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ABSTRACT. This paper makes a few comments on the quantum subtractor circuit proposed

by Vedral et al. (1996) in “Quantum networks for elementary arithmetic operations”. First we

demonstrate some flaws with this circuit. Then we propose a possible corrected circuit for this plain

subtractor and a new combined circuit that can be used both as an adder and a subtractor.
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1. Introduction

A quantum computer can be viewed as a quantum network composed of quantum

logic gates. These gates are different from their classical counterpart, which are

irreversible in nature. Quantum gates perform unitary operation on one, two or more

than two qubits (Barenco et al. 1995, DiVincenzo 1995, Lloyd 1995). Each qubit is

an elementary unit of information and is represented by a ket vector |0〉 or |1〉. These

qubits are analogous to classical bits 0 or 1. Any quantum operation is unitary,

and hence is reversible (Bennett 1973, Bennett 1989), so we need reversible gates.

Quantum addition and subtraction operations are performed using these reversible

gates. In this paper we have discussed the plain quantum subtractor circuit proposed

by Vedral et al. (1996) and show some flaws in this circuit. We then propose its

corrected quantum algorithm for the plain quantum subtractor. Finally, we proposed

a combined quantum circuit, which can act both as an adder and a subtractor using

a control qubit.

2. Quantum Adder and Subtractor by Vedral et al.

In this section we discuss the plain quantum adder and subtractor proposed by

Vedral et al. (1996). Their proposed plain quantum adder (Vedral et al. 1996) is

correctly working and their quantum subtractor uses this quantum adder circuit.

Here we study this quantum subtractor and highlight some flows in it.
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Consider two real numbers x1 and x2, and store them in registers R1 and R2

respectively. Now our objective is to add x1 and x2, i.e., add the contents of R1 and

R2 and store the output in another register R3 (say) whose size is greater than that

of R1 and R2 to prevent overflow. In quantum computing notation we can write the

above statement as in Eqn (2.1):

(2.1) |x1〉|x2〉|0〉 → |x1〉|x2〉|x1 + x2〉

Instead of storing the result in another register R3 we can store it in R2 register and

to do so we need a little more complex operation as proposed by Vedral et al. (1996).

The length of R2 register is greater than that of R1 register, i.e., if the length of R1

register is n qubits, the R2 register will be n + 1 qubits. In this case the addition

operation can be written as in Eqn (2.2):

(2.2) |x1〉|x2〉 → |x1〉|x1 + x2〉

To achieve this, we need a temporary register of size n− 1 qubits, whose every qubit

Figure 1. Quantum plain adder circuit by Vedral el al. (1996): (a)

carry computation circuit, (b) sum computation circuit.

is initially set to |0〉. This temporary register is used to store carries for intermediate

operations and the last carry will be stored in the most significant qubit of the R2

register. Let x1i
and x2i

be the ith qubit of register R1 and R2 respectively. We now

describe in Algorithm 1 for plain addition as proposed by Vedral et al. (1996).

Algorithm 1: Quantum adder

Input: x1, x2

Output: x1 + x2

Step 1. The carry ci is computed using the following relation in (2.3)

(2.3) ci ← (x1i
AND x2i

) OR (x1i
AND ci−1) OR (x2i

AND ci−1)

where x1i
, x2i

represent the ith qubit of R1 and R2 register respectively and ci−1

represents the (i− 1)th qubit of the temporary register.
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Step 2. The sum is computed using the following relation in (2.4)

(2.4) x2i
← x1i

XOR x2i
XOR ci−1.

Step 3. [Termination] Stop

Figure 1(a) shows the circuit for computation of the carry. The inputs are x1i
, x2i

,

ci−1, and 0, while the outputs are x1i
, x2i

, ci−1 ⊕ x2i
, and ci. In this circuit first

the AND operation is performed between x2i
and ci−1; next the XOR operation is

performed between x2i
and ci−1, and then a Taffoli gate (Taffoli 1980) is used. The

two control inputs of the Taffoli gate are x1i
and the output of the XOR operation.

Its target qubit is the output of the AND operation. Figure 1(b) shows the quantum

circuit for sum computation. In this circuit the three inputs are x1i
, x2i

and ci−1.

Here, first a XOR operation is performed between x2i
and ci−1 and then again a XOR

operation is performed between x1i
and output of previous XOR operation.

Vedral et al. (1996) write “If we reverse the action of adder network (i.e., if we ap-

ply each gate of the network in the reversed order) with the input (x1, x2), the output

will produce (x1, x1−x2) . . .”. So, according to their proposition if we apply the gate

operations in reverse order then we should get the subtraction operation. Following

their suggestion, the circuits for the borrow and difference calculation should be as

shown in Figures 2(a) and 2(b) respectively.

Figure 2. Quantum plain subtractor circuit by Vedral et al. (1996)

(a) Borrow computation circuit (b) Difference (DIFF.) computation

circuit

Now we illustrate the subtractor using examples as in Table 1.

In Table 1 we find that for rows 2 and 4 no borrow is produced, but we know that for

these two cases borrow should be produced. Again for each of rows 6 and 7 a borrow

is produced, but we know that for these two cases no borrow should be produced. So

the plain subtractor is not correctly working.
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Table 1: Truth table for subtractor using Vedral et al. (1996) method

x1i
x2i

bi−1 di bi

0 0 0 0 0

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

3. Modified Quantum and Subtractor

In this section we discuss two issues (i) the possible correction for Vedral’s (1996)

proposed quantum network for quantum subtractor and (ii) our proposed combined

architecture for quantum adder and subtractor.

3.1. Correction for Vedral’s et al. (1996) Network. Vedral’s et al. (1996)

quantum network is already discussed in Section 2. Now we propose a modified

architecture to perform the quantum subtraction operation. The computational pro-

cedure is discussed in Algorithm 2.

Algorithm 2: Modified quantum subtractor.

Input: x1, x2

Output: x2 − x1

Step 1. The borrow bi is computed using the following relation (3.1):

(3.1) bi ← (x1i
AND x2i

) OR (x1i
AND bi−1) OR (x2i

AND bi−1)

where x1i
and x2i

represent the ith qubit of registers R1 and R2 respectively, x1i
is

the complement of x1i
and bi−1 represents (i− 1)th qubit of the temporary register.

Step 2. The difference is computed using the relation (3.2):

(3.2) di ← x1i
XOR x2i

XOR bi−1

If we store the difference in register R2, then the operation can be written as follows:

(3.3) x2i
← x1i

XOR x2i
XOR bi−1

Step 3. [Termination] Stop.

Figure 3(a) shows the quantum circuit for difference computation. The three inputs

x1i
, x2i

, and bi−1, are XOR-ed and the quantum network produces the output x1i
,

x2i
, and di. The borrow computation is showed in Figure 3(b). This circuit consists

of four inputs, among them one is zero and the other three are x1i
, x2i

, and bi−1.

It produces the borrow bi along with other necessary outputs. Note that, to fix the
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problem of the algorithm proposed by Vedral et al. (1996) we connected a quantum

NOT gate to x1i
line as shown in Figure 3(b).

Figure 3. Proposed quantum plain subtractor circuit (a) Difference

(DIFF.) computing circuit, (b) Borrow computing circuit.

In this case we compute the borrow and the difference with expressions used in

classical digital subtraction and the truth table for this quantum circuit is shown in

Table 2. Here the outputs are exactly the same as we get in classical digital plain

subtractor.

Table 2: Truth table for practical subtractor method

x1i
x2i

bi−1 di bi

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

3.2. Combined Architecture. Now we propose a combined quantum circuit for

adder and subtractor as shown in Figure 4. The idea is to use an extra control qubit.

The difference and sum computation follow the same algorithm as described above

but only difference is that the borrow is replaced by the carry. So there will be no

change in the quantum circuits for the two operations. Sum or difference computation

quantum circuit is shown in Figure 4(a). The carry (or borrow) computation quantum

circuit is shown in Figure 4(b). In this quantum circuit, the control qubit c is 0 when
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it will compute the carry and if the control qubit c is 1 then the borrow will be

computed.

Figure 4. Quantum plain adder or subtractor circuit (a) sum or dif-

ference computation (b) carry or borrow computation.

4. Conclusion

In this paper we first pointed out a flaw in the quantum circuit proposed by Vedral

et al. (1996) for the computation of subtraction. We suggested a possible modification

of the architecture for the correction of the quantum subtractor. Finally, we proposed

a composite architecture for the operations on quantum addition and subtraction.
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