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ABSTRACT. Monotone method combined with method of upper and lower solutions is a produc-
tive technique to prove existence of extremal solutions in dynamic systems. However, this method is
applicable when the forcing function is increasing or can be made increasing by adding a linear term.
Monotone method also works when the forcing function is decreasing in dynamic systems. In this
work, we prove existence of coupled minimal and maximal solutions by using generalized monotone
method for Caputo fractional differential equation with initial condition. Also, we consider the case
when the forcing function is the sum of an increasing and decreasing function. In general, this is
true for many mathematical models, including population models and chemical combustion models.
Finally, we obtain numerical results to demonstrate an application of our theoretical results of the
Logistic equation.
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1. INTRODUCTION

Nonlinear problems (nonlinear dynamic systems) occur naturally as mathematical

models in many branches of science, engineering, finance, economics, etc. So far, in

literature, most models are differential equations with integer derivative. For example,

the Logistic model of population dynamics is given by,

(1.1) (cDqu)(t) = au(t)− bu2(t), u(0) = u0,

where a, b are positive constants.

In reference [8] from 1967, the interest (in fractional derivatives and integrals)

of researchers began when they realized half-order derivatives and integrals led to a

formulation (of the particular electrochemical problems) that are more economical

1This research is partially supported by the LS-LAMP program and Ronald E. McNair program.
2Corresponding author.
3This material is based upon work supported by, or in part by, the US Army Research Laboratory

and the U.S. Army Research office under contract/grant numbers W 911 NF-11-1-0047.
Received March 20, 2012 1061-5369 $15.00 c©Dynamic Publishers, Inc.



120 TH. T PHAM, J. D. RAMIREZ, AND A. S. VATSALA

and useful than the classical diffusion equation. Fractional differential equations are

implementable in many applications. See references, [4, 5], for details.

In solving nonlinear problems, monotone method combined with method of up-

per and lower solutions is a popular choice, because existence of solution by mono-

tone method is both theoretical and computational. Monotone method for various

nonlinear problems has been developed in reference [2]. Monotone method (mono-

tone iterative technique) combined with method of lower and upper solutions yields

monotone sequences, which converges to minimal and maximal solutions of nonlinear

differential equation.

In many nonlinear problems (nonlinear dynamic systems), the nonlinear term is

the sum of an increasing and decreasing functions. Monotone method extended to

such systems is called generalized monotone method. Generalized monotone method

for first order nonlinear initial value problems has been developed in [7]. In this work,

we extend generalized monotone method for Caputo fractional differential equation

of order q (where 0 < q < 1) with initial condition. Also, we prove existence of

coupled minimal and maximal solutions of Caputo fractional differential equation

with initial condition. Further, under uniqueness assumption, we prove existence

of unique solution of Caputo fractional differential equation with initial condition.

Finally, we provide a numerical example as an application of our theoretical results.

2. PRELIMINARIES

In this section, we recall known results, which are needed for our main results.

Initially, we recall some definitions.

Definition 2.1. Caputo fractional derivative of order q is given by equation

(cDqu)(t) =
1

Γ(1− q)

∫ t

0

(t− s)−qu′(s)ds,

where 0 < q < 1.

Also, consider nonlinear Caputo fractional differential equation with initial con-

dition,

(2.1) (cDqu)(t) = f(t, u(t)), u(0) = u0.

The integral representation of (2.1) is given by equation

(2.2) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds,

where Γ(q) is the Gamma function.
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Definition 2.2. Mittag Leffler function is given by equation

Eα,β(λ(t− t0)
α) =

∞∑
k=0

(λ(t− t0)
α)k

Γ(αk + β)
,

where α, β > 0. Also, for t0 = 0, α = q and β = 1, we get equation

Eq,1(λtq) =
∞∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider linear Caputo fractional differential equation,

(2.3) (cDqu)(t) = λu(t) + f(t), u(0) = u0,

on J , where J = [0, T ], λ is a constant and f(t) ∈ C[J, R]. The solution of (2.1)

exists and is unique. The explicit solution of (2.1) is given by the equation

u(t) = u0Eq,1(λtq) +

∫ t

0

(t− s)q−1Eq,q(λtq)f(s)ds.

See [3] for details. In particular, if λ = 0, the solution u(t) is given by equation

(2.4) u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(q) is the Gamma function.

Next, we recall a lemma from [3] without proof. However, we observe this lemma

can be proved without the assumption that m(t) is Hölder continuous of order λ > q.

Lemma 2.3. Let J = [0, T ]. m(t) ∈ C1[J, R]. If m(t1) = 0 (for t1 ∈ J) and m(t) ≤ 0

(for t ∈ J), then (cDqm)(t1) ≥ 0.

Definition 2.4. If v ∈ C1[J, R] such that (cDqv)(t) ≤ f(t, v(t)) and v(0) ≤ u0 on J ,

then v(t) is called lower solution of (2.1). If the inequalities are reversed, then v(t) is

called upper solution of (2.1).

Furthermore, we recall the following theorem without proof.

Theorem 2.5. Let v, w ∈ C1[J, R] be lower and upper solutions of (2.1), respectively.

Furthermore, let f(t, u) satisfies the following one-side Lipschitz condition,

(2.5) f(t, u1)− f(t, u2) ≤ L(u1 − u2),

where u1 ≥ u2 and L > 0. Then v(t) ≤ w(t) on J , provided that v(0) ≤ w(0).

See [3] for details of the proof.

Next, we recall a corollary of Theorem 2.5, which we will use often in our main

result.
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Corollary 2.6. Let p ∈ C1[J, R]. (cDqp)(t) ≤ Lp(t), where L ≥ 0 and p(0) ≤ 0.

Then p(t) ≤ 0 on J .

Furthermore, we will develop generalized monotone method for Caputo fractional

differential equation,

(2.6) (cDqu)(t) = f(t, u(t)) + g(t, u(t)), u(0) = u0,

where 0 < q < 1, f(t, u), g(t, u) ∈ C[J × R,R], f(t, u) is increasing in u on J , and

g(t, u) is decreasing in u on J .

Now, we state the following definition.

Definition 2.7. Let v0, w0 ∈ C1[J, R]. v0, w0 are said to be

(a) Natural lower and upper solutions of (2.6) if

(cDqv)(t) ≤ f(t, v(t)) + g(t, v(t)), v(0) ≤ u0, and

(cDqw)(t) ≥ f(t, w(t)) + g(t, w(t)), w(0) ≥ u0;

(b) Coupled lower and upper solutions of type I of (2.6) if

(cDqv)(t) ≤ f(t, v(t)) + g(t, w(t)), v(0) ≤ u0, and

(cDqw)(t) ≥ f(t, w(t)) + g(t, v(t)), w(0) ≥ u0;

(c) Coupled lower and upper solutions of type II of (2.6) if

(cDqv)(t) ≤ f(t, w(t)) + g(t, v(t)), v(0) ≤ u0, and

(cDqw)(t) ≥ f(t, v(t)) + g(t, w(t)), w(0) ≥ u0;

(d) Coupled lower and upper solutions of type III of (2.6) if

(cDqv)(t) ≤ f(t, w(t)) + g(t, w(t)), v(0) ≤ u0, and

(cDqw)(t) ≥ f(t, v(t)) + g(t, v(t)), w(0) ≥ u0.

Furthermore, corresponding to each type of lower and upper solutions, we can

develop four types of sequences. However, it was discovered in [7] that only the

following two types of sequences, type (ii) and (iii) sequences, provide meaningful

results:

(ii)

(cDqvn+1)(t) = f(t, vn(t)) + g(t, wn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, wn(t)) + g(t, vn(t)), wn+1(0) = u0;

(iii)

(cDqvn+1)(t) = f(t, wn(t)) + g(t, vn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, vn(t)) + g(t, wn(t)), wn+1(0) = u0.
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3. MAIN RESULTS

In this section, we develop generalized monotone method for Caputo fractional

differential equation,

(3.1) (cDqu)(t) = f(t, u(t)) + g(t, u(t)), u(0) = u0,

where 0 < q < 1 and f(t, u), g(t, u) ∈ C[J × R,R]. f(t, u) is increasing in u on

J , and g(t, u) is decreasing in u on J . Generalized monotone method yields natural

or intertwined monotone sequences. Existence of natural or intertwined monotone

sequences depends on how the sequences are developed. Further, we prove these

sequences converge uniformly and monotonically to coupled minimal and maximal

solutions. Finally, we obtain a sufficient condition for the solution of (3.1) to be

unique.

For our first result, we use coupled lower and upper solutions of type I and

sequences that are developed using type (ii) kind of sequences.

Theorem 3.1. Assume that

(i) v0, w0 ∈ C1[J, R]. v0, w0 are coupled lower and upper solutions of type I, with

v0(t) ≤ w0(t) on J .

(ii) f(t, u), g(t, u) ∈ C[J × R,R], where f(t, u) is increasing in u on J , and g(t, u)

is decreasing in u on J .

Then there exist monotone sequences, vn(t) and wn(t), such that vn(t) → ρ(t) and

wn(t) → r(t) uniformly and monotonically, where ρ(t) and r(t) are coupled minimal

and maximal solutions of equation (3.1) on J . That is, for any solution, u(t), of

(3.1) with v0 ≤ u ≤ w0 on J , we get natural sequences, {vn} and {wn}, satisfying the

following,

v0(t) ≤ v1(t) ≤ v2(t) ≤ · · · ≤ vn(t) ≤ u(t) ≤ wn(t) ≤ · · · ≤ w2(t) ≤ w1(t) ≤ w0(t),

for each n ≥ 1 on J . This requires using type (ii) iterative schemes,

(3.2)
(cDqvn+1)(t) = f(t, vn(t)) + g(t, wn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, wn(t)) + g(t, vn(t)), wn+1(0) = u0.

Further, using (3.2), we prove ρ(t) and r(t) satisfy the coupled system,

(3.3)
(cDqρ)(t) = f(t, ρ(t)) + g(t, r(t)), ρ(0) = u0, and

(cDqr)(t) = f(t, r(t)) + g(t, ρ(t)), r(0) = u0.

Also, ρ(t) ≤ u(t) ≤ r(t) on J .

Proof. We can see that the solutions of the linear initial value problems (3.2), exist

and are unique for k ∈ N. We will prove that vk(t), wk(t) ∈ [v0, w0] = Ω, where
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Ω = [u ∈ [J, R] : v0(t) ≤ u ≤ w0(t), t ∈ J ], with vk ≤ wk for each k ≥ 1. Our aim is

to show

(3.4) v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t).

Initially, we will show v0(t) ≤ v1(t).

Let p(t) = v0(t)− v1(t). Then, we have p(0) ≤ 0. Also, let

(cDqp)(t) = (cDqv0)(t)− (cDqv1)(t)

≤ f(t, v0(t)) + g(t, w0(t))− f(t, v0(t))− g(t, w0(t))

= 0

From Lemma 2.3, we get that p(t) ≤ 0 implies that v0(t) ≤ v1(t) on J . Next,

likewise, we can show that w1(t) ≤ w0(t).

Last, we will show v1(t) ≤ w1(t). Thus, let p(t) = v1(t) − w1(t). Then, we have

that p(0) = 0. Also, let

(cDqp)(t) = (cDqv1)(t)− (cDqw1)(t)

= f(t, v0(t)) + g(t, w0(t))− f(t, w0(t))− g(t, v0(t))

≤ 0.

From Lemma 2.3, we get p(t) ≤ 0 implies v1(t) ≤ w1(t) on J . Thus, (3.4) holds

true for n = 1.

Further, assume (3.4) is true for n = k. Then, we need to show (3.4) holds for

n = k +1. Thus, first, we will show vk(t) ≤ vk+1(t). Let p(t) = vk(t)− vk+1(t). Then,

we have p(0) = 0. Also, let

(cDqp)(t) = (cDqvk)(t)− (cDqvk+1)(t)

= f(t, vk−1(t)) + g(t, wk−1(t))− f(t, vk(t))− g(t, wk(t))

≤ 0.

From Lemma 2.3, we get that p(t) ≤ 0 implies that vk(t) ≤ vk+1(t) on J . Next,

likewise, we can show wk+1(t) ≤ wk(t) on J . Last, we will show vk+1(t) ≤ wk+1(t) on

J . Thus, let p(t) = vk+1(t)− wk+1(t). Then, we have that p(0) = 0. Also, let

(cDqp)(t) = (cDqvk+1)(t)− (cDqwk+1)(t)

= f(t, vk(t)) + g(t, wk(t))− f(t, wk(t))− g(t, vk(t))]

≤ 0.

From Lemma 2.3, we get p(t) ≤ 0 implies vk+1(t) ≤ wk+1(t) on J . This proves

(3.4) holds for n = k + 1. Thus, (3.4) is valid for all n ≥ 1.
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Further, suppose u is any solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t) on J .

We will show that

(3.5) vk(t) ≤ u(t) ≤ wk(t),

for all k. First, we prove that (3.5) is true for k = 1. For that purpose, let p(t) =

v1(t)− u(t). Then, we have p(0) = 0. Also, let

(cDqp)(t) = (cDqv1)(t)− (cDqu)(t)

= f(t, v0(t)) + g(t, w0(t))− f(t, u(t))− g(t, u(t))

≤ 0.

From Lemma 2.3, we get p(t) ≤ 0 implies v1(t) ≤ u(t) on J . Next, likewise, we

can show u(t) ≤ w1(t). This proves (3.5) holds for k = 1. By induction argument,

we can prove

(3.6) v0(t) ≤ v1(t) ≤ · · · ≤ vn(t) ≤ u(t) ≤ wn(t) ≤ · · · ≤ w1(t) ≤ w0(t).

Furthermore, the sequences, {vn(t)}, {wn(t)}, can be shown to be equicontinu-

ous and uniformly bounded. Thus, by Ascoli-Arzela′s theorem, the subsequences,

{vnk
(t)}, {wnk

(t)}, converge to ρ(t) and r(t), respectively, on J . Since the sequences,

{vk(t)}, {wk(t)}, are monotone, the entire sequences converge uniformly and mono-

tonically to ρ(t) and r(t), respectively, on J . Thus, ρ(t) and r(t) satisfy the initial

value problems (3.3).

Finally, we claim ρ(t) and r(t) are coupled minimal and maximal solutions of

(3.1). From (3.6), we can see v0(t) ≤ ρ(t) ≤ u(t) ≤ r(t) ≤ w0(t) on J is true. This

completes this proof.

For our next result, we use coupled lower and upper solutions of type I of (3.1) and

type (iii) sequences. In this case, we obtain intertwined sequences. Since the proof

of Theorem 3.2 follows on the same lines as Theorem 3.1, we only state Theorem 3.2

without showing its proof.

Theorem 3.2. Assume hypotheses, (i) and (ii), of Theorem 3.1 hold. Then for any

solution, u(t), of equation (3.1) with v0 ≤ u ≤ w0 on J , we get alternating sequences,

{v2n, w2n+1} and {v2n+1, w2n}, satisfying intertwined sequences,

(3.7)
v0(t) ≤ w1(t) ≤ · · · ≤ v2n(t) ≤ w2n+1(t) ≤ u(t)

≤ v2n+1(t) ≤ w2n(t) ≤ · · · ≤ v1(t) ≤ w0(t),

for each n ≥ 1 on J . This requires using type (iii) iterative schemes,

(cDqvn+1)(t) = f(t, wn(t)) + g(t, vn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, vn(t)) + g(t, wn(t)), wn+1(0) = u0.
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Further, monotone sequences, {v2n, w2n+1} and {w2n, v2n+1}, converge to ρ(t) and

r(t), respectively, on J . ρ(t) and r(t) are coupled minimal and maximal solutions of

(3.1), respectively. That is, ρ(t) and r(t) satisfies the coupled system,

(cDqρ)(t) = f(t, ρ(t)) + g(t, r(t)), ρ(0) = u0, and

(cDqr)(t) = f(t, r(t)) + g(t, ρ(t)), r(0) = u0.

Also, ρ(t) ≤ u(t) ≤ r(t) on J .

Our next result provides existence of unique solution of (3.1) while requiring

suitable conditions.

Theorem 3.3. If in addition to hypotheses of Theorem 3.1 or Theorem 3.2, let f(t, u)

satisfies left-hand-side Lipschitz condition,

f(t, u2)− f(t, u1) ≤ L1(u2 − u1), u2 ≥ u1,

and g(t, u) satisfies right-hand-side Lipschitz condition,

g(t, u2)− g(t, u1) ≥ −L2(u2 − u1), u2 ≥ u1,

where v0 ≤ u1 ≤ u2 ≤ w0 implies ρ = r = u, the unique solution of (3.1).

Proof. From Theorem 3.1 and 3.2, we already have ρ ≤ r. It is enough to prove r ≤ ρ.

For that purpose, we set p(t) = r − ρ. Then p(0) = 0.

(cDqm)(t) = (cDqr)(t)− (cDqρ)(t) = f(t, r)− f(t, ρ) + g(t, r)− g(t, ρ)

≤ L1(r − ρ) + L2(r − ρ)

= (L1 + L2)p(t).

Using Corollary 2.6, we get r ≤ ρ. Thus, we obtain ρ = r = u, the unique solution of

(3.1).

Our next result, Lemma 3.4, provides a methodology to construct coupled lower

and solutions of type II.

Lemma 3.4. Suppose f(t, u), g(t, u) are monotonically increasing and decreasing in

u, respectively, for t ∈ J , then there exists coupled lower and upper solutions of type

II,

(cDqv)(t) ≤ f(t, w(t)) + g(t, v(t)), v(0) ≤ u0, and

(cDqw)(t) ≥ f(t, v(t)) + g(t, w(t)), w(0) ≥ u0,

for (3.1) on J .
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Proof. Consider a linear Caputo fractional differential equation,

(cDqz)(t) = f(t, 0) + g(t, 0), z(0) = u0,

whose solution z(t) can be computed easily.

Now, we choose an R > 0 such that

v = z −R ≤ 0, and

w = z + R ≥ 0.

We claim v, w are coupled lower and upper solutions of (3.1) of type II. To prove this,

we consider

cDqv = cDqz −c DqR =c Dqz ⇒c Dqv = f(t, 0) + g(t, 0), v(0) = u0, and

cDqw = cDqz +c DqR =c Dqz ⇒c Dqw = f(t, 0) + g(t, 0), w(0) = u0.

Since f is increasing in u, g is decreasing in u, v ≤ 0 and 0 ≤ w, we get

cDqv = f(t, 0) + g(t, 0) ≤ f(t, w) + g(t, v) ⇒c Dqv = f(t, w) + g(t, v), and

cDqw = f(t, 0) + g(t, 0) ≥ f(t, v) + g(t, w) ⇒c Dqw = f(t, v) + g(t, w).

This completes this proof.

We merely state our next two results that relate to coupled lower and upper

solutions of type II for (3.1). The proofs of Theorems 3.5 and 3.6 follow on the same

lines as the proof of Theorem 3.1 while requiring extra assumptions.

Theorem 3.5. Assume the hypothesis of Lemma 3.4 holds, and let v0 and w0 be

coupled lower and upper solutions, respectively, of type II with v0 ≤ w0 on J . Further,

starting from v0 and w0, if type (ii) iterative schemes are constructed by

(cDqvn+1)(t) = f(t, vn(t)) + g(t, wn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, wn(t)) + g(t, vn(t)), wn+1(0) = u0,

then the conclusions of Theorem 3.1 hold, provided v0 ≤ v1 and w1 ≤ w0 on J .

Theorem 3.6. Assume hypothesis of Lemma 3.4 holds, and let v0 and w0 be coupled

lower and upper solutions, respectively, of type II with v0 ≤ w0 on J . Further, starting

from v0 and w0, if type (iii) iterative schemes are constructed by

(cDqvn+1)(t) = f(t, wn(t)) + g(t, vn(t)), vn+1(0) = u0, and

(cDqwn+1)(t) = f(t, vn(t)) + g(t, wn(t)), wn+1(0) = u0,

then the conclusions of Theorem 3.2 hold, provided v0 ≤ w1 and v1 ≤ w0 on J .
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4. NUMERICAL RESULTS

In this section we provide several examples that illustrate the theoretical results

obtained in the previous section. We used Maple and Mathematica software for the

computations and graph drawings.

We consider an example and develop a numerical result, which demonstrates the

application to one of our main theoretical results, namely Theorem 3.5.

Example 4.1. Consider a special case of the Logistic model of the form

(4.1) (cD
1
2 u)(t) = 0.99u(t)− u2(t), u(0) = 1

2
.

We choose v0(t), w0(t) as coupled lower and upper solutions of type II. Let v0(t) =

0.01 and w0(t) = 1. We claim that v0(t) and w0(t) are coupled lower and upper

solutions of type II of (4.1). We justify v0 = 0.01 and w0 = 1 as below.

cD
1
2 (0.01) ≤ 0.99(1)− 0.01

2 ⇒ 0 ≤ 0.9899, v0(0) = 0.01 ≤ 1

2
= u0, and

cD
1
2 (1) ≥ 0.99(0.01)− 1

2 ⇒ 0 ≥ −0.9901, w0(0) = 1 ≥ 1

2
= u0.

Next, we compute v1(t) and w1(t) using Theorem 3.5 iterative schemes

cD
1
2 v1 = 0.99v0 − w0

2
= 0.99(0.01)− 1

2
= −0.9901, v1(0) = 1

2
, and

cD
1
2 w1 = 0.99w0 − v0

2
= 0.99(1)− 0.01

2
= 0.9899, w1(0) = 1

2
.

From Figure 1 below, we can computationally check v0(t) ≤ v1(t) on [0, 0.19] and

w1(t) ≤ w0(t) on [0, 0.19], which is needed to satisfy hypothesis of Theorem 3.5. Also,

we compute all vn(t) and wn(t) iterations using Theorem 3.5 iterative schemes

(cD
1
2 vn+1)(t) = 0.99vn(t)− w

2

n(t), vn+1(0) = 1
2
, and

(cD
1
2 wn+1)(t) = 0.99wn(t)− v

2

n(t), wn+1(0) = 1
2
.

From Figure 1, for n = 0, 1, 2, 3, 4, we can see v0 ≤ v1 ≤ v2 ≤ v3 ≤ v4 ≤ w4 ≤
w3 ≤ w2 ≤ w1 ≤ w0.

For n = 0, 1, 2, 3, 4, Figure 1 has five iterations.
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Figure 1. Dashed: {vn}. Solid: {wn}.

The difference max |vn − wn| can be made as small as possible by choosing an

appropriate n. Computationally, max |v25−w25| = |(1
2
+ 1√

π
)(14.25644704(0.19)

23
2 )−

(1
2

+ 1√
π
)(14.25644704(0.19)

23
2 )| = 0. Since max |v25 − w25| = 0, vn and wn converge

to a unique solution of (4.1). That is, v25 = w25 = u. The unique solution of (4.1)

can be seen in Figure 2.

For n = 0, 1, 2, . . . , 25, Figure 2 has 26 iterations.

Figure 2. Dashed: {vn}. Solid: {wn}.
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Table 1. Table of the Twenty Six Iterations of vn(t), wn(t) for Figures

1 and 2.

n t vn(t) wn(t) n t vn(t) wn(t)

0 0.19 0.01 1 13 0.19 0.98375 0.98395

1 0.19 0.01304 0.98686 14 0.19 0.98385 0.98395

2 0.19 0.50640 0.98538 15 0.19 0.98389 0.98395

3 0.19 0.74906 0.98465 16 0.19 0.98392 0.98395

4 0.19 0.86842 0.98429 17 0.19 0.98393 0.98395

5 0.19 0.92712 0.98411 18 0.19 0.98394 0.98395

6 0.19 0.95600 0.98403 19 0.19 0.98394 0.98395

7 0.19 0.97020 0.98398 20 0.19 0.98394 0.98395

8 0.19 0.97718 0.98396 21 0.19 0.98394 0.98395

9 0.19 0.98062 0.98395 22 0.19 0.98395 0.98395

10 0.19 0.98231 0.98395 23 0.19 0.98395 0.98395

11 0.19 0.98314 0.98395 24 0.19 0.98395 0.98395

12 0.19 0.98354 0.98395 25 0.19 0.98395 0.98395

Example 4.2. Now consider the following initial value problem,

(4.2)

cD
1
2 u =

u

6
− u2

3
,

u(0) = 1
2
.

Clearly, u ≡ 1
2

is a solution to (4.2). Moreover, v0 ≡ 1
10

and w0 ≡ 1 are coupled

lower and upper solutions of type II to (4.2).

In fact, 0 =cD
1
2 v0 ≤ w0

6
− v2

0

3
= 49

300
, and 0 =cD

1
2 w0 ≥ v0

6
− w2

0

3
= −19

60
.

We compute intertwined sequences according to Theorem 3.6 and show in Figure 3

five steps of {v2n, w2n+1} and five steps of {w2n, v2n+1}. We also show a table of values

at the endpoint t = 1.

Table 2. Table of five iterations of vn(t) and wn(t) for equation (4.2)

n t vn(t) wn(t)

0 1 0.10000 1.00000

1 1 0.68430 0.14268

2 1 0.38426 0.60076

3 1 0.53922 0.45727

4 1 0.48614 0.51363
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Figure 3. Dashed: {v2n, w2n+1}. Solid: {w2n, v2n+1}

Now, if we apply the Gauss Seidel method to (4.2) the sequences converge faster.

We show the corresponding graph and table of values.

Figure 4. Dashed: {v2n, w2n+1}. Solid: {w2n, v2n+1}

Table 3. Table of five iterations of vn(t) and wn(t) for equation (4.2)

n t vn(t) wn(t)

0 1 0.10000 1.00000

1 1 0.68430 0.24513

2 1 0.39879 0.54719

3 1 0.52961 0.49001

4 1 0.49194 0.50158

Conclusion. In this work, we developed generalized monotone method for Ca-

puto fractional differential equation with initial condition. The computation of Mittag

Leffler function is not required in each iteration—which is an advantage of generalized

monotone method over the usual monotone method, specifically, for Caputo fractional
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differential equation. In addition, even though we have considered a scalar equation,

because of the generalized method we could use the Gauss-Seidal method to accelerate

the rate of convergence.

REFERENCES

[1] A.A. Kilbas, H.M. Srivastava, and J.J Trujillo. Theory and Applications of Fractional Differential
Equations. Elsevier, North Holland, 2006.

[2] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala. Monotone Iterative Techniques for Nonlinear
Differential Equations. Pitman, (1985).

[3] V. Lakshmikantham, S. Leela, and D.J. Vasundhara Devi. Theory of fractional dynamic systems.
Cambridge Scientific Publishers, 2009.

[4] B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, New York, London, 1974.
[5] I. Podlubny. Fractional Differential Equations. Academics Press, San Diego, 1999.
[6] M. Sokol and A.S. Vatsala, A unified exhaustive study of monotone iterative method for initial

value problems, Nonlinear Studies, 8 (4), 429–438,(2001).
[7] A.S. Vatsala and I. H. West. Generalized Monotone Iterative Method for Initial Value Problems,

Applied Mathematics Letters, 17 (2004) 1231–1237.
[8] M. Caputo, Linear models of dissipation whose Q is almost independent, II, Geophysical Journal

of the Royal Astronomical Society, 13 (1967), 529–539.


