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1. Background

In [6] the authors presented for the fist time approximation of functions by specific
completely described neural network operators. However their approach was only
qualitative. The author in [1], [2] continued the work of [6] by presenting for the
first time quantitative approximation by determining the rate of convergence and
involving the modulus of continuity of the function under approximation. In this
work we engage very flexible neural network operators for the first time that derive by
normalization of operators of [6], so we are able to produce asymptotic expansions of

Voronovkaya type regarding the approximation of these operators to the unit operator.

We use the following (see [6]).

Definition 1.1. A function b : R — R is said to be bell-shaped if b belongs to L*
and its integral is nonzero, if it is nondecreasing on (—oo, a) and nonincreasing on
la, +00), where a belongs to R. In particular b () is a nonnegative number and at a,
b takes a global maximum; it is the center of the bell-shaped function. A bell-shaped

function is said to be centered if its center is zero.

Definition 1.2 (see [6]). A function b: R? — R (d > 1) is said to be a d-dimensional

bell-shaped function if it is integrable and its integral is not zero, and for all ¢ =
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1,...,d,
t—b(zy,...,t...,2q)
is a centered bell-shaped function, where 7’ := (z1,...,2z4) € R? arbitrary.

Example 1.3 (from [6]). Let b be a centered bell-shaped function over R, then

(x1,...,2q) = b(x1) - b(zq) is a d-dimensional bell-shaped function.

Assumption 1.4. Here b (') is of compact support B := Hle [—T;,T;], T; > 0 and

it may have jump discontinuities there.
Let f € C (R?).

In this article we find a multivariate Voronovskaya type asymptotic expansion for

the multivariate normalized bell type neural network operators,

M, (f) (%) =

) e T (e B (= B) o (1= 4))
n2

b Dm0 (017 (0 = 52) 01 (g = )

where 0 < 3 < 1and 7 := (21,...,74) € R% n € N. Clearly M, is a positive linear

operator.
The terms in the ratio of multiple sums (1) can be nonzero iff simultaneously

nl—ﬁ(zi—@)‘gﬂ, alli=1,...,d
n

Le, |z — 8| < Jialli=1,...,d, iff

i)
n

(2) na; —Tin® <k <nx; +Tin®, alli=1,....d.

To have the order

(3) —n? < nx; — Tin” < ki <na; + Tin® < n?

we need n > T, + |z;], all i = 1,...,d. So (3) is true when we consider
4 > T + |;]) -

(4) nz max (Ti+|wi)

When 7 € B in order to have (3) it is enough to suppose that n > 2T, where
T* :=max{Ty,...,T;} > 0. Take

Z-:: [n:ci—Tinﬁ,mcmLﬂnﬁ}, 1=1,...,d, nelN.

The length of I, is 2TinP. By Proposition 2.1, p. 61 of [3], we obtain that the cardinal-

ity of k; € Z that belong to I; := card (k;) > max (2T;n” — 1,0), any i € {1,...,d}.
_a

In order to have card (k;) > 1 we need 2T;n® —1>1iff n > T, 7 any i € {1,...,d}.
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Therefore, a sufficient condition for causing the order (3) along with the interval

I; to contain at least one integer for all © = 1,...,d is that
1
(5) n > max {Ti+|xi|,Tiﬁ}.
1e{1,...,d}

Clearly as n — +oo we get that card (k;) — +oo, all i = 1,...,d. Also notice that
card (k;) equals to the cardinality of integers in H_nxz — Tmﬁ-‘ , [n:EZ + Tmﬂ] for all
1=1,...,d.

Here we denote by [-] the ceiling of the number, and by [-] we denote the integral
part.

From now on in this article we assume (5). Therefore

(6) (M, () () =

S ] (b (= ) (g~ )
Zl[:llfﬁi;t"_ﬁimﬁ_l . Z,EZidﬁZn_ﬁ;dnﬂ b (nl—ﬁ (:L’l — %) e ,nl—ﬁ (xd - k_,;l))

all @ = (1,...,2q4) € R%

In brief we write

all 7 € R%

Denote by ||+, the maximum norm on R?, d > 1. So if |n'~# (z; — &)
i1=1,...,d, we find that

< T;, all

—
T

(8)

S|

[e.e]

N
where k := (ki,..., kq).

We also need

Definition 1.5. Let the nonnegative function S : R? — R, d > 1, S has compact
support B := H?Zl [—T;,T;], T; > 0 and is nondecreasing for each coordinate. S can
be continuous only on either [[*,(—o0,T;] or B and can have jump discontinuities.

We call S the multivariate “squashing function” (see also [6]).
Example 1.6. Let S as above when d = 1. Then
S(7) =S8 (x1) S (xq), T = (21,...,74) ER?,

is a multivariate “squashing function”.
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Let f € C (R?).

For 7 € R? we define also the “multivariate normalized squashing type neural

network operators”,

L (f) (7)==

(9) St S (B ) S (0P (e = B) 0 (g — )
bt D S (1177 (= 8) P (w0 — ) |

We also here find a multivariate Voronovskaya type asymptotic expansion for (L, (f)) (7).

and L, is a positive linear operator. It is clear that

e 1 (5)5 (7 (7 - %))

Here again 0 < f <1 and n € N :

Tl

n > max {Ti+|xi|,Ti_
1e{1,....d}

(10) (Ln () (7) =

For related articles on neural networks approximation, see [1], [2], [3] and [5]. For

neural networks in general, see [7], [8] and [9].

Next we follow [4, pp. 284-286].
About Multivariate Taylor formula and estimates

Let RYG d > 2; 2 := (21,..., 24), Zo := (To1,. .., Zoa) € RL We consider the space
of functions ACY (Rd) with f : R? — R be such that all partial derivatives of order
(N — 1) are coordinatewise absolutely continuous functions on compacta, N € N.
Also f € CN7? (]Rd). Each N™ order partial derivative is denoted by f, := ZL

Oz

where « := (aq,...,0q), a; € ZT, i =1,...,d and |a] := Z?Zl a; = N. Consider
g. (t) == f(xo+t(z—x0)),t >0. Then
(11)

p j
g9 (t) = <Z(Zi—3€0i)8%i) FI (@or +1 (21 = 201) s+, oa + 1 (23 — Toa))

i=1

forall 7 =0,1,2,..., N.
Example 1.7. Let d = N = 2. Then
g:(t) = f(zo1 +t(z1 —2m), T2 + (22 — x02)), tER,
and
0 0
(12) gL (t) = (21 — 7o1) —f (xo+t(z—x0)) + (22 — T02) —f (xo+t(z—z0))-
81’1 81’2
Setting

(x) = (o1 +t (21 — To1) s o2 + 1 (22 — To2)) = (w0 +t (2 — 20)),
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we get
" a 2 a 2
61 (8) = (51 =0 )? Gy () + (21 = ) (22 = ) G
of? of?
(13) (Zl — [L’()l) (2’2 — 1'02) f 2 f

92,02 (%) + (22 — wo2) 8—x§ (%) .

Similarly, we have the general case of d, N € N for ggN) (t).
We mention the following multivariate Taylor theorem.

Theorem 1.8. Under the above assumptions we have

¢ (0)

(1) ooz = 0.1 = 0 5 4 R (20),
where

(15) Ry (2,0) = /0 (/0 (/0 g (tN>dtN) ---)dtl,
(16) Ry (2,0) = ﬁ /01 (1—=0)""" g™ (0) do.

Notice that g, (0) = f (o).

We make
Remark 1.9. Assume here that

ol 25y = ot ol oo < oo

Then

00,[0,1]

d N
0
(17) HQEN)HOO,[Q,” = (Z (2 — o) %) f| (@o+1t(z—x0)) <
i=1 i
d

N
(Z |2 — 930i|> | fallsoren »

i=1
that is

(18) 1] o oy < (17 = Tolly, )™ [l 25 < 0.

Hence we get by (16) that

o1,
19) R (2,0)] <~ <
And it holds
HZ 0|| 1 max
(20) |Ry (2,0)] < g [ fallsora,n »

NI
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Yz, z9 € RY
Inequality (20) will be an important tool in proving our main results.
2. Main Results
We present our first main result.

Theorem 2.1. Let f € ACY (R?), d € N—{1}, N € N, with || fo | ga y < 0. Here
_1
n > max}{ﬂ-+|x,-|,Ti ﬁ}, where T € R*, 0< B<1,neN, T, >0. Then

(M, () (T) = f () =

(21) i: > (I_L ;;) (é )" H) to <n(N_—al)(1—ﬁ))’

|a|=j

where 0 < e < N.
If N =1, the sum in (21) collapses.
The last (21) implies that

(22) nN==D (M, () (T) — f(T) -
Z Z(lff;(za)JMn(H(—%) ; ) — 0, asn — o0,
j=1 lo|=j i=1 Y- i=1

O<e<N

When N =1, or fo(Z) =0, adla:|a|=j=1,...,N — 1, then we derive
nN=UD (M, () (7)) = £(7)) =0,

asn — 00, 0 <e < N.
Proof. Put
Then

2\ s ka
xl) £ ) f <x1+t<——x1) xd+t<——xd))
T n n

and g3 (0) = f (7). By Taylor’s formula (14), (16) we obtain

—

(J

N— lg—> -
k k x k
(24) f(i,“,ﬁ):gk n +RN<EJO,

n n
j=0
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where

(25) Ry (%0) _ ﬁ/o (1-8)" g2 (6) do.

f (%) -1 (@) =
EODSENED'S (Hf M) <H (2- x)) u(T)+ Ry (%o) ,

7=l a=(ai,...,aq),E€Z7T,
=1,..., d7|a|::Z§l:1 ;=]

Ry <%o> - N/O (1— N 3 <ﬁ) .

(X::(Oél 7777 ad)vaiez+7
i=1,...d o= a;i=N

w o ({1 e(reo(E )

By (20) we get

More precisely we can rewrite

N
— E_7
k " l max
(28) RN ;a O S N' ||foz||oo,Rd,N :
So, since here it holds
* T
ﬁ
r — Z S n1_67
then
® dT*
H
r — — S nl_ﬁ’
I
and
ﬁ
k aNTN max
(29) Ry <;> ) S CNAAN [ fallSora,n »
for all? € {[n?—?nﬁ-‘ ey [n?—i—?nﬁ]}
Call

[n?+?n5] —
(30) V(Z) = b (nl—ﬂ (E’ - %)) :
%= [n?—?nﬁ—l
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We observe for

V(7)
that
(by 20))  GNT*N -
(32) U, (7)< NN [ fallsora,n -
That is
L 1
(33) |Un($)|—0<m)>
and
(34) U ()] =0(1).
And, letting 0 < ¢ < N, we derive
) U (@) (T Y 1
(mov=sa=s7) — N ns1=9
as n — oo.
Le.
L 1
(36) |Un($)|—0<m)-
By (26) we get
[n?—l—?nﬁ] ? 1— N ?
St ()P F 1)
Vv (?) —f(7) =

(37 DY ({[Z(I),)

: -yl
j:l a;:(al ..... ad),ai€Z+7 =1 ’
i=1,..d o= ai=j

(ST (- a)) o (o (- 5)
V(7)

The last says
(Mo () (7)) = f(T) -

NS Z(éﬁ”’,)Mn(H(-—xi)“a?) = U, (7).

i=1 \|a|=j i=1 Qi

The proof of the theorem is complete.

We present our second main result
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Theorem 2.2. Let f € ACY (R?), d e N—{1}, N € N, with || fo | ge y < c0. Here
1
n > max {Ti+\xi|,Ti ﬁ}, where 7 € R*, 0< B<1,neN, T, > 0. Then

1e{1,....d}
(Lo (/) (@) = [ (T) =

N-1 ; = d o 1
(39) > (X % Lo\ JTC =)™, +O(n(N—E)(1—B))’

i=1 Qi i=1

/=1 \lal=j

where 0 < e < N.
If N =1, the sum in (39) collapses.
The last (39) implies that

(40) nN-e)(1-58) (L (f)) (?) _f (?) B
N-1 _
fa ( X ) o —
22 (o) 2o (T 7 ) ] oo
0<e<N

When N =1, or fo(Z) =0, ala:|al=j=1,...,N —1, then we derive that
nNED(L, () (F) = £(7)] =0,

asn — 00, 0 <e < N.

Proof. As similar to Theorem 2.1 is omitted. O
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