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ABSTRACT. This paper addresses the robust stability for a class of linear delay-difference equa-

tions with interval time-varying delays. Based on the parameter-dependent Lyapunov-Krasovskii

functional, new delay-dependent conditions for the robust stability are established in terms of linear

matrix inequalities. An application to robust stabilization of linear discrete-time control systems is

given. Numerical examples are included to illustrate the effectiveness of our results.
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1. INTRODUCTION

During the last decades, the problem of stability and stabilization of dynamical

systems with time delays has received considerable attention, and lots of interesting

results have reported in the literature, see, e.g; [1, 3, 5, 12, 15–18] and the references

therein. Some delay-dependent stability criteria for discrete-time systems with time-

varying delay are investigated in [3, 9, 13, 16, 19], where the discrete Lyapunov

functional method are employed to prove stability conditions in terms of linear matrix

inequalities (LMIs). A number research works for dealing with asymptotic stability

problem for discrete systems with interval time-varying delays have been presented

in [2, 6, 10, 20, 21]. Theoretically, stability analysis of the systems with time-varying

delays is more complicated, especially for the case where the system matrices belong

to some convex polytope. In this case, the parameter-dependent Lyapunov-Krasovskii

functionals are constructed as the convex combination of a set of functions assures the

robust stability of the nominal systems and the stability conditions must be solved

upon a grid on the parameter space, which results in testing a finite number of linear

matrix inequalities (LMI) [7, 8, 19]. To the best of the authors’ knowledge, the

stability for linear discrete-time systems with both time-varying delays and polytopic

uncertainties has not been fully investigated. The papers [4, 11] propose sufficient

conditions for robust stability of discrete and continuous polytopic systems without

time delays. More recently, combining the ideas in [7, 8], improved conditions for
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D-stability and D-stabilization of linear polytopic delay-difference equations with

constant delays have been proposed in [14].

In this paper, we consider linear polytopic discrete equations with interval time-

varying delays. By using the parameter-dependent Lyapunov-Krasovskii functional

combined with LMI techniques, we propose new criteria for the robust stability of

the system. The delay-dependent stability conditions are formulated in terms of

LMIs, being thus solvable by the numeric technology available in the literature to

date. The result is applied to robust stabilization of linear discrete control systems.

Compared to other results, our result has its own advantages. First, it deals with the

delay-difference system, where the state-space data belong to the convex polytope of

uncertainties and the rate of change of the state depends not only on the current state

of the systems, but also its state at some times in the past. Second, the time-delay

is assumed to be a time-varying function belonging to a given interval, which means

that the lower and upper bounds for the time-varying delay are available. Third, our

approach allows us to apply in robust stabilization of the linear system subjected to

polytopic uncertainties and external controls. Therefore, our results are more general

than the related previous results.

The paper is organized as follows. Section 2 introduces the main notations,

definitions and some lemmas needed for the development of the main results. In

Section 3, sufficient conditions are derived for robust stability, stabilization of linear

discrete-time systems with interval time-varying delays and polytopic uncertainties.

They are followed by some remarks. Illustrative examples are given in Section 4.

2. PRELIMINARIES

The following notations will be used throughout this paper.

• R+ denotes the set of all real non-negative numbers; Rn denotes the n-dimensional

space with the scalar product 〈·, ·〉 and the vector norm ‖ · ‖;

• Rn×r denotes the space of all matrices of (n × r)-dimension. AT denotes the

transpose of A; a matrix A is symmetric if A = AT .

• Matrix A is semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn; A is

positive definite (A > 0) if 〈Ax, x〉 > 0 for all x 6= 0; A ≥ B means A − B ≥ 0.

Consider a delay-difference systems with polytopic uncertainties of the form

x(k + 1) = A(ξ)x(k) + D(ξ)x(k − h(k)), k = 0, 1, 2, . . .

x(k) = vk, k = −h2,−h2 + 1, . . . , 0,(Σξ)
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where x(k) ∈ Rn is the state, the system matrices are subjected to uncertainties and

belong to the polytope Ω given by

Ω =

{

[A, D](ξ) :=

p
∑

i=1

ξi[Ai, Di],

p
∑

i=1

ξi = 1, ξi ≥ 0

}

,

where Ai, Di, i = 1, 2, . . . , p, are given constant matrices with appropriate dimensions.

The time-varying function h(k) satisfies the condition:

0 < h1 ≤ h(k) ≤ h2, ∀k = 0, 1, 2, . . . .

Remark 2.1. It is worth noting that the time delay is a time-varying function

belonging to a given interval, which allows the time-delay to be a fast time-varying

function and the lower bound is not restricted to being zero as considered in [3, 9,

13, 16, 19].

Definition 2.1. The system Σξ is robustly stable if the zero solution of the system

is asymptotically stable for all uncertainties in Ω.

Proposition 2.1. For real numbers ξi ≥ 0, i = 1, 2, . . . , p ,
∑p

i=1 ξi = 1, the following

inequality hold

(p − 1)

p
∑

i=1

ξ2
i − 2

p−1
∑

i=1

p
∑

j=i+1

ξiξj ≥ 0.

Proof. The proof is followed from the completing the square:

(p − 1)

p
∑

i=1

ξ2
i − 2

p−1
∑

i=1

p
∑

j=i+1

ξiξj =

p−1
∑

i=1

p
∑

j=i+1

(ξi − ξj)
2 ≥ 0.

3. MAIN RESULTS

A. Robust stability. In this section, we present sufficient delay-dependent condi-

tions for the robust stability of system (Σξ). Let us set

‖xk‖ = sup
s∈[−h2,0]

‖x(k + s)‖,

Mij(P, Q, R, S) =







(h2 − h1 + 1)Qi − Pi − AT
j Ri − RT

i Aj RT
i − AT

j Si −RT
i Dj

Ri − ST
i Aj Pi + Si + ST

i −ST
i Dj

−DT
j Ri DT

j Si −Qi






,

S =







S 0 0

0 0 0

0 0 0






, P (ξ) =

p
∑

i=1

ξiPi, Q(ξ) =

p
∑

i=1

ξiQi,

R(ξ) =

p
∑

i=1

ξiRi, S(ξ) =

p
∑

i=1

ξiSi.

Theorem 3.1. The system Σξ is robustly stable if there exist symmetric matrices

Pi > 0, Qi > 0, S ≥ 0, Ri, Si, i = 1, 2 . . . , p satisfying the following LMIs
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(i) Mii(P, Q, R, S) + S < 0, i = 1, 2, . . . , p.

(ii) Mij(P, Q, R, S)+Mji(P, Q, R, S)− 2
p−1

S < 0, i = 1, 2, . . . , p−1; j = i+1, . . . , p.

Proof. Consider the following parameter-dependent Lyapunov-Krasovskii functional

for system (Σξ)

V (k) = V1(k) + V2(k) + V3(k),

where

V1(k) = xT (k)P (ξ)x(k), V2(k) =

k−1
∑

i=k−h(k)

xT (i)Q(ξ)x(i),

V3(k) =

−h1+1
∑

j=−h2+2

k−1
∑

l=k+j+1

xT (l)Q(ξ)x(l),

We can verify that

(3.1) λ1‖x(k)‖2 ≤ V (k) ≤ λ2‖xk‖
2.

Let us set z(k) = [x(k) x(k + 1) x(k − h(k))]T , and

E(ξ) =







0 0 0

0 P (ξ) 0

0 0 0






, F (ξ) =







P (ξ) 0 0

R(ξ) S(ξ) 0

0 0 I






.

Then, the difference of V1(k) along the solution of the system is given by

∆V1(k) = xT (k + 1)P (ξ)x(k + 1) − xT (k)P (ξ)x(k)

= zT (k)E(ξ)z(k) − 2zT (k)F T (ξ)







0.5x(k)

0

0






.

(3.2)

Using the expression of system (Σξ)

0 = −x(k + 1) + A(ξ)x(k) + D(ξ)x(k − h(k)),

we have

−2zT (k)F T (ξ)







0.5x(k)

−x(k + 1) + A(ξ)x(k) + D(ξ)x(k − h(k))

0






z(k)

= −zT (k)F T (ξ)







0.5I 0 0

A(ξ) −I D(ξ)

0 0 0






z(k) − zT (k)







0.5I AT (ξ) 0

0 −I 0

0 DT (ξ) 0






F (ξ)z(k).

Therefore, from (3.2) it follows that

(3.3) ∆V1(k) = zT (k)M(ξ)z(k),
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where

M(ξ) =







0 0 0

0 P (ξ) 0

0 0 0






− F T (ξ)







0.5I 0 0

A(ξ) −I D(ξ)

0 0 0






−







0.5I AT (ξ) 0

0 −I 0

0 DT (ξ) 0






F (ξ).

The difference of V2(k) is given by

∆V2(k) =
k
∑

i=k+1−h(k+1)

xT (i)Q(ξ)x(i) −
k−1
∑

i=k−h(k)

xT (i)Q(ξ)x(i)

=

k−h1
∑

i=k+1−h(k+1)

xT (i)Q(ξ)x(i) + xT (k)Q(ξ)x(k) − xT (k − h(k))Q(ξ)x(k − h(k))

+

k−1
∑

i=k+1−h1

xT (i)Q(ξ)x(i) −

k−1
∑

i=k+1−h(k)

xT (i)Q(ξ)x(i).

(3.4)

Since h(k) ≥ h1 we have

k−1
∑

i=k+1−h1

xT (i)Q(ξ)x(i) −

k−1
∑

i=k+1−h(k)

xT (i)Q(ξ)x(i) ≤ 0,

and hence from (3.4) we have

(3.5)

∆V2(k) ≤

k−h1
∑

i=k+1−h(k+1)

xT (i)Q(ξ)x(i)+xT (k)Q(ξ)x(k)−xT (k−h(k))Q(ξ)x(k−h(k)).

The difference of V3(k) is given by

∆V3(k) =

−h1+1
∑

j=−h2+2

[xT (k)Q(ξ)x(k) − xT (k + j − 1)Q(ξ)x(k + j − 1)]

= (h2 − h1)x
T (k)Q(ξ)x(k) −

k−h1
∑

l=k+1−h2

xT (l)Q(ξ)x(l).

(3.6)

Since
k−h1
∑

i=k=1−h(k+1)

xT (i)Q(ξ)x(i) −

k−h1
∑

i=k+1−h2

xT (i)Q(ξ)x(i) ≤ 0,

we obtain from (3.5) and (3.6) that

(3.7) ∆V2(k)+∆V3(k) ≤ (h2−h1 +1)xT (k)Q(ξ)x(k)−xT (k−h(k))Q(ξ)x(k−h(k)).

Therefore, combining the inequalities (3.3), (3.7) gives

(3.8) ∆V (k) ≤ zT (k)T (ξ)z(k),
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where

T (ξ) =







W (ξ) −AT (ξ)S(ξ) + RT (ξ) −RT (ξ)D(ξ)

R(ξ) − ST (ξ)A(ξ) P (ξ) + S(ξ) + ST (ξ) −ST (ξ)D(ξ)

−DT (ξ)R(ξ) −DT (ξ)S(ξ) −Q(ξ)






,

and

W (ξ) = (h2 − h1 + 1)Q(ξ) − P (ξ)− AT (ξ)R(ξ) − R(ξ)A(ξ).

Let us denote

Wij := (h2 − h1 + 1)Qi − Pi − AT
j Ri − RT

i Aj ,

(AT S)ij := AT
j Si + AT

i Sj , Qij = Qi + Qj ,

(RT D)ij = RT
i Dj + RT

j Di, (ST D)ij = ST
i DjSjDi

(AT R)ij = AT
i Rj + AT

j Ri, Sij = Si + Sj, Rij = Ri + Rj .

From the convex combination of the expression of P (ξ), Q(ξ), R(ξ), S(ξ), A(ξ), D(ξ),

we have

T (ξ) =

p
∑

i=1

ξ2
i







Wii RT
i − AT

i Si −RT
i Di

Ri − ST
i Ai Pi + Si + ST

i −ST
i Di

−DT
i Ri −DT

i Si −Qi







+

p−1
∑

i=1

p
∑

j=i+1

ξiξj







Wij + Wji (AT S)ij + Rij −(RT D)ij

RT
ij − (ST A)ij Pij + Sij + ST

ij −(ST D)ij

−(DT R)ij −(DT S)ij −Qij







=

p
∑

i=1

ξ2
i Mi(P, Q, R, S) +

p−1
∑

i=1

p
∑

j=i+1

ξiξj [Mij(P, Q, R, S) + Mji(P, Q, R, S)].

Then the conditions (i), (ii) give

T (ξ) < −

p
∑

i=1

ξ2
i S +

2

p − 1

p−1
∑

i=1

p
∑

j=i+1

ξiξjS ≤ 0,

because of Proposition 2.1:

(p − 1)

p
∑

i=1

ξ2
i − 2

p−1
∑

i=1

p
∑

j=i+1

ξiξj =

p−1
∑

i=1

p
∑

j=i+1

(ξi − ξj)
2 ≥ 0,

and hence, we finally obtain from (3.8) that

∆V (k) < 0, ∀k = 0, 1, 2, . . . .

which together with (3.1) implies that the system is robustly stable. This completes

the proof of the theorem.

Remark 3.1. The stability conditions of Theorem 3.1 are more appropriate for

practical systems since practically it is impossible to know exactly the delay but

lower and upper bounds are always possible.
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B. Robust stabilization. This section deals with a stabilization problem considered

in [20] for constructing a delayed feedback controller, which stabilizes the resulting

closed-loop system. The robust stability condition obtained in previous section will

be applied to design a time-delayed state feedback controller for the discrete-time

control system described by

(3.9) x(k + 1) = A(ξ)x(k) + B(ξ)u(k), k = 0, 1, 2, . . .

where u(k) ∈ Rn is the control input, the system matrices are subjected to uncer-

tainties and belong to the polytope Ω given by

Ω = {[A, B](ξ) :=

p
∑

i=1

ξi[Ai, Bi],

p
∑

i=1

ξi = 1, ξi ≥ 0},

where Ai, Bi, i = 1, 2, . . . , p, are given constant matrices with appropriate dimensions.

As in [18], we consider a parameter-dependent delayed feedback control law

(3.10) u(k) = F (ξ)x(k − h(k)), k = −h2, . . . , 0,

where h(k) is the time-varying delay function satisfying 0 < h1 ≤ h(k) ≤ h2, and

F (ξ) is the controller gain to be determined. Applying the feedback controller (3.10)

to the system (3.9), the closed-loop time-delay system is

(3.11) x(k + 1) = A(ξ)x(k) + B(ξ)F (ξ)x(k − h(k)), k = 0, 1, 2, . . .

Definition 3.1. The system (3.9) is robustly stablilizable if there is a delayed feed-

back control (3.10) such that the closed-loop delay system (3.11) is robustly stable.

Let us

Mij(P, Q, R) =







(h2 − h1 + 1)Qi − Pi − AT
j Ri − RT

i Aj RT
i − AT

j Ri −Pi

Ri − RT
i Aj Pi + Ri + RT

i −Pi

−Pi −Pi −Qi






,

S =







S 0 0

0 0 0

0 0 0






.

The following theorem can be derived from Theorem 3.1.

Theorem 3.2. The system (3.9) is robustly stabilizable by the delayed feedback

control (3.10), where

F (ξ) = BT (ξ)[B(ξ)BT (ξ)]−1R(ξ)[RT (ξ)R(ξ)]−1P (ξ),

if there exist symmetric matrices Pi > 0, Qi > 0, i = 1, 2 . . . , p and constant matrices

Ri, i = 1, 2, . . . , p, S ≥ 0 satisfying the following LMIs (i) Mii(P, Q, R) + S < 0, i =

1, 2, . . . , p.

(ii) Mij(P, Q, R) + Mji(P, Q, R) − 2
p−1

S < 0, i = 1, 2, . . . , p − 1; j = i + 1, . . . , p.
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Proof. Taking Ri = Si and using the feedback control (3.10), the closed-loop sys-

tem becomes system (Σξ), where D(ξ) = B(ξ)F (ξ) = R(ξ)[RT (ξ)R(ξ)]−1P (ξ). Since

RT (ξ)D(ξ) = P (ξ), the robust stability condition of the closed-loop system (3.11),

by Theorem 3.1, is immediately derived.

Remark 3.2. Note that the approach developed in this paper is based on the use of

the modified Lyapunov-Krasovskii functional, but our solution is derived for a more

generic class of linear systems with polytopic uncertainties and interval time-varying

delays. When p = 1, taking Si = S, Ri = R, S = 0, the conditions of Theorem 3.1

become






(h2 − h1 + 1)Q − P − AT R − RT A RT − AT R −P

R − RT A P + R + RT −P

−P −P −Q






< 0,

which derive the conditions obtained in [2, 20]. Moreover, the results of [7, 19] and

[11] can be derived from ours as special cases when h(k) = 0, and h(k) = h1 = h2,

respectively.

4. NUMERICAL EXAMPLES

To illustrate the effectiveness of the previous theoretical results, we consider the

following numerical examples.

Example 4.1. (Robust stability) Consider system Σξ for p = 2, and

A1 =

(

−0.8 0.01

0.02 −0.8

)

, A2 =

(

−0.9 0.004

0.005 −0.05

)

,

D1 =

(

−0.03 0.004

0.005 −0.05

)

, D2 =

(

−0.02 0.006

0.007 −0.03

)

,

with any time-varying delay function h(k) with h1 = 2, h2 = 3. By using the LMI

Toolbox in MATLAB, the LMIs (i) and (ii) of Theorem 3.1 are feasible with

P1 =

(

0.1500 0.0902

0.0902 0.0589

)

, P2 =

(

0.0549 0.0389

0.0389 0.0281

)

,

Q1 =

(

0.0022 0.0015

0.0015 0.0012

)

, Q2 =

(

0.0006 0.0004

0.0004 0.0003

)

,

S =

(

0.0008 0.0005

0.0005 0.0004

)

,

S1 =

(

0.0008 −0.5507

−0.5507 −0.3554

)

, S2 =

(

−0.6927 −0.4614

−0.4614 −0.3108

)

,

R1 =

(

−0.8803 −0.5003

−0.5003 −0.3127

)

, R2 =

(

−0.6602 −0.4385

−0.4385 −0.2941

)

,
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Therefore, the system is robustly stable.

Example 4.2 (Robust stabilization) Consider system Σξ for p = 2 and

A1 =

(

−0.52130 0.34646

−0.21218 −0.71280

)

, A2 =

(

−0.63410 0.26354

−0.25410 −0.71280

)

,

B1 =

(

1 0

0 2

)

, B2 =

(

1 0

0 1

)

.

with any time-varying delay function h(k) with h1 = 2, h2 = 4. By using the LMI

Toolbox in MATLAB, the LMIs (i) and (ii) of Theorem 3.2 are feasible with

P1 =

(

0.1089 0.0283

0.0283 0.0595

)

, P2 =

(

0.8331 0.2523

0.2523 0.7416

)

,

Q1 =

(

1.3666 0.0713

0.4311 1.2885

)

, Q2 =

(

1.2795 −0066

−0.0066 1.2584

)

,

R1 =

(

−0.0937 −0.0209

−0.0209 −0.3326

)

, R2 =

(

−0.1274 −0.0235

−0.0235 −0.2903

)

,

S =

(

0.5340 0.0241

0.0241 0.6009

)

.

Therefore, the system is robustly stabilizable with the feedback control

u(k) = BT (ξ)[B(ξ)BT (ξ)]−1R(ξ)[RT (ξ)R(ξ)]−1P (ξ)x(k − h(k))

= (ξ1B1 + ξ2B2)
T [(ξ1B1 + ξ2B2)(ξ1B1 + ξ2B2)

T ]−1

× (ξ1R1 + ξ2R2)
T [(ξ1R1 + ξ2R2)

T (ξ1R1 + ξ2R2)]
−1

× (ξ1P1 + ξ2P2)(ξ)x(k − h(k))

=

(

ξ1 + 2ξ2 0

0 ξ1 + ξ2

)(

(ξ1 + 2ξ2)
−2 0

0 (ξ1 + ξ2)
−2

)

×

(

−0.0933ξ1 − 0.1274ξ2 −0.0209ξ1 − 0.0235ξ2

−0.0209ξ1 − 0.0235ξ2 −0.3326ξ1 − 0.2903ξ2

)

×

(

−0.0933ξ1 − 0.1274ξ2 −0.0209ξ1 − 0.0235ξ2

−0.0209ξ1 − 0.0235ξ2 −0.3326ξ1 − 0.2903ξ2

)

−2

×

(

0.1089ξ1 + 0.8331ξ2 0.0283ξ1 + 0.2523ξ2

0.0283ξ1 + 0.2523ξ2 0.0595ξ1 + 0.7416ξ2

)

x(k − h(k))

=

(

(ξ1 + 2ξ2)(0.1089ξ1 + 0.8331ξ2) (ξ1 + 2ξ2)(0.0283ξ1 + 0.2523ξ2)

(ξ1 + ξ2)(0.0283ξ1 + 0.2523ξ2) (ξ1 + ξ2)(0.0595ξ1 + 0.7416ξ2)

)

× x(k − h(k))
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Therefore, the feedback delayed controller is



























u1(k) = [0.1089ξ2
1 + 1.0509ξ1ξ2 + 1.6662ξ2

2]x1(k − h(k))

+[0.0283ξ2
1 + 0.3089ξ1ξ2 + 0.5046ξ2

2]x2(k − h(k)),

u2(k) = [0.0283ξ2
1 + 0.2806ξ1ξ2 + 0.2523ξ2

2]x1(k − h(k))

+[0.0595ξ2
1 + 0.8011ξ1ξ2 + 0.7416ξ2

2]x2(k − h(k)).

5. CONCLUSION

In this paper, new delay-dependent robust stability conditions for linear polytopic

delay-difference equations with interval time-varying delays have been presented in

terms of LMIs. An application in robust stabilization of discrete control systems with

time-delayed feedback controllers has been studied. Numerical examples have been

given to demonstrate the effectiveness of the proposed conditions.
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