and µ the computed rate of convergence increases to 1.
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Figure 8. Exact and Computed solution of Example 2 for ǫ =

10−10, µ = 10−1

Table 7. Computed order of convergence for µ = 10(−1) for Example 3

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−7) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−8) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−9) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−10) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−11) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−12) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

Table 8. Computed order of convergence for µ = 10(−2) for Example 3

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−6) 0.9287 0.9651 0.9827 0.9914 0.9957 1.0023

10(−8) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−10) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

10(−12) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9978

Table 9. Computed order of convergence for µ = 10(−4) for Example 3

ǫ n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

10(−10) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9979

10(−12) 0.9287 0.9651 0.9827 0.9914 0.9957 0.9979

The numerical results established the claim of the first order accurate method

calculated for various values of the parameter ǫ and µ with the ratio ǫ/µ2 → 0. All

calculations are done in MATLAB.
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