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1. INTRODUCTION

An artificial neural network is an information processing paradigm that is inspired

by the way biological nervous systems, such as the brain, process information. The

key element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing elements

(neurons) working in unison to solve specific problems. Although the initial intent of

artificial neural networks was to explore and reproduce human information processing

tasks such as speech, vision, and knowledge processing, artificial neural networks also

demonstrated their superior capability for classification and function approximation

problems. This has great potential for solving complex problems such as systems

control, data compression, optimization problems, pattern recognition, and system

identification.

Cohen-Grossberg neural network [9] and its various generalizations with or with-

out transmission delays and impulsive state displacements have been the subject of

intense investigation recently [3, 5, 6, 13, 16, 17]. In a Cohen-Grossberg neural net-

work model, the feedback terms consist of amplification and stabilizing functions
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which are generally nonlinear. These terms provide the model with a special kind

of generalization wherein many neural network models that are capable for content

addressable memory such as additive neural networks, cellular neural networks and

bidirectional associative memory networks and also biological models such as Lotka-

Volterra models of population dynamics are included as special cases.

In contrast to retarded systems, in neutral systems time delays appear explic-

itly in the state velocity vector. Neutral systems can be applied to describe more

complicated nonlinear engineering and bioscience models, including those describing

chemical reactors, transmission lines, partial element equivalent circuits in very large-

scale integrated systems, and Lotka-Volterra systems [18, 14, 4, 1, 2, 8, 15]. Neural

networks can be implemented using very large-scale integrated circuits. Therefore,

both retarded-type delays and neutral type delays are inherent in the dynamics of

neural networks.

In the present paper we consider a Cohen-Grossberg neural network of neu-

tral type as in [7] provided with impulse conditions. A modification of the semi-

discretization method given in [12] is used for obtaining a discrete-time analogue.

Sufficient conditions for global asymptotic stability of the unique equilibrium point

of the discrete-time system are obtained by exploiting an appropriate Lyapunov se-

quence.

2. PRELIMINARIES

We consider an impulsive Cohen-Grossberg neural network of neutral type con-

sisting of m ≥ 2 elementary processing units (or neurons) whose state variables xi

(i = 1, m which henceforth will stand for i = 1, 2, . . . , m) are governed by the system

ẋi(t) +

m
∑

j=1

eij ẋj(x− τj) = ai(xi(t))

[

−bi(xi(t))(2.1)

+

m
∑

j=1

cijfj(xj(t)) +

m
∑

j=1

dijgj(xj(t− τj)) + Ii

]

,

t > t0 = 0, t 6= tk,

∆xi(tk) = γikxi(tk) +
m
∑

j=1

δijkxj(tk − τj) + ζik,(2.2)

i = 1, m, k ∈ N = {1, 2, 3, . . .},

with initial values prescribed by piecewise-continuous functions xi(s) = φi(s) with

discontinuities of the first kind for s ∈ [−τ, 0], τ = max
j=1,m

{τj}. In (2.1), ai(xi) denotes

an amplification function; bi(xi) denotes an appropriate function which supports the
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stabilizing (or negative) feedback term −ai(xi)bi(xi) of the unit i; fj(xj), gj(xj) de-

note activation functions; the parameters cij , dij are real numbers that represent the

weights (or strengths) of the synaptic connections between the j-th unit and the i-th

unit, respectively without and with time delays τj ; the real numbers eij show how

the state velocities of the neurons are delay feed-forward connected in the network;

the real constant Ii represents an input signal introduced from outside the network

to the i-th unit; in (2.2) ∆xi(tk) = xi(tk + 0) − xi(tk − 0) denote impulsive state

displacements at fixed moments of time tk, k ∈ N, involving time delays τj . Here it is

assumed that xi(tk + 0) = lim
t→tk+0

xi(t) and xi(tk − 0) = lim
t→tk−0

xi(t), and the sequence

of times {tk}
∞
k=1 satisfies 0 = t0 < t1 < t2 < · · · < tk → ∞ as k → ∞.

As usual in the theory of impulsive differential equations, at the points of dis-

continuity tk of the solution t 7→ x(t) = (x1(t), x2(t), . . . , xm(t))T we assume that

xi(tk) ≡ xi(tk − 0). It is clear that, in general, the derivatives ẋi(tk) do not exist. On

the other hand, according to (2.1) there exist the limits ẋi(tk ∓ 0). According to the

above convention, we assume ẋi(tk) ≡ ẋi(tk − 0).

The assumptions that accompany the impulsive network (2.1), (2.2) are given as

follows:

(H1) The amplification functions ai : R → R
+ are continuous and bounded in the

sense that

0 < ai ≤ ai(x) ≤ ai for x ∈ R, i = 1, m.

(H2) The stabilizing functions bi : R → R are Lipschitz continuous and monotone

increasing, namely,

0 < bi ≤
bi(x) − bi(y)

x− y
≤ bi for x 6= y, x, y ∈ R, i = 1, m.

(H3) The activation functions fj , gj : R → R are Lipschitz continuous, that is, there

exist positive constants Fj, Gj such that

Fj = sup
x 6=y

∣

∣

∣

∣

fj(x) − fj(y)

x− y

∣

∣

∣

∣

, Gj = sup
x 6=y

∣

∣

∣

∣

gj(x) − gj(y)

x− y

∣

∣

∣

∣

for x, y ∈ R, j = 1, m.

Under these assumptions and the given initial conditions, there is a unique solu-

tion of the impulsive network (2.1), (2.2). The solution is a vector x(t) = (x1(t), x2(t),

. . . , xm(t))T in which xi(t) are piecewise continuous for t ∈ (0, β), where β is some

positive number, possibly ∞, such that the limits xi(tk + 0) and xi(tk − 0) exist and

xi(t) are differentiable for t ∈ (tk−1, tk) ⊂ (0, β). An equilibrium point of the impul-

sive network (2.1), (2.2) is denoted by x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T where the components
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x∗i are governed by the algebraic system

(2.3) bi(x
∗
i ) =

m
∑

j=1

cijfj(x
∗
j ) +

m
∑

j=1

dijgj(x
∗
j ) + Ii, i = 1, m,

and satisfy the linear equations

(2.4) γikx
∗
i +

m
∑

j=1

δijkx
∗
j + ζik = 0, k ∈ N, i = 1, m.

3. FORMULATION OF AN IMPULSIVE

DISCRETE-TIME ANALOGUE

Till recently, the semi-discretization model had not been exploited for obtaining

a discrete-time analogue of Cohen-Grossberg neural network mainly due to the non-

linearity of the feedback terms −ai(xi)bi(xi). An appropriate extension of the method

was presented in [12]. Exploiting the same idea, we start by rewriting the differential

system (2.1) as

ẋi(t) + βixi(t) +
m
∑

j=1

eij (ẋj(t− τj) + βixj(t− τj))(3.1)

= βixi(t) +
m
∑

j=1

eijβixj(t− τj) + ai(xi(t))

[

−bi(xi(t))

+
m
∑

j=1

cijfj(xj(t)) +
m
∑

j=1

gj(xj(t− τij)) + Ii

]

,

i = 1, m, t > 0, t 6= tk,

where βi = aibi > 0. Let the value h > 0 of the discretization step be fixed, and

n = [t/h], σj = [τj/h], where [r] denotes the greatest integer contained in the real

number r. On any interval [nh, (n+1)h) not containing a moment of impulse effect tk

we multiply equation (3.1) by eβit and approximate it by an equation with constant

arguments of the form

d

dt

(

xi(t)e
βit +

m
∑

j=1

eijxj(t− σjh)e
βit

)

(3.2)

= βie
βit

(

xi(nh) +

m
∑

j=1

eijxj((n− σj)h)

)

+ eβitai(xi(nh))

[

−bi(xi(nh)) +
m
∑

j=1

cijfj(xj(nh))

+
m
∑

j=1

dijgj(xj((n− σj)h) + Ii

]

, i = 1, m,
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with [t/h]h = nh → t, [τj/h]h = σjh → τj for a fixed time t as h → 0. Upon

integrating (3.2) over the interval [nh, (n + 1)h), one obtains a discrete analogue of

the differential system (2.1) given by

xi(n + 1)eβi(n+1)h − xi(n)eβinh

+
m
∑

j=1

eij

(

xj(n+ 1 − σj)e
βi(n+1)h − xj(n− σj)e

βinh
)

=
(

eβi(n+1)h − eβinh
)

(

xi(n) +

m
∑

j=1

eijxj(n− σj)

)

+
eβi(n+1)h − eβinh

βi
ai(xi(n))

[

−bi(xi(n))

+

m
∑

j=1

cijfj(xj(n)) +

m
∑

j=1

dijgj(xj(n− σj)) + Ii

]

for i = 1, m, n ∈ {0} ∪ N, wherein the notation w(n) ≡ w(nh) has been adopted for

simplicity. We multiply the i-th equation of this system by e−βi(n+1)h and obtain the

difference system

xi(n + 1) = xi(n) +

m
∑

j=1

eij(xj(n− σj) − xj(n + 1 − σj))(3.3)

+ ψi(h)ai(xi(n))

[

−bi(xi(n)) +
m
∑

j=1

cijfj(xj(n))

+
m
∑

j=1

dijgj(xj(n− σj)) + Ii

]

, i = 1, m, n ∈ {0} ∪ N,

where we have denoted ψi(h) = 1−e−βih

βi
. Observe that 0 < ψi(h) <

1
βi

for h > 0 and

ψi(h) = h+O(h2) for small h > 0.

The analogue (3.3) is supplemented with an initial vector sequence φ(ℓ) = (φ1(ℓ),

φ2(ℓ), . . . , φm(ℓ))T for ℓ = −σ, 0, σ = max
j=1,m

σj . Next we discretize the impulse condi-

tions (2.2). If we denote nk =
[

tk
h

]

, we obtain a sequence of positive integers {nk}

satisfying 0 < n1 < n2 < · · · < nk → ∞ as k → ∞. With each such integer nk we

associate two values of the solution x(n), namely, x(nk) which can be regarded as the

value of the solution before the impulse effect and whose components are evaluated

by equations (3.3), and x+(nk) which can be regarded as the value of the solution

after the impulse effect and whose components are evaluated by the equations

(3.4) x+
i (nk) = (1 + γik)xi(nk) +

m
∑

j=1

δijkxj(nk − σj) + ζik, i = 1, m, k ∈ N.
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If a value of x(n) in the right-hand side of (3.3) or (3.4) must be evaluated at a

member of the sequence {nk}k∈N, we take x+(nk) evaluated from (3.4). The existence

of a unique solution x(n) = (x1(n), x2(n), . . . , xm(n))T of the impulsive analogue (3.3),

(3.4) for n ∈ {0} ∪ N is therefore justified.

If we want to give a formal description of the discrete-time analogue of the im-

pulsive system (2.1), (2.2), we should write

x−i (n+ 1) = x+
i (n) +

m
∑

j=1

eij(x
+
j (n− σj) − x+

j (n+ 1 − σj))

+ ψi(h)ai(x
+
i (n))

[

−bi(x
+
i (n)) +

m
∑

j=1

cijfj(x
+
j (n))

+
m
∑

j=1

dijgj(x
+
j (n− σj)) + Ii

]

, n ∈ {0} ∪ N,

x+
i (n) =











x−i (n) for n 6= nk,

(1 + γik)x
−
i (nk) +

m
∑

j=1

δijkx
−
j (nk − σj) + ζik for n = nk,

i = 1, m. Systems (2.1), (2.2) and (3.3), (3.4) have the same equilibrium points if

any. Their components must satisfy (2.3), (2.4).

Definition 3.1. The equilibrium point x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T of system (3.3), (3.4) is

said to be globally asymptotically stable if any other solution x(n) = (x1(n), x2(n), . . .,

xm(n))T of system (3.3), (3.4) is defined for all n ∈ N and satisfies

lim
n→∞

x(n) = x∗.

4. EXISTENCE AND GLOBAL ASYMPTOTIC STABILITY OF AN

EQUILIBRIUM POINT

Our first task is to prove the existence and uniqueness of the solution x∗ of the

algebraic system (2.3). To this end we will need the following lemma.

Lemma 4.1 ([10]). A locally invertible C0 map Φ : R
m → R

m is a homeomorphism

of R
m onto itself if and only if it is proper.

In fact, this assertion is due to Hadamard [11]. A mapping is proper if the pre-

image of every compact is compact. In the finite-dimensional case it suffices to show

that ‖Φ(x)‖ → ∞ as ‖x‖ → ∞.

Theorem 4.2. Let the assumptions (H2), (H3) hold. Suppose, further, that the

following inequalities are valid:

(4.1) bi −
1

2

m
∑

j=1

(|cij |Fj + |cji|Fi) −
1

2

m
∑

j=1

(|dij|Gj + |dji|Gi) > 0, i = 1, m.
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Then the system without impulses (2.1) has a unique equilibrium point x∗ = (x∗1, x
∗
2, . . .,

x∗m)T .

Proof. Let us define a mapping Φ : R
m → R

m by Φ(x) = (Φ1(x),Φ2(x), . . ., Φm(x))T

for x ∈ R
m, where

Φi(x) = bi(xi) −
m
∑

j=1

cijfj(xj) −
m
∑

j=1

dijgj(xj) − Ii, i = 1, m.

The space R
m is endowed with the Euclidean norm ‖x‖ =

(

m
∑

i=1

x2
i

)1/2

. We denote by

〈·, ·〉 the respective inner product. Under the assumptions (H2), (H3), Φ(x) ∈ C0. It

is known that if Φ(x) ∈ C0 is a homeomorphism of R
m, then there is a unique point

x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T ∈ R

m such that Φ(x∗) = 0, that is, Φi(x
∗) = 0, i = 1, m. The

last equalities are, in fact, (2.3), so x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T is the equilibrium point we

are looking for.

To demonstrate the one-to-one property of Φ(x), we take arbitrary vectors x, y ∈

R
m and assume that Φ(x) = Φ(y). We multiply the equalities

bi(xi) − bi(yi) =

m
∑

j=1

cij (fj(xj) − fj(yj)) +

m
∑

j=1

dij (gj(xj) − gj(yj)) , i = 1, m,

respectively by xi − yi and add them together to obtain

m
∑

i=1

(bi(xi) − bi(yi)) (xi − yi) =
m
∑

i=1

m
∑

j=1

cij (fj(xj) − fj(yj)) (xi − yi)

+
m
∑

i=1

m
∑

j=1

dij (gj(xj) − gj(yj)) (xi − yi) .

According to the assumptions (H2), (H3) we derive

m
∑

i=1

bi (xi − yi)
2 ≤

m
∑

i=1

m
∑

j=1

|cij|Fj |xj − yj| |xi − yi|

+

m
∑

i=1

m
∑

j=1

|dij|Gj |xj − yj| |xi − yi|

≤
1

2

m
∑

i=1

m
∑

j=1

|cij |Fj

[

(xj − yj)
2 + (xi − yi)

2
]

+
1

2

m
∑

i=1

m
∑

j=1

|dij|Gj

[

(xj − yj)
2 + (xi − yi)

2
]

=
m
∑

i=1

{

1

2

m
∑

j=1

(|cij|Fj + |cji|Fi) +
1

2

m
∑

j=1

(|dij|Gj + |dji|Gi)

}

(xi − yi)
2 ,
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that is,

m
∑

i=1

{

bi−
1

2

m
∑

j=1

(|cij |Fj + |cji|Fi)−
1

2

m
∑

j=1

(|dij|Gj + |dji|Gi)

}

(xi−yi)
2 ≤ 0.

Now the assertion xi = yi, i = 1, m, follows by virtue of inequalities (4.1). Thus,

Φ(x) = Φ(y) implies x = y.

Next we show that ‖Φ(x)‖ → ∞ as ‖x‖ → ∞. It suffices to show that ‖Φ̃(x)‖ →

∞, where Φ̃(x) = Φ(x) − Φ(0). We have Φ̃(x) = (Φ̃1(x), Φ̃2(x), . . ., Φ̃m(x))T , where

Φ̃i(x) = (bi(xi) − bi(0)) −
m
∑

j=1

cij(fj(xj) − fj(0)) −
m
∑

j=1

dij(gj(xj) − gj(0)).

Then

〈Φ̃(x), x〉 =
m
∑

i=1

Φ̃i(x)xi =
m
∑

i=1

{

(bi(xi) − bi(0))xi

−
m
∑

j=1

cij(fj(xj) − fj(0))xi −
m
∑

j=1

dij(gj(xj) − gj(0))xi

}

,

from which by virtue of the assumptions (H2), (H3) we derive

∣

∣

∣
〈Φ̃(x), x〉

∣

∣

∣
≥

m
∑

i=1

{

bix
2
i −

m
∑

j=1

|cij|Fj |xj | |xi| −
m
∑

j=1

|dij|Gj |xj| |xi|

}

≥

m
∑

i=1

{

bix
2
i −

1

2

m
∑

j=1

|cij|Fj (x2
j + x2

i ) −
1

2

m
∑

j=1

|dij|Gj (x2
j + x2

i )

}

=

m
∑

i=1

{

bi −
1

2

m
∑

j=1

(|cij |Fj + |cji|Fi) −
1

2

m
∑

j=1

(|dij|Gj + |dji|Gi)

}

x2
i .

By virtue of inequalities (4.1) there exists a number µ > 0 such that

bi −
1

2

m
∑

j=1

(|cij|Fj + |cji|Fi) −
1

2

m
∑

j=1

(|dij|Gj + |dji|Gi) ≥ µ, i = 1, m.

Then ‖Φ̃(x)‖ · ‖x‖ ≥ |〈Φ̃(x), x〉| ≥ µ‖x‖2 and ‖Φ̃(x)‖ ≥ µ‖x‖ → ∞ as ‖x‖ → ∞.

According to Lemma 4.1, Φ(x) ∈ C0 is a homeomorphism of R
m. Thus, there is

a unique point x∗ ∈ R
m such that Φ(x∗) = 0. The point represents a unique solution

of the algebraic system (2.3).

Theorem 4.3. Let the assumptions (H1)–(H3) hold. Suppose, further, that the in-

equalities

aibi −
1

2

m
∑

j=1

(ai|cij|Fj + aj |cji|Fi)(4.2)
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−
1

2

m
∑

j=1

(ai|dij|Gj + aj|dji|Gi) −
1

2

m
∑

j=1

(

aibi|eij| + ajbj |eji|
)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|cji| |ejk|Fi + |cjk| |eji|Fk)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|dji| |ejk|Gi + |djk| |eji|Gk) > 0, i = 1, m,

and the conditions

(4.3) δijk = γikeij , −2 ≤ γij ≤ 0, i, j = 1, m, k ∈ N,

are valid and the system (3.3), (3.4) has an equilibrium point x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T

whose components satisfy (2.3), (2.4). Then the equilibrium point x∗ is globally

asymptotically stable for all sufficiently small values of h > 0.

Remark 4.4. Inequalities (4.1) can be deduced from (4.2) for ai = ai = 1, eij = 0

for i, j = 1, m. However, in general inequalities (4.2) do not imply (4.1).

Proof. Upon introducing the translations

ui(n) = xi(n) − x∗i , ϕi(ℓ) = φi(ℓ) − x∗i

we derive the system

ui(n+ 1) +

m
∑

j=1

eijuj(n + 1 − σj) = ui(n) +

m
∑

j=1

eijuj(n− σj)(4.4)

+ψi(h)ãi(ui(n))

[

−b̃i(ui(n))+
m
∑

j=1

cij f̃j(uj(n))+
m
∑

j=1

dij g̃j(uj(n−σj))

]

,

i = 1, m, n ∈ N,

u+
i (nk) = (1 + γik)ui(nk) +

m
∑

j=1

δijkuj(nk − σj),(4.5)

i = 1, m, k ∈ N,

ui(ℓ) = ϕi(ℓ), i = 1, m, ℓ = −σ, 0,

where

ãi(ui) = ai(ui + x∗i ), b̃i(ui) = bi(ui + x∗i ) − bi(x
∗
i ),

f̃j(uj) = fj(uj + x∗j ) − fj(x
∗
j ), g̃j(uj) = gj(uj + x∗j ) − gj(x

∗
j).

This system inherits the assumptions (H1)–(H3) given before. It suffices to examine

the stability characteristics of the trivial equilibrium point u∗ = 0 of system (4.4),

(4.5).
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We define a Lyapunov sequence {V (n)}∞n=0 by

V (n) =
1

2

m
∑

i=1

[

ui(n) +

m
∑

j=1

eijuj(n− σj)

]2

+ h

m
∑

i=1

ωi

n−1
∑

ℓ=n−σi

u2
i (ℓ),

where ωi, i = 1, m, will be determined later. First we notice that the value V (0) is

completely determined from the initial values of the system. Then we successively

find

V (n+ 1) =
1

2

m
∑

i=1

[

ui(n+ 1) +

m
∑

j=1

eijuj(n + 1 − σj)

]2

+ h

m
∑

i=1

ωi

n
∑

ℓ=n+1−σi

u2
i (ℓ)

=
1

2

m
∑

i=1

{[

ui(n) +
m
∑

j=1

eijuj(n− σj)

]

+ ψi(h)ãi(ui(n))

[

−b̃i(ui(n))

+

m
∑

j=1

cij f̃j(uj(n)) +

m
∑

j=1

dij g̃j(uj(n− σj))

]}2

+ h

m
∑

i=1

ωi

n
∑

ℓ=n+1−σi

u2
i (ℓ),

V (n+ 1) − V (n) =

m
∑

i=1

ψi(h)ãi(ui(n))

[

ui(n) +

m
∑

j=1

eijuj(n− σj)

]

×

[

−b̃i(ui(n)) +

m
∑

j=1

cij f̃j(uj(n)) +

m
∑

j=1

dij g̃j(uj(n− σj))

]

+
1

2

m
∑

i=1

ψ2
i (h)ã

2
i (ui(n))

[

−b̃i(ui(n)) +

m
∑

j=1

cij f̃j(uj(n))

+

m
∑

j=1

dij g̃j(uj(n− σj))

]2

+ h

m
∑

i=1

ωi

(

u2
i (n) − u2

i (n− σi)
)

= h

m
∑

i=1

{

ãi(ui(n))

[

ui(n) +

m
∑

j=1

eijuj(n− σj)

]

×

[

−b̃i(ui(n)) +

m
∑

j=1

cij f̃j(uj(n)) +

m
∑

j=1

dij g̃j(uj(n− σj))

]

+ (Ci(h) + ωi) u
2
i (n) + (Di(h) − ωi)u

2
i (n− σi)

}

,

where Ci(h), Di(h) = O(h) for i = 1, m. For the sake of brevity we do not write in

details the terms of order O(h2). Then

V (n+ 1) − V (n) = h
m
∑

j=1

{

−ãi(ui(n))b̃i(ui(n))ui(n)
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+ ãi(ui(n))ui(n)

[

m
∑

j=1

cij f̃j(uj(n)) +

m
∑

j=1

dij g̃j(uj(n− σj))

]

+ ãi(ui(n))

m
∑

j=1

eijuj(n− σj)

[

−b̃i(ui(n)) +

m
∑

j=1

cij f̃j(uj(n))

+
m
∑

j=1

dij g̃j(uj(n−σj))

]

+ (Ci(h)+ωi) u
2
i (n) + (Di(h)−ωi) u

2
i (n−σi)

}

≤ h
m
∑

i=1

{

−aibiu
2
i (n) + ai|ui(n)|

[

m
∑

j=1

|cij|Fj |uj(n)|

+

m
∑

j=1

|dij|Gj |uj(n− σj)|

]

+ ai

m
∑

j=1

|eij| |uj(n− σj)|

[

bi |ui(n)|

+

m
∑

j=1

|cij|Fj |uj(n)| +

m
∑

j=1

|dij|Gj |uj(n− σj)|

]

+ (Ci(h) + ωi) u
2
i (n) + (Di(h) − ωi)u

2
i (n− σi)

}

≤ h
m
∑

i=1

{

−aibiu
2
i (n) + ai

1

2

m
∑

j=1

|cij|Fj

(

u2
i (n) + u2

j(n)
)

+ai
1

2

m
∑

j=1

|dij|Gj

(

u2
i (n) + u2

j(n− σj)
)

+aibi
1

2

m
∑

j=1

|eij |
(

u2
i (n) + u2

j(n− σj)
)

+ai
1

2

m
∑

j=1

m
∑

k=1

|eij | |cik|Fk

(

u2
k(n) + u2

j(n− σj)
)

+ai
1

2

m
∑

j=1

m
∑

k=1

|eij | |dik|Gk

(

u2
j(n− σj) + u2

k(n− σk)
)

+ (Ci(h) + ωi) u
2
i (n) + (Di(h) − ωi)u

2
i (n− σi)

}

= h
m
∑

i=1

{

−

[

aibi −
1

2

(

ai

m
∑

j=1

|cij|Fj + Fi

m
∑

j=1

|cji|aj

)

−
ai

2

m
∑

j=1

|dij|Gj

−
aibi
2

m
∑

j=1

|eij| −
Fi

2

m
∑

j=1

m
∑

k=1

|cki| |ekj|ak − Ci(h) − ωi

]

u2
i (n)

+

[

Gi

2

m
∑

j=1

|dji|aj +
1

2

m
∑

j=1

|eji|ajbj +
1

2

m
∑

j=1

m
∑

k=1

|eji| |cjk|ajFk
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+
1

2

m
∑

j=1

m
∑

k=1

(|eji| |djk|ajGk + |ekj| |dki|akGi) +Di(h) − ωi

]

u2
i (n−σi)

}

.

Choose

ωi =
Gi

2

m
∑

j=1

|dji|aj +
1

2

m
∑

j=1

|eji|ajbj +
1

2

m
∑

j=1

m
∑

k=1

|eji| |cjk|ajFk

+
1

2

m
∑

j=1

m
∑

k=1

(|eji| |djk|ajGk + |ekj| |dki|akGi) +Di(h),

then after some simplifications we obtain

V (n+ 1) − V (n) ≤ −h

m
∑

i=1

{

aibi −
1

2

m
∑

j=1

(ai|cij|Fj + aj|cji|Fi)

−
1

2

m
∑

j=1

(ai|dij|Gj + aj |dji|Gi) −
1

2

m
∑

j=1

(

aibi|eij| + ajbj|eji|
)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|cji| |ejk|Fi + |cjk| |eji|Fk)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|dji| |ejk|Gi + |djk| |eji|Gk) − Ci(h) −Di(h)

}

u2
i (n).

According to conditions (4.2) there exists δ > 0 such that

δ = min
i=1,m

{

aibi−
1

2

m
∑

j=1

(ai|cij|Fj+aj|cji|Fi)−
1

2

m
∑

j=1

(ai|dij|Gj+aj |dji|Gi)

−
1

2

m
∑

j=1

(

aibi|eij| + ajbj |eji|
)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|cji| |ejk|Fi + |cjk| |eji|Fk)

−
1

2

m
∑

j=1

aj

m
∑

k=1

(|dji| |ejk|Gi + |djk| |eji|Gk)

}

.

Further on, we can choose the discretization step h so small that |Ci(h)+Di(h)| < δ/2,

then

(4.6) V (n+ 1) − V (n) ≤ −
hδ

2
‖u(n)‖2, n ∈ {0} ∪ N.

In case n = nk, in the above inequality instead of V (n) we should take the value

V +(n) evaluated for u+
i (nk) given by (4.5). Thus

V +(nk)−V (nk) =
1

2

m
∑

i=1







[

(1+γik)ui(nk) +

m
∑

j=1

(eij + δijk)uj(nk−σj)

]2

−

[

ui(nk) +
m
∑

j=1

eijuj(nk − σj)

]2





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=
1

2

m
∑

i=1

[

γikui(nk) +

m
∑

j=1

δijkuj(nk − σj)

]

×

[

(2 + γik)ui(nk) +

m
∑

j=1

(2eij + δijk)uj(nk − σj)

]

.

According to conditions (4.3) we have

V +(nk) − V (nk) =
1

2

m
∑

i=1

γik(2 + γik)

[

ui(nk) +

m
∑

j=1

eijuj(nk − σj)

]2

≤ 0,

which implies the validity of (4.6) also for n = nk and V (nk) evaluated for ui(nk).

The inequalities (4.6) show that for any solution u(n) of system (4.4), (4.5) the

sequence {V (n)}∞n=0 is monotone decreasing and it is bounded below by 0. Thus there

exists the limit lim
n→∞

V (n) ≥ 0. Passing to the limit as n → ∞ in (4.6), we find that

lim
n→∞

‖u(n)‖ = 0, that is, lim
n→∞

‖x(n)−x∗‖ = 0. This means that the equilibrium point

x∗ of system (3.3), (3.4) is globally asymptotically stable.

Example 4.5. Consider the system

ẋ1(t) + 0.1ẋ1(t− τ1) + 0.15ẋ2(t− τ2)(4.7)

= (2 + 0.01 sinx1(t)) [−2x1(t) + 0.1 arctanx1(t) + 0.15 arctanx2(t)

+ 0.1 arctanx1(t− τ1) + 0.15 arctanx2(t− τ2) + 1] ,

ẋ2(t) − 0.2ẋ1(t− τ1) + 0.1ẋ2(t− τ2)

= (3 − 0.02 sinx2(t)) [−3x2(t) + 0.15 arctanx1(t) − 0.2 arctanx2(t)

+ 0.1 arctanx1(t− τ1) − 0.2 arctanx2(t− τ2) + 1] , t > 0, t 6= tk,

∆x1(tk) = −1.1x1(tk) − 0.11x1(tk − τ1)(4.8)

− 0.165x2(tk − τ2) + 0.7847118585,

∆x2(tk) = −0.9x2(tk) + 0.18x1(tk − τ1)

− 0.09x2(tk − τ2) + 0.2235363329, k ∈ N,

with arbitarary initial conditions xi(s) = φ(s), i = 1, 2, s ∈ [−max{τ1, τ2}, 0].

System (4.7), (4.8) has the form (2.1), (2.2). It satisfies assumptions (H1)–(H3)

with a1 = 1.99, a1 = 2.01, a2 = 2.98, a2 = 3.02, b1 = b1 = 2, b2 = b2 = 3,

F1 = F2 = G1 = G2 = 1.

The discrete-time counterpart of system (4.7), (4.8) is

x1(n + 1) = x1(n) + 0.1 [x1(n− σ1) − x1(n + 1 − σ1)](4.9)

+ 0.15 [x2(n− σ2) − x2(n+ 1 − σ2)] +
1 − e−3.98h

3.98
(2 + 0.01 sin x1(n))

× [−2x1(n) + 0.1 arctanx1(n) + 0.15 arctanx2(n)
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+ 0.1 arctanx1(n− σ1) + 0.15 arctanx2(n− σ2) + 1] ,

x2(n + 1) = x2(n) − 0.2 [x1(n− σ1) − x1(n+ 1 − σ1)]

+ 0.1 [x2(n− σ2) − x2(n+ 1 − σ2)] +
1 − e−8.94h

8.94
(3 − 0.02 sinx2(n))

× [−3x2(n) + 0.15 arctanx1(n) − 0.2 arctanx2(n)

+ 0.1 arctanx1(n− σ1) − 0.2 arctanx2(n− σ2) + 1] n ∈ {0} ∪ N,

x+
1 (nk) = −0.1x1(nk) − 0.11x1(nk − σ1)(4.10)

− 0.165x2(nk − σ2) + 0.7847118585,

x+
2 (nk) = 0.1x2(tk) + 0.18x1(nk − σ1)

− 0.09x2(nk − σ2) + 0.2235363329, k ∈ N,

with initial conditions xi(ℓ) = φ(ℓ), ℓ = −σ, 0, σ = max{σ1, σ2} and σi = [τi/h],

i = 1, 2.

It is easy to see that system (4.7) satisfies inequalities (4.1). In fact, the left-

hand sides of these inequalities are equal respectively to 1.525 and 2.325 for i = 1

and 2. Thus system (4.7) or (4.9) has a unique equilibrium point x∗. We can find

that x∗ = (0.6027869379, 0.3353919007)T . Its components satisfy the linear equations

(2.4), thus x∗ is the unique equilibrium of the continuous-time impulsive system (4.7),

(4.8) and its discrete-time analogue (4.9), (4.10).

Further on, system (4.9), (4.10) satisfies the assumptions of Theorem 4.3. In

fact, the left-hand sides of inequalities (4.2) are equal respectively to 0.87945 and

4.5471375 for i = 1 and 2. Thus the equilibrium point x∗ of system (4.9), (4.10) is

globally asymptotically stable for sufficiently small values of the discretization step

h > 0.
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