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ABSTRACT. This paper is concerned with the existence of symmetric positive solutions for the

even order boundary value problems on time scales satisfying Sturm-Liouville two-point boundary

conditions. We establish the existence of at least three symmetric positive solutions for two-point

boundary value problem by using Avery generalization of the Leggett-Williams fixed point theorem.

Also, we establish the existence of at least 2k − 1 symmetric positive solutions for an arbitrary

positive integer k.
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1. Introduction

Recently, there has been an increasing interest in obtaining positive solutions for

the boundary value problems on time scales. The theory of time scales was introduced

and developed by Hilger [20] to unify not only continuous and discrete theory, but

also provide accurate information of phenomena that manifest themselves partly in

continuous time and partly in discrete time. The time scale calculus would allow to

explore a variety of situations like economic, biological, heat transfer, stock market

and epidemic models etc. Recent results indicates that considerable achievement has

been made in the existence of positive solutions of the boundary value problems on

time scales. However they did not further provide characteristics of positive solutions

such as symmetry. Symmetry have been widely used in science and engineering. The

reason is that the symmetry not only has its theoretical value in studying the metric

manifolds and symmetric graph and so forth, but also has its practical value, for
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example, we can apply this characteristic to study graph structures and chemistry

structures.

The primary purpose of this investigation is to study the symmetry properties of

the solutions of even order boundary value problems on time scales. For recent dis-

cussions on symmetry properties of solutions of boundary value problems associated

to differential equations or finite difference equations or time scales, to mention a few

papers along these lines are Davis and Henderson [9], Avery, Davis and Henderson

[4], Davis, Henderson and Wong [10], Henderson [16], Henderson and Thompson [18],

Henderson and Wong [19], Eloe, Henderson and Sheng [13] and Avery and Henderson

[5, 6]. Recently, Henderson, Murali and Prasad [17] studied the multiple symmetric

positive solutions for two-point even order boundary value problems on time scales,

(−1)ny(∆∇)n

(t) = f(y(t), y∆∇(t), . . . , y(∆∇)(n−1)

(t)), t ∈ [a, b],

satisfying the boundary conditions,

y(∆∇)i

(a) = 0 = y(∆∇)i(b), 0 ≤ i ≤ n− 1.

Motivated by the papers mentioned above, in this paper we are concerned with

the existence of multiple symmetric positive solutions for the even order boundary

value problems on time scales,

(1.1) (−1)ny(∆∇)n

(t) = f(y(t), y∆∇(t), . . . , y(∆∇)(n−1)

(t)), t ∈ [a, b],

satisfying Sturm-Liouville type two-point boundary conditions,

(1.2)
αi+1y

(∆∇)i

(a) − βi+1y
(∆∇)i∆(a) = 0,

αi+1y
(∆∇)i(b) + βi+1y

(∆∇)i∆(b) = 0,







for 0 ≤ i ≤ n− 1, where n ≥ 1, f : R
n → R

+ is continuous with a ∈ Tκn , b ∈ T
κn

for

a time scale T, αj > 0, βj ≥ 0 (1 ≤ j ≤ n) and σn(a) < ρn(b).

To establish the symmetric positive solutions for the boundary value problem,

we are dealing with symmetric time scales. By an interval time scale, we mean the

intersection of a real interval with a given time scale. An interval time scale T = [a, b]

is said to be a symmetric time scale, if

t ∈ T ⇔ b+ a− t ∈ T.

By a symmetric solution y(t) of the BVP (1.1)–(1.2), we mean y(t) is a solution of

the BVP (1.1)–(1.2) and satisfies

y(t) = y(b+ a− t), for t ∈ [a, b].

The rest of the paper is organized as follows. In Section 2, we briefly describe

some salient features of time scales. In Section 3, we construct the Green’s function

for the homogeneous problem corresponding to the BVP (1.1)–(1.2) and estimate
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bounds for the Green’s function. In Section 4, we establish a criteria for the existence

of at least three symmetric positive solutions of the BVP (1.1)–(1.2) by using the

Avery generalization of the Leggett-Williams fixed point theorem. We also establish

the existence of at least 2k − 1 symmetric positive solutions of the BVP (1.1)–(1.2)

for an arbitrary positive integer k. Finally as an application, we give an example to

illustrate our result.

2. Preliminaries About Time Scales

A time scale T is a nonempty closed subset of R. For an excellent introduction to

the overall area of dynamic equations on time scales, we refer the recent text books

by Bohner and Peterson [7, 8], from which we cull the following definitions. The

functions σ, ρ : T → T are jump operators given by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

(supplemented by inf ∅ = sup T and sup ∅ = inf T). The point t ∈ T is left-dense,

left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,

respectively. If T has a right- scattered minimum m, define Tκ = T−{m}; otherwise,

set Tκ = T. If T has a left-scattered maximum M , define T
κ = T − {M}; otherwise,

set T
κ = T.

For f : T → R and t ∈ T
κ, the delta derivative of f at t, denoted f∆(t), is

the number (provided it exists) with the property that given any ǫ > 0, there is a

neighborhood U of t such that

| f(σ(t)) − f(s) − f∆(t)[σ(t) − s] |≤ ǫ | σ(t) − s |,

for all s ∈ U .

For f : T → R and t ∈ Tκ, the nabla derivative of f at t, denoted f∇(t), is

the number (provided it exists) with the property that given any ǫ > 0, there is a

neighborhood U of t such that

| f(ρ(t)) − f(s) − f∇(t)[ρ(t) − s] |≤ ǫ | ρ(t) − s |,

for all s ∈ U . Define f∆∇(t) to be the nabla derivative of f∆(t), i.e., f∆∇(t) =

(f∆(t))∇.

A function f : T → R is left-dense continuous or ld-continuous on [a, b], denoted

f ∈ Cld[a, b], provided it is continuous at left-dense points in T and its right-sided

limits exist (finite) at right-dense points in T. It is known that if f is ld-continuous,

then there is a function F (t) such that F∇(t) = f(t). In this case, we define

∫ b

a

f(t)∇t = F (b) − F (a).
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3. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous BVP

corresponding to (1.1)–(1.2) and estimate bounds for the Green’s function. We prove

certain lemmas which are needed to establish our main result.

For 1 ≤ j ≤ n, let Gj(t, s) be the Green’s function for the homogeneous BVP,

−y∆∇(t) = 0, t ∈ [a, b],

αjy(a) − βjy
∆(a) = 0, αjy(b) + βjy

∆(b) = 0.

Then, for 1 ≤ j ≤ n

Gj(t, s) =







1
dj
{αj(t− a) + βj}{αj(b− s) + βj}, t ≤ s,

1
dj
{αj(s− a) + βj}{αj(b− t) + βj}, s ≤ t,

where dj = 2αjβj + α2
j (b− a) > 0.

For 1 ≤ j ≤ n, the Green’s function Gj(t, s) is positive and satisfies the following

inequality,

Gj(t, s) ≤ Gj(s, s), for all t, s ∈ [a, b].

Let I =
[

3a+b
4
, a+3b

4

]

. Then

Gj(t, s) ≥ mjGj(s, s) for all (t, s) ∈ I × [a, b],

where

(3.1) mj =
αj(b− a) + 4βj

4[αj(b− a) + βj ]
< 1,

for 1 ≤ j ≤ n. Let H1(t, s) = G1(t, s) and recursively define

(3.2) Hj(t, s) =

∫ b

a

Hj−1(t, r)Gj(r, s)∇r, for 2 ≤ j ≤ n.

Then Hn(t, s) is the Green’s function for the homogeneous BVP corresponding to

(1.1)–(1.2).

Lemma 3.1. If we define

K =

n−1
∏

j=1

Kj and L =

n−1
∏

j=1

mjLj ,

then the Green’s function Hn(t, s) in (3.2) satisfies

0 ≤ Hn(t, s) ≤ KGn(s, s), for all (t, s) ∈ [a, b] × [a, b]

and

Hn(t, s) ≥ mnLGn(s, s), for all (t, s) ∈ I × [a, b],
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where mn is given as in (3.1),

Kj =

∫ b

a

Gj(s, s)∇s > 0, for 1 ≤ j ≤ n

and

Lj =

∫

s∈I

Gj(s, s)∇s > 0, for 1 ≤ j ≤ n.

Let D = {v|v : C[a, b] → R}. For each 1 ≤ j ≤ n − 1, define the operator

Tj : D → D by

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s, t ∈ [a, b]

and these integrals are converges. By the construction of Tj and the properties of

Hj(t, s), it is clear that

(−1)j(Tjv)
(∆∇)j

(t) = v(t), t ∈ [a, b],

αi+1(Tjv)
(∆∇)i

(a) − βi+1(Tjv)
(∆∇)i∆(a) = 0,

αi+1(Tjv)
(∆∇)i

(b) + βi+1(Tjv)
(∆∇)i∆(b) = 0,

for 0 ≤ i ≤ j − 1. Hence, we see that the BVP (1.1)–(1.2) has a solution if and only

if the following BVP has a solution,

(3.3) v∆∇(t) + f(Tn−1v(t), Tn−2v(t), . . . , T1v(t), v(t)) = 0, t ∈ [a, b]

(3.4) αi+1v(a) − βi+1v
∆(a) = 0, αi+1v(b) + βi+1v

∆(b) = 0,

for 0 ≤ i ≤ n − 1. Indeed, if y is a solution of the BVP (1.1)–(1.2), then v(t) =

y(∆∇)(n−1)
(t) is a solution of the BVP (3.3)–(3.4). Conversely, if v is a solution of the

BVP (3.3)–(3.4), then y(t) = Tn−1v(t) is a solution of the BVP (1.1)–(1.2). In fact,

y(t) is represented as

y(t) =

∫ b

a

Hn−1(t, s)v(s)∇s,

where

v(s) =

∫ b

a

Gn(s, τ)f(Tn−1v(τ), Tn−2v(τ), . . . , T1v(τ), v(τ))∇τ.

Lemma 3.2. For t, s ∈ [a, b], the Green’s function Hj(t, s) satisfies the symmetric

property,

(3.5) Hj(t, s) = Hj(b+ a− t, b+ a− s).

Proof. By the definition of Hj(t, s) (2 ≤ j ≤ n),

Hj(t, s) =

∫ b

a

Hj−1(t, r)Gj(r, s)∇r, for all t, s ∈ [a, b].
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Clearly, we can see that Gj(t, s) = Gj(b + a − t, b + a − s). Now, the proof is by

induction. Next, assume that (3.5) is true, for fixed j ≥ 2. Then from (3.2) and using

the transformation r1 = b+ a− r, we have

Hj+1(t, s) =

∫ b

a

Hj(t, r)Gj+1(r, s)∇r

=

∫ b

a

Hj(b+ a− t, b+ a− r)Gj+1(b+ a− r, b+ a− s)∇r

=

∫ b

a

Hj(b+ a− t, r1)Gj+1(r1, b+ a− s)∇r1

= Hj+1(b+ a− t, b+ a− s).

Lemma 3.3. For t, s ∈ [a, b], the operator Tj satisfies the symmetric property,

Tjv(t) = Tjv(b+ a− t).

Proof. By the definition of Tj and using the transformation s1 = b+ a− s, we have

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s

=

∫ b

a

Hj(b+ a− t, b+ a− s)v(s)∇s

=

∫ b

a

Hj(b+ a− t, s1)v(s1)∇s1

= Tjv(b+ a− t).

4. Multiple Symmetric Positive Solutions

In this section, we establish the existence of at least three symmetric positive solu-

tions for the BVP (1.1)–(1.2), by using Avery generalization of the Leggett-Williams

fixed point theorem [3]. And then, we establish the existence of at least 2k − 1

symmetric positive solutions for an arbitrary positive integer k.

Let B be a real Banach space with cone P . A map α : P → [0, ∞) is said to be

a nonnegative continuous concave functional on P if α is continuous and

α(λx+ (1 − λ)y) ≥ λα(x) + (1 − λ)α(y),

for all x, y ∈ P and λ ∈ [0, 1]. Similarly, we say that a map β : P → [0, ∞) is said

to be a nonnegative continuous convex functional on P if β is continuous and

β(λx+ (1 − λ)y) ≤ λβ(x) + (1 − λ)β(y),

for all x, y ∈ P and λ ∈ [0, 1]. Let γ, β, θ be nonnegative continuous convex

functional on P and α, ψ be nonnegative continuous concave functionals on P , then
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for nonnegative numbers h′, a′, b′, d′ and c′, we define the following convex sets

P (γ, c′) = {y ∈ P |γ(y) < c′},

P (γ, α, a′, c′) = {y ∈ P |a′ ≤ α(y), γ(y) ≤ c′},

Q(γ, β, d′, c′) = {y ∈ P |β(y) ≤ d′, γ(y) ≤ c′},

P (γ, θ, α, a′, b′, c′) = {y ∈ P |a′ ≤ α(y), θ(y) ≤ b′, γ(y) ≤ c′},

Q(γ, β, ψ, h′, d′, c′) = {y ∈ P |h′ ≤ ψ(y), β(y) ≤ d′, γ(y) ≤ c′}.

In obtaining multiple symmetric positive solutions of the BVP (1.1)–(1.2), the

following Avery generalization of the Leggett-Williams fixed point theorem, so called

Five Functionals Fixed Point Theorem will be fundamental.

Theorem 4.1. [3] Let P be a cone in a real Banach space B. Suppose α and ψ

are nonnegative continuous concave functionals on P and γ, β and θ are nonnegative

continuous convex functionals on P such that, for some positive numbers c′ and k,

α(y) ≤ β(y) and ‖ y ‖≤ kγ(y), for all y ∈ P (γ, c′).

Suppose further that T : P (γ, c′) → P (γ, c′) is completely continuous and there exist

constants h′, d′, a′, b′ ≥ 0 with 0 < d′ < a′ such that each of the following is satisfied.

(B1) {y ∈ P (γ, θ, α, a′, b′, c′)|α(y) > a′} 6= ∅ and α(Ty) > a′, for y ∈ P (γ, θ, α, a′, b′, c′),

(B2) {y ∈ Q(γ, β, ψ, h′, d′, c′)|β(y) < d′} 6= ∅ and β(Ty) < d′, for y ∈ Q(γ, β, ψ, h′, d′, c′),

(B3) α(Ty) > a′, provided y ∈ P (γ, α, a′, c′) with θ(Ty) > b′,

(B4) β(Ty) < d′, provided y ∈ Q(γ, β, d′, c′) with ψ(Ty) < h′.

Then T has at least three fixed points y1, y2, y3 ∈ P (γ, c′) such that

β(y1) < d′, a′ < α(y2) and d
′ < β(y3) with α(y3) < a′.

Let

(4.1) M = mn

n−1
∏

j=1

mjLj

Kj

Let B = {v|v : C[a, b] → R} be the Banach space equipped with the norm

‖ v ‖= max
t∈[a,b]

|v(t)|.

Define the cone P ⊂ B by

P =

{

v ∈ B : v(t) ≥ 0 and v∆∇(t) ≤ 0 on [a, b],

v(t) = v(b+ a− t), ∀ t ∈ [a, b] and mint∈I v(t) ≥M ‖ v ‖

}

,
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where M is given as in (4.1). Now, let I1 =
[

2a+b
3
, a+2b

3

]

and define the nonneg-

ative continuous concave functionals α, ψ and the nonnegative continuous convex

functionals β, θ, γ on P by

γ(v) = max
t∈[a,b]

|v(t)|, ψ(v) = min
t∈I1

|v(t)|, β(v) = max
t∈I1

|v(t)|,

α(v) = min
t∈I

|v(t)| and θ(v) = max
t∈I

|v(t)|.

We observe that for any v ∈ P ,

(4.2) α(v) = min
t∈I

|v(t)| ≤ max
t∈I1

|v(t)| = β(v)

and

(4.3) ‖ v ‖≤
1

M
min
t∈I

v(t) ≤
1

M
max
t∈[a,b]

|v(t)| =
1

M
γ(v).

We are now ready to present the main result of this section. We denote

Mj =

∫

s∈I1

Gj(s, s)∇s, for 1 ≤ j ≤ n.

Theorem 4.2. Suppose there exist 0 < a′ < b′ < b′

M
≤ c′ such that f satisfies the

following conditions:

(A1) f(un−1, un−2, . . . , u1, u0) <
a′

Kn
, for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[mjLMa′Mj ,

c′KKj

M
] × [Ma′, a′],

(A2) f(un−1, un−2, . . . , u1, u0) >
b′

MKn
, for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[mjLb

′Lj ,
c′KKj

M
] × [b′, b′

M
],

(A3) f(un−1, un−2, . . . , u1, u0) <
c′

Kn
, for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[0,

c′KKj

M
] × [0, c′].

Then the BVP (1.1)–(1.2) has at least three symmetric positive solutions y1, y2 and

y3 such that

max
t∈I1

y1(t) < a′, b′ < min
t∈I

y2(t) and a
′ < max

t∈I1
y3(t) with min

t∈I
y3(t) < b′.

Proof. Define the operator T : P → B by

(4.4) Tv(t) =

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s.

It is obvious that a fixed point of T is the solution of the BVP (3.3)–(3.4). We

seek three fixed points v1, v2, v3 ∈ P of T . First, we show that T : P → P . Let

v ∈ P . Clearly, Tv(t) ≥ 0 and (Tv)∆∇(t) ≤ 0, for t ∈ [a, b]. Further, since Hj(t, s) =

Hj(b + a − t, b + a − s), we see that Tjv(t) = Tjv(b + a − t), 1 ≤ j ≤ n − 1, for

t ∈ [a, b]. Hence, it follows that Tv(t) = Tv(b+ a− t), for t ∈ [a, b]. Also, noting that
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Tv satisfies the boundary conditions (3.4). Then, we have

min
t∈I

Tv(t) = min
t∈I

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M

∫ b

a

Gn(s, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M ‖ Tv ‖ .

Hence, Tv ∈ P and so T : P → P . Moreover, T is completely continuous. From (4.2)

and (4.3), for each v ∈ P , we have α(v) ≤ β(v) and ‖ v ‖≤ 1
M
γ(v). To show that

T : P (γ, c′) → P (γ, c′). Let v ∈ P (γ, c′). This implies ‖ v ‖≤ c′

M
. Using Lemma 3.1,

for 1 ≤ j ≤ n− 1 and t ∈ [a, b], we have

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s ≤
c′

M

∫ b

a

Hj(t, s)∇s ≤
c′

M
K

∫ b

a

Gj(s, s)∇s =
c′KKj

M
.

We may now use condition (A3) to obtain

γ(Tv) = max
t∈[a,b]

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

<
c′

Kn

∫ b

a

Gn(s, s)∇s = c′.

Therefore, T : P (γ, c′) → P (γ, c′).

We first verify that conditions (B1), (B2) of Theorem 4.1 are satisfied. It is

obvious that

{v ∈ P (γ, θ, α, b′,
b′

M
, c′)|α(v) > b′} 6= ∅

and

{v ∈ Q(γ, β, ψ,Ma′, a′, c′)|β(v) < a′} 6= ∅.

Next, let v ∈ P (γ, θ, α, b′, b′

M
, c′) or v ∈ Q(γ, β, ψ,Ma′, a′, c′). Then, for 1 ≤ j ≤ n−1,

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s ≤
c′

M

∫ b

a

Hj(t, s)∇s ≤
c′

M
K

∫ b

a

Gj(s, s)∇s =
c′KKj

M

and for v ∈ P (γ, θ, α, b′, b′

M
, c′),

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s ≥ mjLb
′

∫

s∈I

Gj(s, s)∇s = mjLb
′Lj.

and also for v ∈ Q(γ, β, ψ,Ma′, a′, c′),

Tjv(t) =

∫ b

a

Hj(t, s)v(s)∇s ≥ mjLMa′
∫

s∈I1

Gj(s, s)∇s = mjLMa′Mj .
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Now, we may apply condition (A2) to get

α(Tv) = min
t∈I

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M

∫ b

a

Gn(s, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

>
b′

Kn

∫ b

a

Gn(s, s)∇s = b′.

Clearly, by condition (A1), we have

β(Tv) = max
t∈I1

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

<
a′

Kn

∫ b

a

Gn(s, s)∇s = a′.

To see that (B3) is satisfied, let v ∈ P (γ, α, b′, c′) with θ(Tv) > b′

M
. Then, we have

α(Tv) = min
t∈I

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M

∫ b

a

Gn(s, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M max
t∈[a,b]

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≥M max
t∈I

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

= Mθ(Tv) > b′.

Finally, we show that (B4) holds. Let v ∈ Q(γ, β, a′, c′) with ψ(Tv) < Ma′. Then,

we have

β(Tv) = max
t∈I1

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≤ max
t∈[a,b]

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≤

∫ b

a

Gn(s, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

=
1

M

∫ b

a

MGn(s, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≤
1

M
min
t∈I

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

≤
1

M
min
t∈I1

∫ b

a

Gn(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))∇s

=
1

M
ψ(Tv) < a′.
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We have proved that all the conditions of Theorem 4.1 are satisfied and so there exist

at least three symmetric positive solutions v1, v2, v3 ∈ P (γ, c′) for the BVP (3.3)–

(3.4). Therefore, the BVP (1.1)–(1.2) has at least three symmetric positive solutions

y1, y2, y3 of the form,

yi(t) = Tn−1vi(t) =

∫ b

a

Hn−1(t, s)vi(s)∇s, i = 1, 2, 3,

such that

β(y1) < a′, b′ < α(y2) and a′ < β(y3) with α(y3) < b′.

This completes the proof of the theorem.

Now we prove the existence of at least 2k − 1 symmetric positive solutions for

the BVP (1.1)–(1.2) by using induction on k.

Theorem 4.3. Let k be an arbitrary positive integer. Assume that there exist numbers

ar(r = 1, 2, . . . , k) and bs(s = 1, 2, . . . , k− 1) with 0 < a1 < b1 <
b1
M
< a2 < b2 <

b2
M
<

· · · < ak−1 < bk−1 <
bk−1

M
< ak such that

(4.5)
f(un−1, un−2, . . . , u1, u0) <

ar

Kn
, for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjLMarMj ,

akKKj

M
] × [Mar, ar], r = 1, 2, . . . , k,

}

(4.6)
f(un−1, un−2, . . . , u1, u0) >

bs

MKn
, for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjLbsLj ,

akKKj

M
] × [bs,

bs

M
], s = 1, 2, . . . , k − 1.

}

Then the BVP (1.1)–(1.2) has at least 2k − 1 symmetric positive solutions in P ak
.

Proof. We use induction on k. First, for k = 1, we know from (4.5) that T : P a1 →

Pa1 , then it follows from Schauder fixed point theorem that the BVP (1.1)–(1.2) has

at least one symmetric positive solution in P a1 . Next, we assume that this conclusion

holds for k = l. In order to prove that this conclusion holds for k = l + 1, we

suppose that there exist numbers ar(r = 1, 2, . . . , l + 1) and bs(s = 1, 2, . . . , l) with

0 < a1 < b1 <
b1
M
< a2 < b2 <

b2
M
< · · · < al < bl <

bl

M
< al+1 such that

(4.7)
f(un−1, un−2, . . . , u1, u0) <

ar

Kn
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjLMarMj ,

al+1KKj

M
] × [Mar, ar], r = 1, 2, . . . , l + 1,

}

(4.8)
f(un−1, un−2, . . . , u1, u0) >

bs

MKn
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjLbsLj ,

al+1KKj

M
] × [bs,

bs

M
], s = 1, 2, . . . , l.

}

By assumption, the BVP (1.1)–(1.2) has at least 2l − 1 symmetric positive solutions

ui(i = 1, 2, . . . , 2l − 1) in P al
. At the same time, it follows from Theorem 4.2, (4.7)
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and (4.8) that the BVP (1.1)–(1.2) has at least three symmetric positive solutions

u, v and w in P al+1
such that

max
t∈I1

u(t) < al, bl < min
t∈I

v(t) and al < max
t∈I1

w(t) with min
t∈I

w(t) < bl.

Obviously, v and w are different from ui(i = 1, 2, . . . , 2l − 1). Therefore, the BVP

(1.1)–(1.2) has at least 2l+1 symmetric positive solutions in P al+1
, which shows that

this conclusion also holds for k = l + 1.

5. Example

Let us consider an example to illustrate the usage of Theorem 4.2. Let n = 2,

T = [0, 1.5]∪ [2, 3], a = 0, b = 3, α1 = 0.5, β1 = 0.6, α2 = 0.8, β2 = 1.5. Now consider

the BVP,

(5.1) y(∆∇)2(t) = f(y(t), y∆∇(t)), t ∈ [0, 3]

satisfying the boundary conditions,

(5.2)
0.5y(0) − 0.6y∆(0) = 0, 0.5y(3) + 0.6y∆(3) = 0,

0.8y∆∇(0) − 1.5y(∆∇)∆(0) = 0, 0.8y∆∇(3) + 1.5y(∆∇)∆(3) = 0,

}

and

f(u, v) =







sinu
100

+ 13
100
v6, v ≤ 2,

sinu
100

+ 208
25
, v ≥ 2.

Then the Green’s functions G1(t, s) and G2(t, s) are given by

G1(t, s) =







(5t+6)(21−5s)
135

, t ≤ s,

(5s+6)(21−5t)
135

, s ≤ t,

and

G2(t, s) =







(8t+15)(39−8s)
432

, t ≤ s,

(8s+15)(39−8t)
432

, s ≤ t.

Clearly, the Green’s functions G1(t, s) and G2(t, s) are positive. By using MATLAB,

we can compute the values, m1 = 0.4642857143, m2 = 0.5384615385,

K1 =

∫ 3

0

G1(s, s)∇s = 2.966049383, L1 =

∫

s∈I

G1(s, s)∇s = 1.305632716,

M1 =

∫

s∈I1

G1(s, s)∇s = 0.6672839506, K2 =

∫ 3

0

G2(s, s)∇s = 3.891589506,

Therefore,

K = 2.966049383, L = 0.6061866182, M = 0.1100481269.

Clearly f is continuous and increasing on [0,∞). If we choose a′ = 1.01, b′ = 2 and

c′ = 150 then 0 < a′ < b′ < b′

M
≤ c′ and f satisfies
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(i) f(u, v) < 0.2595340537 = a′

K2
, for (u, v) ∈ [0.0208740334, 11991.2749]×

[0.1111486082, 1.01],

(ii) f(u, v) > 4.670036954 = b′

MK2
, for (u, v) ∈ [0.7349244321, 11991.2749]×

[2, 18.1738668],

(iii) f(u, v) < 38.54466145 = c′

K2
, for (u, v) ∈ [0, 11991.2749]× [0, 150].

Then all the conditions of Theorem 4.2 are satisfied. Thus by Theorem 4.2 the BVP

(5.1)–(5.2) has at least three symmetric positive solutions y1, y2 and y3 satisfying

max
t∈[1,2]

y1(t) < 1.01, 2 < min
t∈[ 3

4
, 9
4
]
y2(t) and 1.01 < max

t∈[1,2]
y3(t) with min

t∈[ 3
4
, 9
4
]
y3(t) < 2.
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