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ABSTRACT. In this paper, we explore how to numerically solve a constrained multiobjective

optimal control problem (MOCP) modeling the evolution of a social network using an evolutionary

algorithm such as Differential Evolution (DE). For the problems under consideration, the constraints

are given by a system of ordinary differential equations along with some simple bounds on the state

and control vectors. Using weights we form a single objective function as a linear combination of the

multiple objective functions. The single objective function thus formed is then minimized. Then,

we use the necessary conditions for the constrained optimal control problem adapting DE in a novel

and effective way to find an optimal solution. A numerical algorithm is developed to solve the

constrained MOCP and is illustrated using a social network model.
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1. INTRODUCTION

Traditionally, optimal control problems have been solved numerically by using

methods that rely heavily on gradient information. However, in recent years, re-

searchers have begun to explore evolutionary algorithms, like Differential Evolution

(DE), since they eliminate the need for such information. I. L. Cruz (2003) [4] used

DE to solve multimodal optimal control problems with great success and Feng-Sheng

WangJi-Pyng Chiou (1997) [21] has applied Differential Evolution to solve constrained

problems in robotics. In this paper, using the necessary conditions for an optimum,

we are able to structure a numerical algorithm that uses DE in a novel way to solve

the state constrained multiobjective optimal control problem. One of the advantages

of the approach presented here is that we can handle a large problem since DE is

well-suited for parallel computing [15]. Further, the procedure employs multiple ap-

plications of DE to handle the various constraints, and the process itself eliminates

infeasible solutions [14] gradually improving the accuracy and speed of DE as applied

by previous researchers [4], [21]. Effectively, the state constrained problem has been
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converted into one without the constraints decreasing the time spent by the DE al-

gorithm to handle constraints. Also, this method improves accuracy. To see this, one

can start with this method followed by a direct method.

2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

Suppose the scalar cost or performance index (also known as objective function)

to be minimized takes the form [5], [10]:

J(u) = Φ(x(tf)) +

∫ tf

t0

L(x(t),u(t))dt,

where L is a continuous and differential real-valued function in x and u.

Consider the system described by

ẋ = f(x(t),u(t)), x(0) = x0

The state vector x(t) is an (n × 1) vector and its inequality constraints are of the

form:

η(x(t)) ≤ 0

where η is a (p × 1) vector function with p ≤ n and each component continuously

differentiable in x. The control vector u is an (m × 1) vector and its inequality

constraints are of the form:

u(t) ∈ U

where U is a closed and bounded interval in R
m.

Definition 2.1. A point u∗ is a global minimizer if J(u∗) ≤ J(u) for all u ∈ U [16].

Definition 2.2. A point u∗ is a local minimizer if there is a neighborhood B of u∗

such that J(u∗) ≤ J(u) for all u ∈ B.

Now, we can formulate the optimal control problem:

min
u∈U

J(u) = Φ(x(tf )) +

∫ tf

t0

L(x(t),u(t))dt(1a)

s.t.

ẋ(t) = f(x(t),u(t)), x(0) = x0(1b)

T (x(t0))(1c)

u(t) ∈ U(1d)

η(x(t)) ≤ 0(1e)

In essence, we want to find u∗ such that J(u∗) ≤ J(u) ∀ u ∈ U . These controls are

the optimal controls and we assume that at least one optimal solution, (u∗(t),x∗(t))

exists. The reader should consult [1], [7] for a discussion on the existence of optimal

controls.



CONTROL PROBLEM MODELING THE EVOLUTION OF A SOCIAL NETWORK 375

3. FORMULATION OF THE MULTIOBJECTIVE OPTIMAL

CONTROL PROBLEM

Whereas the previous optimal control problem had a scalar-valued cost function,

the multiobjective optimal control problem has a vector-valued cost function and can

be loosely posed as follows:

min
u∈U

J(u) = [J1(u), . . . , Js(u)]T , s ≥ 2(2a)

s.t.

ẋ(t) = f(x(t),u(t)), x(0) = x0(2b)

T (x(t0))(2c)

u(t) ∈ U(2d)

η(x(t)) ≤ 0(2e)

Ji(x
0,u(t),x(t)) = Φi(x(tf )) +

∫ tf

t0

Li[x(t),u(t)]dt(2f)

Here J is a (s × 1) vector of objective functions to be minimized where Li are

continuous and differential real-valued functions in x ∈ R
n and u ∈ R

m and fi are

C2 on R
n ×R

m with initial conditions prescribed at x(0) ∈ R
n. The state constraint

vector function, η, is (p × 1) with each component continuously differentiable in x.

4. PARETO OPTIMALITY

Most likely the objective functions in (2a) will be competing objectives which

will make it difficult to minimize them all at once; yet, if it happens that a single

solution is found for the MOCP, then the objectives are really not competing after all.

That said, since no single minimum is likely to be found, the concept of optimality

for multiobjective optimal control problems with vector-valued cost must be defined.

Once again, our definition of optimality in the multiobjective framework is Pareto

optimality.

A solution u∗ dominates u if and only if Ji(u
∗) ≤ Ji(u) ∀ i ∈ {1, 2, . . . , s} and

Ji(u
∗) < Ji(u) for at least one i ∈ {1, 2, . . . , s}. The set of nondominated points from

the search space form Pareto front or Pareto optimal set.

Definition 4.1. For a given vector of objective or cost functions J(u) = [J1(u), J2(u),

. . . , Js(u)], the control u∗ is Pareto optimal if there does not exist u such that

Ji(u) ≤ Ji(u
∗)

and for at least one i, i ∈ {1, 2, . . . , s}, we get

Ji(u) < Ji(u
∗)
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We have seen several definitions of Pareto optimality in literature and here is another

one that is often used:

Definition 4.2. An admissible control u∗ is Pareto optimal if, and only if, for every

admissible control u, ∆Ji = Ji(u) − Ji(u
∗) for all i ∈ {1, 2, . . . , N} or there exist at

least one i ∈ {1, 2, . . . , N} so that ∆Ji > 0.

4.1. Necessary Conditions for Pareto Optimality. In order for u∗ to be Pareto

optimal at x0, there are some conditions which must be satisfied [11].

Theorem 4.1. If the control u∗(t) : [t0, tf ] → R
m, generating the solution x∗(t) :

[t0, tf ] → R
n, x∗(t0) = x0, is Pareto optimal at x0, then it is optimal at x0 for the

system with scalar-valued cost

Ji(x
0,u(t), x(t)), i ∈ {1, 2, . . . , s}

and subject to isoperimetric constraints

Jj(x
0,u∗(t), x∗(t)) ≤ Jj(x

0,u(t), x(t)),

j = 1, 2, . . . , s and j 6= i.

Proof. Assume the theorem is not true. This implies there exists a u ∈ U and a

corresponding x and some i ∈ {1, 2, . . . , s} so that

Ji(x
0,u(t),x(t)) < Ji(x

0,u∗(t),x∗(t))

and

Jj(x
0,u(t),x(t)) ≤ Jj(x

0,u∗(t),x∗(t))

j = 1, 2, . . . , s and j 6= i. However, this contradicts the fact that u∗(t) is Pareto

optimal at x0.

4.2. Sufficient Conditions for Pareto Optimality. In this section we introduce

two lemmas and a theorem from Lietmann [11], [20] which embody the sufficient

conditions for Pareto optimality. He suggests that if a control meets the sufficient

conditions to be an optimum for the related optimal control problem, then it also

satisfies the conditions of Lemma 4.1 and Lemma 4.2 and is therefore Pareto opti-

mal. Note that this characterization of sufficient conditions is for the unconstrained

case. However, adding state constraints as we do later does not result in an essential

difference.

Lemma 4.1. The solution u∗(t) producing the trajectory x∗(t) is Pareto optimal at

x0 if a constant α ∈ R
s exists with αi > 0 for i = 1, 2, . . . , s and

∑s

i=1 αi = 1, such

that
s

∑

i=1

αiJi(x
0,u∗(t), x∗(t)) ≤

s
∑

i=1

αiJi(x
0,u(t), x(t))(3)
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for every u(t) ∈ U producing the solution x(t).

Proof of Lemma 4.1. Let’s consider a control u(t) ∈ U . If the equality in (3) holds,

then it must be true that either

Ji(x
0,u∗(t),x∗(t)) = Ji(x

0,u(t),x(t)) ∀ i ∈ {1, 2, . . . , s}

or there is an i and j ∈ {1, 2, . . . , s}, i 6= j for which

Ji(x
0,u∗(t),x∗(t)) < Ji(x

0,u(t),x(t))

and

Jj(x
0,u(t),x(t)) < Jj(x

0,u∗(t),x∗(t))

If the inequality in 3 holds, then there exists an i ∈ {1, 2, . . . , s} for which

Ji(x
0,u∗(t),x∗(t)) < Ji(x

0,u(t),x(t))

and we satisfy the the conditions for a control to be Pareto-optimal at x0.

Lemma 4.2. The solution u∗(t) producing the trajectory x∗(t) is Pareto optimal at

x0 if a constant α ∈ R
s exists with αi ≥ 0 for i = 1, 2, . . . , s and

∑s

i=1 αi = 1, such

that

(4)

s
∑

i=1

αiJi(x
0,u∗(t), x∗(t)) <

s
∑

i=1

αiJi(x
0,u(t), x(t)) ∀ u(t) ∈ U,u(t) 6= u∗(t).

Given these lemmas, in order to find candidates for Pareto optimality, we simply

need to review the requirements for an optimum in the optimal control problem from

Section 2 and invoke the Minimum Principle [6]. However, the procedure used will

not produce all Pareto-optimal candidates but only those that satisfy the conditions

of the above two lemmas [11].

By adapting sufficient conditions of the associated optimal control problem in

Section 2, we can state the following theorem.

Theorem 4.2. The solution u∗ ∈ U generating x∗ is Pareto optimal if there exist

1.) an α ∈ R
s with αi > 0, i = 1, 2, . . . , s, and

∑s

i=1 αi = 1, and

2.) an absolutely continuous p:[t0, tf ] → R
n

such that
s

∑

i=1

αiLi(u
∗(t), x∗(t)) − pT (t)f(u∗(t), x∗(t))

−
s

∑

i=1

αiLi(u(t), x(t)) + pT (t)f(u(t), x(t))

− ṗT (t)(x∗(tf ) − x) ≤ 0(5)
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for all x ∈ R
n and u ∈ U , and almost all t ∈ [0, tf ], and

pT (t)(x∗(tf ) − x) ≤ 0 ∀ x ∈ Θ,(6)

where Θ is a target set in R
n.

Proof. Suppose we have a solution u with corresponding trajectory x. Using the

theorem and the state equations, we have
s

∑

i=1

αiLi(u
∗(t),x∗(t)) −

s
∑

i=1

αiLi(u(t),x(t))

−
d

dt
{pT (t)(x∗(tf ) − x) ≤ 0(7)

for almost all t ∈ [t0, tf ]. Integrating the state equations with x∗(t) = x(0) = x0, and

using the second component of the theorem, we get

J(x0,u∗(t),x∗(t)) ≤ J(x0,u(t),x(t))(8)

where

J(x0,u(t),x(t)) =

s
∑

i=1

αi

∫ tf

0

Li(u(t),x(t))dt(9)

and u ∈ U is arbitrarily selected. Given (8) and the first condition of the theorem,

we have satisfied the requirements of the first lemma; and therefore, u∗ is Pareto

optimal.

Here the sufficient conditions for Pareto optimality have been successfully reduced

to sufficient conditions for an optimum of the optimal control problem with scalar-

valued cost:
s

∑

i=1

αiJi(x
0,u(t),x(t)).(10)

If there exists α ∈ R
s and if the scalar-valued objective function (10) has an optimum

u∗ at x0, then for the problem with a vector-valued objective function, u∗ is also

Pareto optimal at x0. Later, we illustrate the use of these sufficiency conditions in

an example.

5. RELAXED CONTROLS

From the previous section, we see that to solve the multiobjective optimal control

problem with state constraints, we first need to convert it into a single objective

control problem of the form in equations (1a)–(1e). The conversion is commonly

done using a weighted-sum method which basically assigns a weight to each objective

function then sums them to get the new scalar cost function.

In general, an optimal control problem may not have a solution. Thus, one may

have to consider a relaxed version of the control problem. That is, we must use
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relaxed controls as shown below. For a comprehensive theory of existence, we refer

to Berkovitz and Medhin [1]. We use their text to offer the following important

definitions and concepts as it relates to the relaxed controls and trajectories.

The function µ which is a probability measure on K, a compact set, “is a positive

regular measure on the Borel sets of K such that µ(K) = 1”.

Definition 5.1. A relaxed control on [t0, tf ]is a function

µ : t → µt a.e.

where µt is a probability measure on U(t) such that for every continuous function g

defined on [t0, tf ] × U , the function h defined by

h(t) =

∫

U(t)

g(t, z)dµt

is Lebesgue measurable.

For our purposes U is independent of t and a compact set.

An ordinary control u : [t0, tf ] → R
m is a measurable function and it corresponds

to the relaxed control δu(t) which is the Dirac measure concentrated at u(t) ∈ U .

Thus,

g(t,u(t)) =

∫

U

h(t, z)dδu(t)(z)

is a measurable function of t. “Thus the mapping t → δu(t) is a relaxed control.”

Therefore, we consider ordinary controls to be special types of relaxed controls.

Now we present relaxed controls which are not ordinary controls. Take the func-

tions π1, . . . , πk to be nonnegative and measurable on [t0, tf ] such that
∑k

i=1 πi = 1

and take the functions u1, . . . ,uk to be measurable on [t0, tf ] such that ui(t) ∈ U(t).

For any Borel set E in U(t) let

µt =

k
∑

i=1

πiδui(t).

Then µt is a probability measure, and µ : t → µt is a relaxed control since

∫

U

g(t, z)dµt(z) =

k
∑

i=1

πig(t,ui(t))

is Lebesgue measurable. Instead of
∫

U

g(t, z)dµt(z),

we simply write g(t, µt). So if

µt =
k

∑

i=1

πi(t)δui(t),
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f(t, φ(t), µt) =
k

∑

i=1

πi(t)f(t, φ(t),ui(t)).

To µt we may associate the vector (π1(t), . . . , πk(t), u1(t), . . . , uk(t)). In fact, every

relaxed control µ corresponds to (π1(t), . . . , πn+1(t), u1(t), . . . , un+1(t)) where πi ≥

0 a.e.,
∑n+1

i=1 πi = 1 a.e., ui ∈ U, i = 1, . . . , n + 1.

Definition 5.2 (Relaxed trajectory). An absolutely continuous function φ = (φ1, . . . ,

φn) defined on [t0, tf ] is a relaxed trajectory [1] corresponding to a relaxed control µ

if

1. (t, φ(t)) ∈ R
m for all t ∈ [t0, tf ],

2. φ is a solution to the relaxed differential equation

ẋ(t) =
n+1
∑

i=1

πi(t)g(x(t),ui(t))

We also write

ẋ(t) = g(x(t), µt) where µt =

n+1
∑

i=1

πi(t)δui(t)

as mentioned above.

Definition 5.3 (Admissible pair). The pair [1] (φ, µ) with a relaxed trajectory φ

corresponding to a relaxed control µ is said to be admissible if φ(0) = φ0 and the

function

t →
n+1
∑

i=1

πi(t)f
0(φ(t), ui(t))

is integrable.

We can now state the relaxed version [1], [2] of the control problem in equations

(1a)–(1e):

min
ui∈U

Jr(z) = Φ(x(tf )) +

∫ tf

t0

f 0(x(t), µt)dt(11a)

s.t.

ẋ(t) = g(x(t), µt), x(0) = x0(11b)

ui ∈ U(11c)

η(x(t)) ≤ 0(11d)

where

µ(t) = (π1(t), . . . , πn+1(t), u1(t), . . . , un+1(t)),

ui(t) ∈ U(t) a.e. t, πi ≥ 0 a.e.,
n+1
∑

i=1

πi = 1 a.e.
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Then

f 0(x(t), µt) =

n+1
∑

i=1

πi(t)L(x, ui(t)), g(x(t), µt) =

n+1
∑

i=1

πi(t)f(x, ui(t)).

5.1. Necessary Conditions for Optimal Controls. While optimal control prob-

lems with inequality constraints on the state variables are common not just in the en-

gineering sciences but occur often in management, economics and even social sciences.

Such problems are often difficult to solve and the abundance of various formulations

of the necessary and sufficient conditions in the literature adds to the ambiguity and

makes it hard to solve practical problems [7]. Fortunately, Berkovitz and Medhin [1]

offer the following theorem concerning the necessary conditions for a relaxed pair to

be an optimal solution of the control problem described in (1a)–(1e). We use these

conditions to numerically solve a social network problem later in this paper.

Assumption 5.1. We make the assumption that there exist δ > 0 such that for

t ∈ (0, δ) ∪ (tf − δ, tf ), 0 < δ < tf , we have η(φ(t)) < 0.

Our control set U is a fixed compact set. Then, with appropriate assumptions on

T, η, f 0, f that are easily met in our current problem we have the following theorem

[1].

Theorem 5.1. Suppose Assumption 5.1 holds. In addition, assume that ∇x[ηl(φ0(t))] 6=

0, t0 ≤ t ≤ tf . At any relaxed pair (φ0, z0) optimal for (1a)–(1e) the following con-

ditions are met1: There exists an absolutely continuous function p, a bounded nonin-

creasing function λ ∈ R
p, λ ≥ 0, λ(t−f ) = 0, scalars β, γ, λ0, (λ0 ≥ 0), such that

1. |p(tf)| +
∑

l |λl(0
+)| +

∑

l |βl| + λ0 6= 0,

2.

ṗ(t) = λ0f 0T
x (φ0(t), z0t) − p(t) · gx(φ0(t), z0t)

+
∑

l

λl(t)[∇x[ηl(φ0(t))]]
T · gx(φ0(t), z0t) +

∑

λl(t)d[∇x[ηl(φ0(t))]]
T /dt

3.

pT (t0) =
∑

l

γl∇x[ηl(φ0(tf ))]

+
∑

l

βl[∇xT (φ0(t0)) − (∇xT (φ0(t0)) · u0l)u0l],

u0l = ∇x[ηl(φ0(t0))]/|∇x[ηl(φ0(t0))]|.

4. pT (tf) = βΦx(φ0(tf)) +
∑

l γl∇x[ηl(φ0(tf ))]

1This theorem has been modified from its original version [1] in a manner conducive to solving

the problem under consideration.
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5.

−

[

p−

p
∑

l=1

λl(t)[∇x[ηl(φ0(t))]]
T

]

g(φ0(t), z0t) + λ0f 0(φ0(t), z0t)

≤ −

[

p−

p
∑

l=1

λl(t)[∇x[ηl(φ0(t))]]
T

]

g(φ0(t), zt) + λ0f 0(φ0(t), zt) a.e. t

Even after establishing necessary conditions for optimal control problems, the

actual determination of the optimal control and trajectory is extremely challenging

at best. Therefore, a numerical method is needed to get the solution. Traditionally,

optimal control problems have been solved numerically by using methods that rely

heavily on gradient information. However, in recent years, researchers have begun to

explore evolutionary algorithms, like Differential Evolution (DE), since they eliminate

the need for such information. I.L. Cruz (2003) [4] used DE to solve multimodal op-

timal control problems with great success and Feng-Sheng Wang and Ji-Pyng Chiou

(1997) [21] have applied Differential Evolution to solve constrained problems in robot-

ics. We will use this particular evolutionary algorithm to generate a solution for our

problem since we believe it has a better chance of reaching a global solution [19] by

initially randomly sampling the decision space at multiple points. For an overview of

alternative direct and indirect solution methods for optimal control problems as well

as explanations of various numerical techniques for solving optimal control problems

with state constraints, the reader is directed to [12], [17].

6. NUMERICAL METHOD

Evolutionary algorithms (EA), like Differential Evolution (DE), are well-suited

for solving multiobjective optimization problems.

6.1. Differential Evolution. Differential Evolution (DE) is a population-based search

method developed by Storn and Price [19] to handle problems with multiple objec-

tives over continuous domains. DE is an appealing approach for solving MOCPs

because it eliminates the need to consider function continuity, convexity, or concav-

ity unlike some traditional search techniques where the complexities must be given

great attention. In addition, DE is capable of providing a complete set of Pareto-

optimal solutions in a single run [18]. It is a stochastic population-based direct search

method that improves some randomly generated initial population through mutation,

crossover, and selection. The algorithm includes the following steps.

6.1.1. Steps for Differential Evolution (DE) Algorithm.

• Step 1: Initialization of Population

We start the algorithm by initializing the population, but first, upper and lower
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boundaries must be set for each vector coordinate. For the initial generation, g,

each coordinate, i, of every vector, u
g
j ∈ R

D, is then randomly initialized within

these specified boundaries. For instance, in generation g, the i-th coordinate of

the j-th vector is initialized as follows:

ug
j,i = ug

j,imin
+ rand() ∗ (ug

j,imax
− ug

j,imin
),(12)

where rand() is a uniformly distributed random number ∈ [0, 1) and ug
j,imin

and

ug
j,imax

are lower and upper bounds respectively on the i-th component of the

j-th vector, j = 1, 2, . . . , NP .

• Step 2: Mutation

After population initialization, the population undergoes mutation. For each

population vector, u
g
j , j = 1, . . . , NP , DE generates NP mutated vectors, ẑ

g
j :

ẑ
g
j = u

g
j1

+ W ∗ (ug
j2
− u

g
j3

)(13)

where j1, j2, j3 are random mutually different vectors belonging to {1, 2, . . . , NP}

and not equal to vector j. The parameter W > 0 is a real and constant scaling

factor that usually belongs to (0, 1) and controls the population’s evolution rate.

While there is no upper bound on W , values of W greater than 1.0 are rarely

effective [19].

• Step 3: Crossover

After mutation, DE performs crossover, sometimes referred to as discrete recom-

bination, to increase the diversity of the coordinate variables. In essence, DE

crossover develops the trial vectors, z
g
j , from the coordinates of the three differ-

ent vectors, u
g
j1

,ug
j2

,ug
j3

involved in mutation or from the corresponding parent

vector, u
g
j [19]. Each of the vectors is an element of R

D. The crossover rate CR

belongs to [0, 1] and decides whether the trial vector gets its coordinates from

the mutated vector or the parent vector using the formula,

(14) zg
j,i =







ug
j1,i + W ∗ (ug

j2,i − ug
j3,i) if rand() < CR or i = î,

ug
j,i otherwise.

where rand() is a random number in [0, 1] and î is a randomly selected index

from {1, 2, . . . , D} [3].

• Step 4: Selection

If the trial vector, z
g
j , yields an objective function value that is less than or equal

to that of the target vector, u
g
j , then z

g
j is selected for the next generation; oth-

erwise, the target vector moves forward to the next generation. Recombination

and selection are accomplished to determine which vectors move forward to the

next generation, g + 1. Each trial vector is compared against the target vector
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from which it gets its coordinate values:

(15) u
g+1
j =







z
g
j if J(zg

j ) ≤ J(ug
j ),

u
g
j otherwise

This process of mutation, recombination and selection are repeated until an

optimal solution is found or some termination criteria is satisfied.

• Step 5: Termination

Finally, we must terminate the algorithm. A very common termination criteria

used in the literature is gmax, which is a total number of generations not to

exceed. However, the operator must ensure that gmax is set high enough to

achieve convergence based on his desired level of accuracy. Often when there

is only a single objective function, J , to be minimized, the termination criteria

used is |Jbest −Jworst| < Tol, where Jbest and Jworst are respectively the best and

worst objective function values obtained in a single generation and Tol is some

small value representing the desired accuracy.

In the numerical procedure that follow, notice that solving the optimal control

problem for a relaxed pair amounts to replacing the ordinary control u(i) by the

relaxed control,

µt =
n+1
∑

l=1

πlδul(t),
n+1
∑

l=1

πl = 1, πl ≥ 0.

From the necessary conditions above, there exists boundary conditions on the state at

t0 and the costate at tf which gives rise to a TPBVP which we must solve subject to

the aforementioned constraints on the state and control variables. From the necessary

conditions, we determine that there are two objectives that we wish to minimize in

this problem:

min
u,λ

H

and

min
γ

‖pT (tf ) − (βΦx(x(tf)) +
∑

l

γl∇x[ηl(x(tf))])‖ < ǫ.

To accomplish the multiobjective minimization, we construct a numerical algo-

rithm which uses Differential Evolution (DE). The necessary conditions will be used

to guide our numerical procedure toward an optimum and we describe the procedure

as follows. To begin, we determine a population size NP to use with DE. Then, in

the initial generation, we initialize each of the NP controls within the predetermined

bounds. We also initialize two sets of multipliers, λ and γ, corresponding to each of

the NP controls. For every control in the population, we compute the associated state

variables. Then using the controls, the associated state variables and multipliers, we

get the costate variables. We then check whether the relation in condition four of
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Theorem 5.1 is satisfied to some desired level of accuracy for each member of the pop-

ulation. If so, we take the associated multipliers to be optimal; otherwise, we update

each set of multipliers using the mutation, crossover, and selection steps of Differential

Evolution. We then record the values of the Hamiltonian on each time interval as well

as the objective function value generated by each member of the population. Once

the stopping criteria for DE is met, we take the control from the Pareto optimal set

that provides the lowest objective function value and call it the “best” control. We fix

the multipliers associated with this “best” control and then by perturbing it slightly,

we hope to see whether or not we can further decrease the values of the Hamiltonian

on each time interval using some other feasible control. To do this, we perform DE

again initializing the population with controls that are slightly perturbed versions of

the “best” control and using the fixed multipliers. However, during DE selection, we

reject any control that does not lead to the desired satisfaction of condition four of

Theorem 5.1 using these fixed multipliers. When some desired stopping criteria is

achieved, we stop and output the optimal control.

6.2. Numerical Algorithm for Solving the Constrained Optimal Control

Problem. To solve the constrained control problem, we design the following algo-

rithm which uses the necessary conditions in Theorem 5.1 and Differential Evolution.

Note that in the particular problem we are considering we can use just ordinary con-

trols because the effect of a discretized relaxed control can be approximated to a

desired degree of accuracy by a discretized ordinary control.

Algorithm 6.2.1.

• Step 1: First, in the initial generation, we initialize a population of NP

controls ug = [u(1),u(2), . . . ,u(NP )]. For the i-th member of the population,

i ∈ {1, 2, . . . , NP}, we divide the time interval [t0, tf ] into N equal intervals and

guess the initial values of the i-th control at time intervals [t0, t1), [t1, t2),. . . ,

[tN−1, tf ) to get u(i)(tk), k = 0, 1, . . . , N − 1.

Note: We randomly initialize controls to meet the control constraints in (??)

and we only choose controls that produce state variables that do not violate

the state constraints in (11d). We only force the controls to satisfy the state

constraints in the initial generation. In successive generations, the problem is

formulated via the necessary conditions to address the state constraints.

• Step 2: Next, we use the control history ug(tk), along with the initial condition

x(t0) = x0, to numerically integrate the state equations forward on [t0, tf ] to get

xg(tk) = [x(1)(tk),x
(2)(tk), . . . ,x

(NP )(tk)], k = 0, 1, . . . , N − 1.

• Step 3: In the initial generation, we randomly guess NP sets of γ and λ values:

γg = [γ(1), γ(2), . . . , γ(NP )], k = 0, 1, . . . , N − 1 and

λg(tk) = [λ(1)(tk), λ
(2)(tk), . . . , λ

(NP )(tk)], k = 0, 1, . . . , N − 1. For each set
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of λ multipliers, we satisfy the conditions that λ(i)(tk) ≥ 0, i = 1, . . . , NP

and nonincreasing over time and λ(i)(tf ) = 0. We place no restrictions on γ

multipliers.

• Step 4: Now that xg(tk), u
g(tk) have been successfully obtained and the starting

values for γg and λg(tk) have been initialized, use them along with the condition

pT (t0) =
∑

l

γl∇x[ηl(x(tf ))] +
∑

l

βl[∇xT (x(t0)) − (∇xT (x(t0)) · u0l)u0l],

u0l = ∇x[ηl(x(t0))]/|∇x[ηl(x(t0))]|.

to solve the costate equations by integrating forwards from t0 to tf to get

pg(tk) = [p(1)(tk),p
(2)(tk), . . . ,p

(NP )(tk)], k = 1, . . . , N − 1. Use p(i)(tf), i =

1, . . . , NP, to minimize

‖pT (tf ) − (βΦx(x(tf)) +
∑

l

γl∇x[ηl(x(tf))])‖ < ǫ,

where ǫ is some small parameter set to achieve a desired level of accuracy. As

we proceed, we fix the λ multipliers and satisfy this condition by updating the

multipliers, γ(i), using the mutation, crossover and selection steps of Differential

Evolution.

• Step 5: With each generation, we also want to find controls that decrease the

value of the Hamiltonian on each time interval . So for each member of the

initial population, we record the value of the Hamiltonian,

H(x(i)(tk),u
(i)(tk),p

(i)(tk), λ
(i)(tk)). Simultaneously, we track the value of the

weighted-sum of objective functions, J(x(i)(tk),u
(i)(tk)), i = 1, . . . , NP . To

update the controls, u(g+1)(tk), and continue decreasing the Hamiltonian, we

use the mutation, crossover, and selection steps of Differential Evolution.

• Step 6: Once some desired stopping criteria for DE is met, output ug∗(tk),

the Pareto optimal controls from the final generation and the corresponding

multipliers, γg∗.

• Step 7: Of course, we need to ensure the condition

H(xg(tk),u
g(tk),p

g(tk)) ≥ H(xg(tk),u
g∗(tk),p

g(tk))

is satisfied. To start, select ũ, λ̃ and γ̃ to be the control and its corresponding

sets of multipliers from the Pareto optimal set in Step 6 that provided the lowest

objective function value. Next, repeat Steps 1 - 6 above with fixed γ = γ̃ and

perturbing ũ to initialize the population. Use DE to minimize the Hamiltonian

but during selection, reject any trial vector that does not meet the condition

mentioned in Step 4 with fixed γ̃. When some desired stopping criteria for DE

is met, output the optimal control.



CONTROL PROBLEM MODELING THE EVOLUTION OF A SOCIAL NETWORK 387

7. SOCIAL NETWORKS

Several key concepts [22] form the basis of social network analysis and are fun-

damental to our study of social networks.

7.1. Methodology for Social Networks. Nodes form the basis of social networks

and are often referred to as actors, actors or points depending on the context of

discussion. Nodes in a social network can be social entities such as people, businesses,

organizations, cities, nations, etc. An edge is a line connecting nodes. Edges are

also referred to as links, ties, lines or arcs, representing a relationship or connection

between a pair of nodes. In network analysis, there are many types of ties to include

behavioral interaction ties (i.e., conversing or emailing), physical movement ties (i.e.,

migration) and individual evaluation ties (i.e., friendship among actors which is the

focus of this paper). Network ties are often made based on some type of individual

or entity attributes. Attributes describe characteristics of actors in a group. For

example, for a friendship network, such attribute variables might include income

potential, gender, race, sex, education level, political tendency, religious affiliation,

marital status, etc. In fact, measurements on actors’ attributes often constitute the

make-up of social data and social networks.

There are two tools in particular which are often seen in the literature to represent

social networks: matrices and graphs. In this work, we’ll use both in illustrative

examples of friendship networks. A sociomatrix is the primary matrix used in social

network analysis and is denoted by X. If there are N actors in a social group, then the

sociomatrix for the group would be an N × N matrix of binary entries representing

the relations between the actors. Each actors in the sociomatrix has a row and

column both indexed 1, 2, . . . , N . The entries in the sociomatrix, xij , represent which

nodes are linked. For our friendship model, relations in the sociomatrix may be

directional and nondirectional which will lead to both symmetric and nonsymmetric

sociomatrices. For symmetric sociomatrices, if two actors are friends, there will be a

1 in the ij-th and ji-th cells and a 0 if they’re not friends. The ii-th cells will contain

a value of 0 since actors do not befriend themselves. For nonsymmetric sociomatrices,

while the ij-th cells may contain a 1, this may not be the case for the ji-th cell if the

relation is not reciprocated.

A graph (often referred to as digraph) has a set of nodes representing the actors in

the network and a set of lines to represent the existence of ties or links between pairs of

actors. The graph can be drawn directly from the sociomatrix. Since relations in our

model may or may not be symmetric, lines are both directional and nondirectional.

In essence, if a directional line exists from actor i to j, it may not exist from j to i.

We exclude any loops, which are lines between actors and themselves since actors do

not befriend themselves.



388 N. G. MEDHIN AND G. L. PORTER

7.2. Social Forces Model for Social Networks. Different modeling approaches

have been developed to model social networks and social interaction. In this work,

we take a more physical approach inspired by Helbing’s social forces model for pedes-

trian walking behavior. We adapt Helbing’s model to describe social interaction and

ultimately, formulate a friendship model mathematically using the notion of social

forces. In essence, actors interact as though they were subject to acceleration and

repulsive forces when making their friendship choices. This approach assumes that

individuals behave according to a set of rules in a manner that promotes their util-

ity minimization, i.e, they choose courses of action with the most benefit and least

cost. In the context of friendship networks, social forces theory assumes that each

actor possesses a specific attitude toward making friends, a desire to befriend those

who share their preferences and attributes and that they respect the private space of

others. Consequently, following Helbing and Molnar’s theory, these rules describing

social interaction can be placed into a set of equations of motion [8].

7.2.1. Assumptions. We start with a fixed set of actors, denoted Λ, consisting of N

actors, who begin as mutual strangers and enter into social relationships with other

actors as time evolves. We make the following assumptions [9] in our model of network

dynamics:

• All actors consider the same attributes when attempting to make friends.

• Actors do not change categories within a particular attribute.

• Relationships between actors depend on shared preferences for attributes and

categories.

• Reciprocity for numerical preference levels is automatic by virtue of using the

Euclidean distance as a measurement of closeness but this is not so for categorical

preferences.

• Each actor attempts to maximize his status in the social group, i.e, he wishes

to form as many relationships as possible.

• Finally, the objective functional of each actor decreases with an increase in

shared attribute preferences and categories.

7.2.2. Data. The following data is required to run our model of network dynamics:

Data:

N − total number of actors in a social environment

m − total number of attributes under consideration

l − total number of categorical attributes under consideration

k − number of categories in a particular categorical attribute

ri(t) − position vector describing actor i’s preference for each attribute, 1, . . . , m
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yi − vector identifying various attribute categories to which actor i belongs

wi − vector containing actor i’s preferences for similar attribute categories

v0
i − vector describing actor i’s initial rate of change of attribute preferences at

time t = 0

vi(t) − vector describing actor i’s rate of change of attribute preferences at time t

ui(t) − vector describing actor i’s control for each attribute, 1, . . . , m

Parameters:

lij − constant value set to ensure that actor j respects the private space of actor i

τi − relaxation time of actor i (a measure of how fast he returns to his v0
i )

Ni − reflects an actor’s desire to stick to his belief system

Now that we have formally stated what each data variable represents, we can

describe a few variables in more detail. For instance, v0
i is meant to reflect how quickly

a person intends to change their preference on a certain attribute in order to make

friends; it is represented by a “velocity” vector in the social forces model described in

Section 3.3 and hereafter, we will call it intended social velocity. Therefore, if a person

intends to change their attribute preference levels rapidly, we’d expect to see a larger

v0
i compared to those who intend to change less rapidly. Similarly, ui(t) controls how

much actors vary their attribute preferences within a given set of bounds in order

to make friends. The control variables of people who desire to make many friends

will fluctuate greatly when compared to those actors who desire fewer relationships,

reflected by control variables which are greatly restricted. Similarly, since lij controls

how close actors allow others to get to them, those actors who desire to make many

friends will have a larger value for lij than those who desire to keep others at a

distance. Further, a large Ni is meant to penalize an actor for deviating from his

belief system and thus results in an increase in an actor’s performance index. Finally,

τi will be small for those who are more reluctant to change their attribute preferences

permanently.

8. NUMERICAL EXPERIMENT

The aim of this experiment is to formulate an MOCP using a small social network

model consisting of just three actors (i = 1, 2, 3) and two attributes (m = 2). To solve

the problem, we translate the MOCP into an optimal control problem with a single

cost function using the weighted-sum method. The we relax the problem and use
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Algorithm 6.2.1 to solve the relaxed problem numerically. The objective here is not

to go into great detail regarding the model’s development. The reader is directed to

[13] for a thorough explanation of the model. We simply state the model and assess

the performance of the proposed solution methods and algorithms.

In this experiment, a set of nonlinear differential equations of motion is used

to describe the social interaction of actors in a social group as though they were

subject to physical forces. The objective of each actor is to minimize the distance

between himself and others while not compromising his beliefs too much over some

fixed time interval, [t0, tf ]. Basically, this setup amounts to solving a multiobjective

optimal control problem with three conflicting objectives by applying the necessary

and sufficient conditions for Pareto optimality discussed earlier.

8.1. Problem Statement. Consider a social group with N = 3 actors (i = 1, 2, 3

and j = 1, 2, 3) and m = 2 attributes. Since there are m = 2 attributes, in the

following equations, ri, vi, and ui are all 2-component vectors. The dynamical system

which governs social interaction is given by

ṙi = vi(16a)

v̇i =
1

τi

(v0
i − vi) −∇ri

[

∑

j 6=i

‖ui − uj‖
2(16b)

·(1 + ((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))

· exp{−lij((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)}
]

ri(0) = r0
i , vi(0) = v0

i

Constraints on the state and control variables are simple bounds, i.e,

ri(0) − δimin
≤ ri(t) ≤ ri(0) + δimax

(16c)

−δimin
≤ ui(t) ≤ δimax

(16d)

where lij, τi, and ∆t are given parameter values.

Each actor i in the social group wishes to minimize his objective or cost function:

Ji =
∑

j 6=i

‖ri(tf ) − rj(tf)‖
2 + Ni

∫ tf

t0

‖ui(t)‖
2 dt(16e)

where Ni is a given parameter.

The multiobjective optimal control problem can be stated as: find the control u∗ =

(u∗
1,u

∗
2,u

∗
3), that minimizes J = [J1, J2, J3]

T subject to the constraints imposed on the

system. Let’s recall that “minimizing” a vector of objective functions means finding

a Pareto optimal set of controls.
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It is helpful to assume we know some data in advance. Suppose we have the

following parameter choices and initial data for actors (i = 1, 2, 3) with vector com-

ponent (k = 1, 2).

Table 1. Parameters for each actor: i = 1, 2, 3

i lij τi Ni ∆t

1 0.3 1/20 1 0.02

2 0.1 1/10 1 0.02

3 0.2 1/15 1 0.02

Table 2. Initial position vector, ri for each actor i = 1, 2, 3 at t = 0

i ri1 ri2

1 0.2646 0.6325

2 0.6518 0.6491

3 0.1295 0.6518

Table 3. Initial rate of change, v0
i , of attribute preferences for each

actor i = 1, 2, 3 at t = 0

i v0
i1 v0

i2

1 0.3 0.3

2 0.3 0.3

3 0.3 0.3

8.2. Implementation. To formulate the problem with weighted-sum cost, we use

equal weights

α = [α1, α2, α3]
T =

[

1

3
,
1

3
,
1

3

]T

chosen a priori. The new single objective optimal control problem is

min
u

J =
1

3

{

‖r1(tf ) − r2(tf)‖
2 + ‖r1(tf) − r3(tf )‖

2 + N1

∫ tf

t0

‖u1(t)‖
2 dt

}

+
1

3

{

‖r2(tf ) − r1(tf)‖
2 + ‖r2(tf) − r3(tf )‖

2 + N2

∫ tf

t0

‖u2(t)‖
2 dt

}

(17a)

+
1

3

{

‖r3(tf ) − r1(tf)‖
2 + ‖r3(tf) − r2(tf )‖

2 + N3

∫ tf

t0

‖u3(t)‖
2 dt

}

s.t.

ṙi = vi(17b)
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v̇i =
1

τi

(v0
i − vi) −∇ri

[

∑

j 6=i

‖ui − uj‖
2(17c)

·(1 + ((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)

· exp{−lij((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)}
]

,

r(0) = r0
i , v(0) = v0

i

and

ri(0) − δimin
≤ ri(t) ≤ ri(0) + δimax

(17d)

−δimin
≤ ui(t) ≤ δimax

.(17e)

We derive the necessary conditions as follows for solving the optimal control

problem using Theorem 5.1. Since we have two sets of state equations, we need two

sets of adjoint multipliers, p1 and p2. Again if i = 1, 2, 3 and there are m = 2

attributes then there are two components in vectors p1,i and p2,i which have the form

p1,i = [p1,i1, p1,i2] and p2,i = [p2,i1, p2,i2].

By combining these two, we get

p = [p1,11 p1,12 p1,21 p1,22 p1,31 p1,32 p2,11 p2,12 p2,21 p2,22 p2,31 p2,32]
T .

We can convert the state inequality constraints into the form η1,i ≤ 0 and η2,i ≤ 0

η1,i = ri(t) − (ri(0) + δimax
) ≤ 0

and

η2,i = −ri(t) + (ri(0) − δimin
) ≤ 0.

Since there are two constraints, η1,i and η2,i, associated with each actor, the constraint

vectors have the form

η1,i = [η1,i1, η1,i2] and η2,i = [η2,i1, η2,i2].

We also need two sets of Lagrange multipliers, λ1,i and λ2,i, corresponding to the the

constraints η1 ≤ 0, and η2 ≤ 0. These multiplier vectors, λ1,i and λ2,i, have the form

λ1,i = [λ1,i1, λ1,i2] and λ2,i = [λ2,i1, λ2,i2].

By combining these two, we get

λ = [λ1,11 λ1,12 λ1,21 λ1,22 λ1,31 λ1,32 λ2,11 λ2,12 λ2,21 λ2,22 λ2,31 λ2,32]
T .

In the remainder of this section, we will use x = [r,v]T to simplify the notation.

The Hamiltonian is

H = − [p − λ1,11[∇η1,11]
T + λ1,12[∇η1,12]

T + λ1,21[∇η1,21]
T + λ1,22[∇η1,22]

T

+ λ1,31[∇η1,31]
T + λ1,32[∇η1,32]

T + λ2,11[∇η2,11]
T + λ2,12[∇η2,12]

T
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+ λ2,21[∇η2,21]
T + λ2,22[∇η2,22]

T + λ2,31[∇η2,31]
T + λ2,32[∇η2,32]

T ]f(x,u)

and

f(x,u) =























































ṙ11 = v11

ṙ12 = v12

ṙ21 = v21

ṙ22 = v22

ṙ31 = v31

ṙ32 = v32

ṙ32 = v32

v̇11 = 1
τ1

(v0
11 − v11) −∇r11

[F12 + F13]

v̇12 = 1
τ1

(v0
12 − v12) −∇r12

[F12 + F13]

v̇21 = 1
τ2

(v0
21 − v21) −∇r21

[F21 + F23]

v̇22 = 1
τ2

(v0
22 − v22) −∇r22

[F21 + F23]

v̇31 = 1
τ3

(v0
31 − v32) −∇r31

[F31 + F32]

v̇32 = 1
τ3

(v0
32 − v32) −∇r32

[F31 + F32]























































where

Fij =
[

‖ui − uj‖
2 (1 + ((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)

· exp{−lij((‖ri − rj‖ + ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)}
]

ṗ =LT
x
− pfx

+ [λ1,11[∇η1,11]
T + λ1,12[∇η1,12]

T + λ1,21[∇η1,21]
T + λ1,22[∇η1,22]

T

+ λ1,31[∇η1,31]
T + λ1,32[∇η1,32]

T + λ2,11[∇η2,11]
T + λ2,12[∇η2,12]

T

+ λ2,21[∇η2,21]
T + λ2,22[∇η2,22]

T + λ2,31[∇η2,31]
T + λ2,32[∇η2,32]

T ]fx

where fx is a n × n jacobian matrix. We also have the costate boundary conditions

p(t0) =λ1,11(t0)[∇η1,11(x(t0))]
T + λ1,12(t0)[∇η1,12(x(t0))]

T

+ λ1,21(t0)[∇η1,21(x(t0))]
T + λ1,22(t0)[∇η1,22(x(t0))]

T

+ λ1,31(t0)[∇η1,31(x(t0))]
T + λ1,32(t0)[∇η1,32(x(t0))]

T

+ λ2,11(t0)[∇η2,11(x(t0))]
T + λ2,12(t0)[∇η2,12(x(t0))]

T

+ λ2,21(t0)[∇η2,21(x(t0))]
T + λ2,22(t0)[∇η2,22(x(t0))]

T

+ λ2,31(t0)[∇η2,31(x(t0))]
T + λ2,32(t0)[∇η2,32(x(t0))]

T
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p(tf ) =β∇x

[

∑

j 6=i

‖ri(tf) − rj(tf )‖
2
]T

+ λ1,11(tf )[∇η1,11(x(tf))]
T + λ1,12(tf)[∇η1,12(x(tf ))]

T

+ λ1,21(tf )[∇η1,21(x(tf))]
T + λ1,22(tf)[∇η1,22(x(tf ))]

T

+ λ1,31(tf )[∇η1,31(x(tf))]
T + λ1,32(tf)[∇η1,32(x(tf ))]

T

+ λ2,11(tf )[∇η2,11(x(tf))]
T + λ2,12(tf)[∇η2,12(x(tf ))]

T

+ λ2,21(tf )[∇η2,21(x(tf))]
T + λ2,22(tf)[∇η2,22(x(tf ))]

T

+ λ2,31(tf )[∇η2,31(x(tf))]
T + λ2,32(tf)[∇η2,32(x(tf ))]

T

with β ≥ 0.

The optimal solution must satisfy the condition

H(x,u,p) ≥ H(x,u∗,p).

8.2.1. Numerical Results and Analysis. We used the above algorithm to solve the

weighted-sum problem with the following parameters and stopping criteria:

1. DE Parameters: NP = 15, 000, W = 0.5, and CR = 0.5

2. Termination Criteria: We decided to run the algorithm until J∗ reached a

value equal to or better than that achieved by the gradient-based algorithm used

in [13] which was 0.2251.

The algorithm was implemented in C++ and took approximately ? to run. The

fourth-order Runge Kutta method was used to numerically solve the TPBVP. Using

this method, J∗ was 0.0720 which is better than 0.2251 produced by the gradient

algorithm.

Figure 1 plots the optimal trajectory for the evolution of actor preferences over

time and Figure 2 plots the social distance between actor preferences. If we calculate

the distance between actor preferences using Euclidean distance, dij = ‖ri − rj‖ =
√

∑m

k=1(rik − rjk)2 and use the average distance between actor preferences as a bench-

mark for closeness , these figures indicate that actors 1 and 2 are mutually close; actors

1 and 3 are mutually close; and actors 2 and 3 are not considered close.

9. CONCLUSION

We began by converting the multiobjective optimal control problem to one with

a single objective using a weighted-sum method with equal weights. Employing nec-

essary conditions of optimality we could structure a numerical method in which we

used Differential Evolution to minimize the Hamiltonian and ultimately the objective
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Figure 1. Optimal Trajectory - Actor Preferences

Figure 2. Distance between actor preferences using Algorithm 2

function value which was lower than that obtained using a gradient method used

in an earlier paper [13]. Using the necessary conditions in the manner shown here

considerably enhances the effectiveness of the DE method both in speed and accuracy.
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