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ABSTRACT. In this paper, we propose some new conditions on L2 − L∞ stability of multilayer

Hopfield neural networks. These sufficient conditions are represented based on matrix norm and lin-

ear matrix inequality (LMI). Under these conditions, multilayer Hopfield neural networks reduce the

effect of external input on the state vector to a predefined level. Moreover, the proposed conditions

ensure asymptotic stability for multilayer Hopfield neural networks without external input.
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1. Introduction

In this paper, we consider the following multilayer Hopfield neural network:

ẋ(t) = Ax(t) +Wφ(W̄x(t)) + J(t),(1.1)

z(t) = Hx(t),(1.2)

where x(t) = [x1(t) ... xn(t)]T ∈ Rn is the state vector, z(t) ∈ Rp is a linear combi-

nation of the states, A = diag{−a1, . . . ,−an} ∈ Rn×n (ak > 0, k = 1, . . . , n) is the

self-feedback matrix, W ∈ Rn×n and W̄ ∈ Rn×n are the connection weight matrices,

φ(x(t)) = [φ1(x(t)) ... φn(x(t))]T : Rn → Rn is the nonlinear function vector satisfy-

ing the global Lipschitz condition with Lipschitz constant Lφ > 0, J(t) ∈ Rn is an

external input vector, and H ∈ Rp×n is a known constant matrix. Hopfield [9, 10]

has introduced Hopfield neural networks, which have found applications in several

disciplines where the targeted problems can reduce to optimization problems. Re-

cently, Hopfield neural networks and their several generalizations have attracted the

great attention in many scientific fields due to their potential for the tasks of asso-

ciative memory, classification, parallel computation and their ability to solve difficult

optimization problems [8, 13, 11, 3].

In real physical systems, there always exist the effects of noise disturbances and

model uncertainties. In order to reduce these effects, recently, some researchers have

presented the L2−L∞ approach in filtering problems [7, 16, 14, 6, 5, 12, 15, 17]. The

L2 − L∞ approach has been regarded as an important method to design filters for
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various dynamical systems. At this point, the following question arises: Can we obtain

an L2 − L∞ stability condition for multilayer Hopfield neural networks? This paper

answers this question. To the best of our knowledge, the L2 − L∞ stability analysis

of multilayer Hopfield neural networks has not yet been reported in the literature.

In this paper, we propose new L2−L∞ stability conditions for multilayer Hopfield

neural networks. The conditions proposed in this paper are a new contribution to the

stability analysis of Hopfield neural networks. Under these new conditions, multilayer

Hopfield neural networks attenuate the effect of external input on the state vector

to a predefined level. These conditions are represented in terms of matrix norm and

linear matrix inequality (LMI). This paper is organized as follows. In Section 2, new

L2−L∞ stability conditions are derived. Finally, conclusions are presented in Section

3.

2. New Conditions

Let γ > 0 be a predefined level of disturbance attenuation. The main aim of this

paper is to find new conditions, under which the multilayer Hopfield neural network

(1.1)-(1.2) with J(t) = 0 is asymptotically stable (limt→∞ x(t) = 0) and

sup
t≥0
{zT (t)z(t)} < γ2

∫ ∞
0

JT (t)J(t)dt,(2.1)

under zero-initial conditions for all nonzero J(t) ∈ L2[0,∞), where L2[0,∞) is the

space of square integrable vector functions over [0,∞).

Now, we propose a new L2 − L∞ stability condition of the multilayer Hopfield

neural network (1.1)-(1.2).

Theorem 2.1. For a given level γ > 0, the multilayer Hopfield neural network (1.1)-

(1.2) is L2 − L∞ stable if

‖W̄‖ <
√
k − ‖P‖2 − ‖W‖2‖P‖2

Lφ
,(2.2)

‖W‖ <
√
k − ‖P‖2
‖P‖

,(2.3)

‖P‖ <
√
k, k > 0, P = P T > 0,(2.4)

‖H‖ ≤ γ
√
λmin(P ),(2.5)

where λmin(·) is the minimum eigenvalue of the matrix and P satisfies the Lyapunov

equation ATP + PA = −kI.

Proof. Consider the quadratic Lyapunov function V (t) = xT (t)Px(t). The time de-

rivative of this function along the trajectory of (1.1) is

V̇ (t) = −kxT (t)x(t) + 2xT (t)PWφ(W̄x(t)) + 2xT (t)PJ(t).(2.6)
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If we apply Young’s inequality [1], we have

2xT (t)PWφ(x(t)) ≤ xT (t)PWW TPx(t) + φT (W̄x(t))φ(W̄x(t))

≤ ‖P‖2‖W‖2‖x(t)‖2 + L2
φ‖W̄‖2‖x(t)‖2,

2xT (t)PJ(t) ≤ xT (t)PP Tx(t) + JT (t)J(t)

≤ ‖P‖2‖x(t)‖2 + ‖J(t)‖2.

Substituting these two inequalities into (2.6), we have

V̇ (t) ≤ −
(
k − ‖P‖2 − ‖W‖2‖P‖2 − L2

φ‖W̄‖2
)
‖x(t)‖2 + ‖J(t)‖2.(2.7)

If the following condition is satisfied:

k − ‖P‖2 − ‖W‖2‖P‖2 − L2
φ‖W̄‖2 > 0,(2.8)

we have

V̇ (t) < ‖J(t)‖2.(2.9)

The following three inequalities

‖W̄‖2 < k − ‖P‖2 − ‖W‖2‖P‖2

L2
φ

,

‖W‖2 < k − ‖P‖2

‖P‖2
,

‖P‖2 < k,

imply the condition (2.8). Thus, we obtain (2.2), (2.3), and (2.4). Under the zero-

initial condition, we have V (t)|t=0 = 0 and V (t) ≥ 0. Define

Φ(t) = V (t)−
∫ t

0

JT (σ)J(σ)dσ.(2.10)

Then, for any nonzero J(t), we obtain

Φ(t) = V (t)− V (t)|t=0 −
∫ t

0

JT (σ)J(σ)dσ

=

∫ t

0

[
V̇ (σ)− JT (σ)J(σ)

]
dσ.

From (2.9), we have Φ(t) < 0. It means

V (t) <

∫ t

0

JT (σ)J(σ)dσ.
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The condition (2.5) implies

zT (t)z(t) = xT (t)HTHx(t)

≤ ‖H‖2‖x(t)‖2

≤ γ2λmin(P )‖x(t)‖2

≤ γ2xT (t)Px(t)

= γ2V (t)

< γ2
∫ t

0

JT (σ)J(σ)dσ

≤ γ2
∫ ∞
0

JT (σ)J(σ)dσ.(2.11)

Taking the supremum over t > 0 leads to (2.1). This completes the proof.

Corollary 2.2. When J(t) = 0, the condition (2.2)-(2.5) ensures that the multilayer

Hopfield neural network (1.1)-(1.2) is asymptotically stable.

Proof. When J(t) = 0, from (2.9), we have V̇ (t) < 0,∀x(t) 6= 0. This relation ensures

that the multilayer Hopfield neural network (1.1)-(1.2) is asymptotically stable from

Lyapunov stability theory. This completes the proof.

Next, we find a new LMI based condition for the L2−L∞ stability of the multilayer

Hopfield neural network (1.1)-(1.2). This LMI based condition can be check easily

via standard numerical algorithms [2, 4].

Theorem 2.3. For a given level γ > 0, the multilayer Hopfield neural network (1.1)-

(1.2) is L2 − L∞ stable if there exist a positive symmetric matrix P and a positive

scalar ε such that

 ATP + PA+ εL2
φW̄

T W̄ PW P

W TP −εI 0

P 0 −I

 < 0,(2.12)

[
P HT

H γ2I

]
> 0.(2.13)

Proof. Consider the quadratic Lyapunov function V (t) = xT (t)Px(t). If we Young’s

inequality [1], we have ε[L2
φx

T (t)W̄ T W̄x(t)−φT (W̄x(t))φ(W̄x(t))] ≥ 0. If we use this
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inequality, the time derivative of V (t) along the trajectory of (1.1) is

V̇ (t) = xT (t)[ATP + PA]x(t) + 2xT (t)PWφ(W̄x(t)) + 2xT (t)PJ(t)

≤ xT (t)[ATP + PA]x(t) + 2xT (t)PWφ(W̄x(t)) + 2xT (t)PJ(t)

+ ε[L2
φx

T (t)W̄ T W̄x(t)− φT (W̄x(t))φ(W̄x(t))]

=

 x(t)

φ(W̄x(t))

J(t)


T  ATP + PA+ εL2

φW̄
T W̄ PW P

W TP −εI 0

P 0 −I


 x(t)

φ(W̄x(t))

J(t)


+ JT (t)J(t).(2.14)

If the LMI (2.12) is satisfied, we have

V̇ (t) < JT (t)J(t).(2.15)

Under the zero-initial condition, one has V (t)|t=0 = 0 and V (t) ≥ 0. Define

Φ(t) = V (t)−
∫ t

0

JT (σ)J(σ)dσ.(2.16)

Then, for any nonzero J(t), we obtain

Φ(t) = V (t)− V (t)|t=0 −
∫ t

0

JT (σ)J(σ)dσ

=

∫ t

0

[
V̇ (σ)− JT (σ)J(σ)

]
dσ.

From (2.15), we have Φ(t) < 0. It means

V (t) <

∫ t

0

JT (σ)J(σ)dσ.

The LMI (2.13) implies

zT (t)z(t) = xT (t)HTHx(t)

< γ2xT (t)Px(t)

= γ2V (t)

< γ2
∫ t

0

JT (σ)J(σ)dσ

≤ γ2
∫ ∞
0

JT (σ)J(σ)dσ.(2.17)

Taking the supremum over t > 0 leads to (2.1). This completes the proof.

Corollary 2.4. When J(t) = 0, the LMI conditions (2.12)-(2.13) ensure that the

multilayer Hopfield neural network (1.1)-(1.2) is asymptotically stable.
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Proof. When J(t) = 0, from (2.15), we have V̇ (t) < 0,∀x(t) 6= 0. This inequality en-

sures that the multilayer Hopfield neural network (1.1)-(1.2) is asymptotically stable

from Lyapunov stability theory. This completes the proof.

Example 2.5. Consider the multilayer Hopfield neural network (1.1)-(1.2), where

A =

[
−2.8 0

0 −4.1

]
, φ(x(t)) =

[
tanh(x1(t))

tanh(x2(t))

]
,

W =

[
−0.3 0.4

0 −0.1

]
, W̄ =

[
0.2 −0.1

0.4 0.3

]
, H =

[
1 −0.5

0 1

]
.

By applying Theorem 2.3 via the Matlab LMI Control Toolbox [4], we have the

following feasible solution:

P =

[
3.6620 −0.3408

−0.3408 6.0665

]
, ε = 20.1188,

with the L2 − L∞ performance index γ = 0.6.

3. Conclusion

This paper has proposed some new conditions on L2−L∞ stability for multilayer

Hopfield neural networks. These stability conditions were represented in terms of

matrix norm and LMI. Under the proposed conditions, multilayer Hopfield neural

networks reduced the effect of external input to a predefined level. In addition,

these conditions ensured asymptotic stability for multilayer Hopfield neural networks

without external input.
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