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ABSTRACT. We study a multi-server queueing system with customer induced interruption of ser-
vice to which customers arrive according to Poisson process and service time follows an exponential
distribution. The customer induced interruption occurs according to Poisson process and the inter-
ruption duration follows an exponential distribution. The self-interrupted customer will enter into a
buffer of finite capacity. Any self-interrupted customer, finding the buffer full, is considered lost for
ever. Those self-interrupted customers who complete their interruption will be placed into another
buffer of same size. The self-interrupted customers waiting for service are given non-preemptive pri-
ority over new customers. We investigate the behavior of this queueing system. Several performance
measure are evaluated. Numerical illustrations of the system behavior are also provided. Optimiza-
tion problem to maximize the revenue with respect to number of servers to be employed and optimal
buffer size for the self-interrupted customers are discussed through two illustrative examples.

AMS (MOS) Subject Classification. 68K25

1. INTRODUCTION

Service interruptions is common phenomena in queueing system. For example,

in production and manufacturing set up the machine (offering services to jobs) can

fail in the middle of a service due to wear and tear. For details on queues with server

interruptions (other than priority queues) we refer the reader to Krishnamoorthy et

al [1]. Almost all work on interruptions deal with server induced ones.

As far as our knowledge goes, the first paper dealing with customer induced

interruption is [2] reported at the 8th International Workshop on Retrial Queues in

2010. The present paper deals with interruption that is induced by the customers

while in service. A customer who is currently in service can be self-interrupted.

The motivation for such interruptions arise from situations seen in practice. A more

commonly occurring example is the following: while a patient is being examined, the
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physician may find that one or more tests are needed for prescription of medicine.

Hence he/she is asked to undergo these and return to the clinic. Such patients can

be regarded as self-interrupted customers. Another example come is : while trying to

send a package in post office, the customer may require a service such as confirmation

of the delivery of the package which calls for the customer to fill in certain forms

(if it is not done earlier). This is to be done by moving away from the server to

a place that has all relevant forms. Yet another example is : while in service the

customer is interrupted through his/her cell phone and needs immediate attention.

Other examples can be found in Online services. Salient features of this type of

interruption as opposed to server interruptions are that the system (a) can have more

interrupted customers than the number of servers in the system, and (b) can offer

services to other customers while a/some customers is/are undergoing interruptions.

The queueing model considered in the present paper is an extension of the work [?]

to multi-server systems. Miaomiao Yu et al [6] considered an M/Ek/1 system wherein

a customer, on completion of first phase of service, is required to undergo service

elsewhere with a specified probability, before proceeding to second phase of service.

With complement probability he proceeds to second phase of service. However, he

may have to wait until service of all those customers ahead of him whose service

got interrupted after first phase, but have completed interruption during the present

customer’s service (in the first phase in case service gets interrupted in that phase;

else until he/she completes the whole service), are completed. They also assumed that

there is no interruption beyond the first phase. Our model differs from the above in

that self interruption occurs with in the phase whereas the interruption discussed in

Miaomiao Yu et al [6] occur immediately after service in first phase. However, for

queueing systems with more than one server the model described has not been studied

so far.

The rest of the paper is organized as follows. In Section 2 the model under study

is described. Section 3 provides the steady state analysis of the model, including a

few key performance measures and optimization problem. Some illustrative examples

are discussed in section 4.

2. MODEL DESCRIPTION

We consider an infinite capacity multi server queuing model to which customers

arrive according to Poisson process with rate λ (Figure1). The service facility consists

of c servers. All c servers are assumed to be homogeneous and that the service times

are exponentially distributed with parameter µ. An arriving customer, finding a free

server, enters into service immediately; otherwise the customer is placed into the

buffer of infinite capacity and it will be picked up for service according to the order

of their arrival. We consider customer induced interruption while his/her service is
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Figure 1: Customer Induced Interruption in a multi-server queueing system

going on. The interruption occurs according to a Poisson process of rate θ. When an

interruption occurs, the customer currently in service will be forced to leave the service

facility. The freed server is ready to offer services to other customers. The interrupted

customer enters into a buffer (referred to as BIP ) of finite capacity, K, should there be

a space available. Otherwise, such a customer is lost for ever. An interrupted customer

spends a random period of time for completion of interruption, independent of other

customers. The duration of an interruption follows an exponential distribution with

parameter η. In this paper we assume that no more than one interruption is allowed

for a customer while in service. That is, an interrupted customer who gets into service

again will leave the system with no further interruption. All interrupted customers,

upon completing their interruptions enter into a finite buffer (referred to as BIC)

whose size is K. Customers who are in BIC are given non-preemptive priority over

new customers but are served in the order in which they enter into this buffer. Thus,

a free server will offer services to those customers waiting in BIC before serving

new customers by maintaining the order of their arrival. Because of this restriction

coupled, with the fact that at most one interruption is allowed for a customer, the

total number of customers in BIC and BIP will never exceed the size of BIP and

hence we assume the buffer sizes to be the same.

In the sequel we use the following notations.

• N(t)= Number of customers in the primary queue at time t

• N1(t)= Number of busy servers at time t
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• N2(t)= Number of servers busy with primary customers at time t

• N3(t) = Number of customers in BIC at time t

• N4(t) = Number of customers in BIP at time t

• ai = (1, 2, . . . , i); 1 ≤ i ≤ K

• e denotes column vector of 1’s with appropriate dimension,

• ej(r) denote column vector of dimension r with 1 in the jth position and 0

elsewhere

• Ir denote identity matrix of dimension r.

• ∆(a
i
) is a diagonal matrix whose diagonal entries are the components of the

vector ai.

• L = (K + 1)(K + 2)/2.

• LC = L ∗ (c + 1).

The process {(N(t), N1(t), N2(t), N3(t), N4(t)) : t ≥ 0} is a continuous-time

Markov chain (CTMC) whose state space is given by

Ω = {(0, 0, 0, 0, i2) : 0 ≤ i2 ≤ K}⋃
{(0, j,m, 0, i2) : 1 ≤ j ≤ c− 1, 0 ≤ m ≤ j, 0 ≤ i2 ≤ K}⋃
{(n, c,m, i1, i2) : n ≥ 0, 0 ≤ m ≤ c, 0 ≤ i1, i2 ≤ K, 0 ≤ i1 + i2 ≤ K}

A brief description of the above states are given below.

• (0, 0) = (0, 0, 0, 0, i2) : − the system has no customers in the primary queue, all

servers including primary servers are idle, no customers in the BIC and BIP

has i2 customers.

• (j, m) = (0, j,m, 0, i2) : − the system has no customer in the primary queue,

there are j servers are busy of which m servers are busy with primary queue

customers (1 ≤ j ≤ c− 1 and 0 ≤ m ≤ j), no customer in BIC and BIP has i2

customers.

• (c, m) = (n, c,m, i1, i2) : − there are n(n ≥ 0) customers in the primary queue,

all c servers are busy of which m servers are busy with primary queue customers,

(0 ≤ m ≤ c), BIC has i1 customers and BIP has i2 customers.

Level l(0, j) denotes the union of (j + 1)(K + 1) states given by

l(0, j) =

j⋃
m=0

{(0, j,m, 0, i2) : 0 ≤ i2 ≤ K}; 0 ≤ j ≤ c− 1.

Level l(n, c) denotes the union of LC states given by

l(n, c) =
c⋃

m=0

{(n, c,m, i1, i2) : 0 ≤ i1 + i2 ≤ K, 0 ≤ i1, i2 ≤ K} ; n ≥ 0.

To write down the infinitesimal generator Q, we introduce additionally the following

notations:
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• I∗ =


µ θ

µ θ
. . . . . .

µ θ

µ + θ


(K+1)×(K+1)

• Ĩ∗ =

[
I∗

O

]
L×(K+1)

• Ĩ∗∗ =

[
I∗ O

O O

]
L×L

• F ∗ = η

[
0 0

∆(aK) 0

]
(K+1)×(K+1)

• F̂ ∗ =
[
F ∗ O

]
(K+1)×L

• ĨK+1 =

[
IK+1

O

]
L×(K+1)

• ÎK+1 =
[
IK+1 O

]
(K+1)×L

For 1 ≤ p ≤ K,

• Fp =

[
0

∆(ap)

]
(p+1)×p

, Jp =
[

Ip 0
]
, Gp = ∆(0 ap), G0 = 0,

• Hp =


µ θ

µ θ
. . . . . .

µ θ


p×(p+1)

,

If the states in Ω are listed in lexicographical order then the infinitesimal generator

of the CTMC governing the system is given by

(2.1)

Q =



l(0, 0) l(0, 1) l(0, 2) . . . l(0, c− 1) l(0, c) l(1, c) . . .

l(0, 0) E0 C0

l(0, 1) B1 E1 C1

l(0, 2) B2 E2 C2
...

. . . . . . . . .

l(0, c− 1) Ec−1 Cc−1

l(0, c) Bc A1 A0

l(1, c) A2 A1 A0
...

. . . . . . . . .


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where the coefficient matrices appearing in (2.1) are given by

Ej =



(j, 0) (j, 1) . . . (j, j − 1) (j, j)

(j, 0) Dj,0

(j, 1) Dj,1

...
. . .

(j, j − 1) Dj,j−1

(j, j) Dj,j


where

Dj,i = −∆ (λ + jµ + iθ, λ + jµ + iθ + η, . . . , λ + jµ + iθ + Kη)

j = 0, 1, . . . , (c− 1), i = 0, . . . , j

Bj =



(j − 1, 0) (j − 1, 1) . . . (j − 1, j − 2) (j − 1, j − 1)

(j, 0) jµIK+1

(j, 1) I∗ (j − 1)µIK+1

(j, 2) 2I∗

...
. . . . . .

(j, j − 1) (j − 1)I∗ µIK+1

(j, j) jI∗


j = 0, . . . , c− 2

Cj =



(j + 1, 0) (j + 1, 1) (j + 1, 2) . . . (j + 1, j) (j + 1, j + 1)

(j, 0) F ∗ λIK+1

(j, 1) F ∗ λIK+1

...
. . . . . .

(j, j − 1) λIK+1

(j, j) F ∗ λIK+1


j = 0, . . . , c− 2

Bc =



(c− 1, 0) (c− 1, 1) . . . (c− 1, c− 2) (c− 1, c− 1)

(c, 0) cµĨK+1

(c, 1) Ĩ∗ (c− 1)µĨK+1

(c, 2) 2Ĩ∗

...
. . . . . .

(c, c− 1) (c− 1)Ĩ∗ µĨK+1

(c, c) cĨ∗


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Cc−1 =



(c, 0) (c, 1) (c, 2) . . . (c, c− 1) (c, c)

(c− 1, 0) F̂ ∗ λÎK+1

(c− 1, 1) F̂ ∗ λÎK+1

...
. . . . . .

(c− 1, c− 2) λÎK+1

(c− 1, c− 1) F̂ ∗ λÎK+1



A1 =



(c, 0) (c, 1) (c, 2) . . . (c, c− 1) (c, c)

(c, 0) A
(1)
0,0

(c, 1) A
(1)
1,0 A

(1)
1,1

(c, 2) A
(1)
2,1 A

(1)
2,2

...
. . . . . .

(c, c− 1) A
(1)
(c−1),(c−1)

(c, c) A
(1)
c,(c−1) A

(1)
c,c


where

A
(1)
i,i = −{(λ + cµ + iθ) IL + η ∆(GK . . . G0)}+ η

[
O ∆(FK . . . F1)

0 0

]

+ (c− i) µ

[
O 0

∆(JK . . . J1) 0

]
, i = 0, . . . , c

A
(1)
i(i−1) = i

[
O 0

∆(HK . . . H1) 0

]
; i = 1, . . . , c

A2 =



(c, 0) (c, 1) (c, 2) . . . (c, c− 1) (c, c)

(c, 0) O A
(2)
0

(c, 1) Ĩ∗∗ A
(2)
1

(c, 2) 2Ĩ∗∗
. . .

...
. . .

(c, c− 1) (c− 1)Ĩ∗∗ A
(2)
c−1

(c, c) cĨ∗∗


where

A
(2)
j = (c− j) µ

[
IK+1 O

O O

]
L×L

; j = 0, . . . , c− 1

A0 = λ ILC
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3. STEADY-STATE ANALYSIS

In this section we perform the steady-state analysis of the queueing model under

study by first establishing the stability condition of the queueing system.

3.1. Stability condition. Let π denote the steady-state probability vector of the

generator A0 + A1 + A2. That is, π(A0 + A1 + A2) = 0, πe = 1. The LIQBD

description of the model indicates that the queueing system is stable (see Neuts [3])

if and only if

(3.1) πA0e < πA2e.

The vector, π, cannot be obtained explicitly in terms of the parameters of the model,

and hence the stability condition is known only implicitly. For future reference, we

define the traffic intensity, ρ as

(3.2) ρ =
πA0e

πA2e
.

Note that the stability condition in (3.1) is equivalent to ρ < 1. We will discuss the

impact of the input parameters of the model on the traffic intensity in Section 4.

3.2. Steady-state vector. Let x denote the steady-state probability vector of the

generator Q given in (2.1). That is,

(3.3) x Q = 0, x e = 1.

Let x be partitioned as

(3.4) x = (x∗(0),x∗(1), . . . ,x∗(c− 1),x(0),x(1), . . .)

we see that x, under the assumption that the stability condition holds, the steady

state probability vector is obtained as

(3.5) x(n) = x(0)Rn, n ≥ 1,

where R is the minimal non-negative solution to the matrix quadratic equation:

R2A2 + RA1 + A0 = O,

and the vectors x∗(0),x∗(1), . . . ,x∗(c− 1),x(0) are obtained from boundary equations

x∗(0)E0 + x∗(1)B1 = 0,

x∗(i− 1)Ci−1 + x∗(i)Ei + x∗(i + 1)Bi+1 = 0, 1 ≤ i ≤ c− 2

x∗(c− 2)Cc−2 + x∗(c− 1)Ec−1 + x(0)Bc = 0,

x∗(c− 1)Cc−1 + x(0)[A1 + RA2] = 0,

Once R matrix is obtained, from the boundary equation we obtain

x(0) = x∗(c− 1)Rc−1
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x∗(i) = x∗(i− 1)Ri−1, 1 ≤ i ≤ (c− 1)

which gives x(0) = x∗(0)
c−1∏
i=0

Ri where Rc−1 = Cc−1 [−(A1 + RA2)]
−1 and Ri−1 =

Ci−1 [−(Ei + RiBi+1)]
−1. The component x∗(0) is the steady state distribution of the

Markov Chain with generator matrix [E0 +R0B1] subject to the normalizing equation

(3.6) x∗(0)

(
I +

c−2∑
i=0

i∏
j=0

Rj +
c−1∏
j=0

Rj(I −R)−1

)
e = 1.

Thus, the vector x can be computed by exploiting the special structure of the coeffi-

cient matrices. The details are omitted. One can use logarithmic reduction algorithm

for computing R. We will list only the the main steps involved in the logarithmic

reduction algorithm for the computation of R. For full details on the logarithmic

reduction algorithm we refer the reader to [5].

Logarithmic Reduction Algorithm for R:

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.

Step 1:

U = HL + LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G + TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −A0(A1 + A0G)−1.

3.3. Stationary waiting time distribution in the queue. The stationary wait-

ing time distribution for this queueing model, in general, is analytically intractable.

However we will obtain the Laplace-Stieltjes transform (LST) of the waiting time of a

customer in the queue and derive an expression for its mean. First note that an arriv-

ing customer will enter into service immediately with probability w0 =
∑c−1

i=0 x∗(i)e.

With probability 1−w0 the arriving customer has to wait before getting into service.

The waiting time may be viewed as the time until absorption in a Markov chain with

a highly sparse structure. The state space (that includes the arriving customer in its

count) of the Markov chain is given by

Ω̃ = {∗}
⋃
{(n, c, j, i1, i2) :, 0 ≤ j ≤ c, 0 ≤ i1, i2 ≤ K, 0 ≤ i1 + i2 ≤ K, n ≥ 1}.

The state * is obtained by lumping together the states that correspond to at least

one of the server being idle. That is, * is obtained by lumping {(0, j,m, 0, i2) : 0 ≤
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j ≤ c− 1; 0 ≤ m ≤ j; 0 ≤ i2 ≤ K}. Its generator matrix Q̃ is given by

(3.7) Q̃ =


0 0

a Ã1

A2 Ã1

A2 Ã1

. . . . . .

 ,

where

Ã1 = A1 + λI, a = A2e

The initial probability vector of Q̃ is denoted by z and in partitioned form is given

by

z = (w0,x(0),x(1), · · · ).

Define W (t), t ≥ 0 to be the probability that an arriving customer will enter into

service no later than time t. We will now derive the Laplace-Stieltjes transform

(LST), w̃(s), of W (t). This transform is useful in deriving an expression for the mean

waiting time. Using the structure of Q̃, it can readily be verified that

Theorem 3.1. The LST, w̃(s), of W̃(t) is given by

(3.8) w̃(s) = w0 +
∞∑
i=0

x(i)[(sI − Ã1)
−1A2]

i(sI − Ã1)
−1a.

Corollary 3.2. The mean waiting time EQ
W , in the queue of an arriving customer is

given by

(3.9)

EQ
W = [x(0)(I −R)−1 − x(0)

∞∑
k=0

RkP k+1 + x(0)(I −R)−2P̃ ](I − P + P̃ )−1(−Ã1)
−1e,

where

(3.10) P = (−Ã1)
−1A2, P̃ = ep,

and p is the invariant probability vector of P . That is,

(3.11) pP = p, pe = 1.

NOTE: In the computation of the mean waiting time EQ
W , we need to evalu-

ate the infinite sum
∑∞

k=0 RkP k+1. On noting that P is a stochastic matrix, we get

x(0)
∑∞

k=0 RkP k+1e = 1 − w0 and hence in truncating the infinite sum we find N∗

such that |x(0)
∑N∗

k=0 RkP k+1e− (1− w0)| < ε, where ε is a pre-determined quantity

such as 10−7.
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3.4. System performance measures. In this section we list a number of key sys-

tem performance measures to bring out the qualitative aspects of the model under

study. These are listed below along with their formula for computation. Towards this

end, we further partition the vectors x∗(i) and x(n) into smaller vectors as follows:

x∗(i) = ( x∗j,0,i2
(i) ), i = 0, . . . , c− 1, j = 0, . . . , i ;

x(n) = ( xc,0(n), . . . ,xc,c(n) ) ;

xc,m(n) = ( xc,m,0(n), . . . ,xc,m,K(n) ) ;

x(n) = ( xc,m,i1,i2(n) ) ;

Note that x∗(i),x(n),xc,m(n) and xc,m,k(n) are respectively of dimension (i+1)(K+1),

LC, L and (K + 1)− k, n ≥ 0, m = 0, . . . c, k = 0, . . . , K.

• The probability that all servers are idle :

Pidle = x∗(0)e.

• The probability that an interrupted customer is lost:

Ploss = θ
θ+µ

c−1∑
i=1

i∑
j=1

x∗j,0,K(i) + θ
θ+µ

∞∑
n=0

c∑
m=1

xc,m,0,K(n).

• Mean number of idle servers :

µIDS =
c−1∑
i=0

(c− i) x∗(i)e.

• Mean number of busy servers :

µBY S =
c−1∑
i=1

i x∗(i)e + c x(0)(I −R)−1e.

• Mean number of servers busy with primary queue customers :

µSBY P =
c−1∑
i=1

i∑
j=1

K∑
i2=0

j x∗j,0,i2
(i) +

∞∑
n=0

c∑
m=1

K∑
i1=0

K−i1∑
i2=0

m xc,m,i1,i2(n).

• Mean number of servers busy with BIC customers :

µSBY I =
c−1∑
i=1

i−1∑
j=0

K∑
i2=0

(i− j) x∗j,0,i2
(i) +

∞∑
n=0

c−1∑
m=0

K∑
i1=0

K−i1∑
i2=0

(c−m) xc,m,i1,i2(n).

• Mean number of customers in the primary queue:

µPQ = x(0)R(I −R)−2e.

• The mean number of interrupted customers in the BIP buffer:

µBIP =
c−1∑
i=0

i∑
j=0

K∑
i2=0

i2 x∗j,0,i2
(i) +

∞∑
n=0

c∑
m=0

K∑
i2=0

K−i2∑
i1=0

i2 xc,m,i1,i2(n).

• The mean number of interrupted customers in the BIC buffer:

µBIC =
∞∑

n=0

c∑
m=0

K∑
i1=0

K−i1∑
i2=0

i1 xc,m,i1,i2(n).

• The mean waiting time in the queue EQ
W , is as given in (3.9).

3.5. An Optimization Problem. In this section we propose an optimization prob-

lem and discuss it through illustrative examples (2 and 3 in section 4). To construct

an objective function we assume that customer induced interruptions produce revenue

to the system in contrast to server induced interruptions. Interrupted customers have

to pay more cost than those without interruption. Also idle servers, loss of customers
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and waiting spaces in primary queue and BIC involve expenditure to the system.

Thus we introduce per unit time revenue and cost as follows.

• revenue r1 per customer leaving the system with an uninterrupted service,

• revenue r2(> r1) per customer leaving the system on completion of service after

an interruption,

• holding cost c1 per unit time that a customer has to wait in the primary queue,

• holding cost c2 per unit time that a customer has to wait in the BIC buffer,

• cost c3 per unit time that each customer lost due to BIP buffer being full at

the time an interruption occurs.

• cost c4 per unit time for each idle servers,

The problem of interest is to find an optimum value the number of servers c to

be employed and optimum value for K (when all other parameters are fixed) that

maximizes the expected total profit ETP , as given in the following objective function.

ETP = r1µSBY P + r2µSBY I − c1µPQ − c2µBIC − c3(θ + µ)Ploss − c4µIDS.

4. NUMERICAL EXAMPLES

Now we present numerical results for implementing the qualitative nature of the

model under study. The correctness and the accuracy of the code are verified by a

number of accuracy checks. We consider a few representative examples.

Example 1: The purpose of this example is to see the impact of parameter θ for

the case when c = K = 2, 4, 6, 8 on some measures. In this example, by fixing

λ = 15, µ = 8 and η = 2, we look at the effect of varying θ on some selected

measures. These are displayed in Figure 2 and Figure 3. Looking at these figures, we

summarize the following observations.

• As θ increases, the traffic intensity ρ, appears to decrease for all values of c and

K. The rate of decrease is small for higher values of c and K. ρ is largest for

the case when c = K = 2. This is as expected since increasing θ will cause an

increase in the customers getting lost due to BIP being full for small values of

c and K and for higher values of c and K, that is with more servers and more

waiting space in BIP , help to clear the customers at a faster rate. When θ is

progressively decreased and comes closer and closer to zero,our model converges

to the classical queueing problem without interruption. Thus the ratio πA0e
πA2e

converges to the traffic intensity ρ of the classical situation.

• As is to be expected the measure Pidle is a non-decreasing function of θ when all

other parameters are fixed.

• From Figure 3a we see that Ploss increases with increase in the interruption rate

θ and the rate of increase is small for higher values of c and K, of course this is

as expected.
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• From Figure 3b it is seen that Ploss decrease with increase in the BIP size K for

every c fixed, this is as expected. Also for each fixed K, this measure increases

as c increases. This is as expected, since for a fixed K, as c increases, more

customers may get interrupted from different servers and as a consequence the

BIP gets filled (note that η = 2).

• We notice from Figure 4 that the measure EQ
W decreases with increase in θ. This

measure is largest for the case when c = K = 2 and for higher values of c and

K, it is quite negligible as to be expected.

Now we discuss two optimization problems associate with Section 3.5.

Example 2: In this example, we fix K = 5, λ = 20, µ = 11, η = 5, r1 = $300, r2 =

$400, c1 = $10, c2 = $20, c3 = $30, c4 = $5. The optimal number of servers, c, that

maximizes the expected total profit ETP , for various combinations of θ are displayed

in Figure 5a. It is seen from the numerical experiments that ETP increases first and

then decreases with increasing θ. The optimum c and the corresponding ETP are

given in Table 1.

Example 3: Here we fix c = 3, λ = 15, µ = 6, η = 2, r1 = $30, r2 = $40, c1 =
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Table 1: Optimum c and ETP for selected θ

θ 4 8 12 16 20 24

Optimum c 3 4 4 4 4 4

ETP 580.762 599.969 603.297 599.414 592.693 585.104
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$15, c2 = $20, c3 = $25, c4 = $15.The optimum value of K that maximizes the ex-

pected total profit ETP , for various combinations of θ are displayed in Figure 5b.

The optimum K and the corresponding ETP are given in Table 2.

Table 2: Optimum K and ETP for selected θ

θ 2 4 6 8 10

Optimum K 3 5 6 7 8

ETP 26.90732 29.35727 30.31224 30.78644 31.08506

Example 4: In this example we fix λ = 15, µ = 7.5, η = 2 and vary the parameters
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c, K and θ. In Table 3 and Table 4, we display the measures µIDS, µBY S, µSBY P ,

µSBY I , µPQ, µBIC and µBIP . A look at these tables reveal some notable observations.

• For each fixed pair c and K, µIDS increases and µBY S decreases as θ increases.

This is due to the fact that an increase in θ will cause more customers to be inter-

rupted from different servers leading to an increase in the number of customers

leaving the system without getting service.

• For each fixed pair c and K, µSBY I is a non-decreasing function of θ whereas

µSBY P is a non-increasing function of θ. This is again as expected.

• The measure µPQ is a non-increasing function of θ for all values of c and K and

is largest for the case when c = 2 and K = 5. This is to be expected since

increase in θ results in interrupted customers, for lower values of K, getting lost

and for higher values of K they get back to service through BIC buffer.

• Finally, looking at the measures µBIC and µBIP , we see some interesting trends.

Recall that at any given time the total number of customers in the BIC and

BIP buffers cannot exceed K. For all values of c and K, µBIC < µBIP when θ

increases. For higher interruption rate causes more interruption leading to more

interrupted customers filling BIP buffer (note that η = 2) and hence the rate of

interrupted customer getting back to service through BIC buffer will be smaller

leading to less customers (on the average) in BIC buffer. Also we notice that

for each values of c, µBIC increases initially and then decreases as θ increases

further, for higher value K. This is probably due to the fact that as θ reaches a

certain value, any further increase in θ will only result in the server being busy

with customers in BIC, for higher values of K.

We conclude this section by showing that the mean number of servers busy with

primary customers, µSBY P , is independent of K and c. We are able to prove this only

for the case when c = 1. Even though the result appear to be true in general, which

we verified through numerical computation as we can see in Table 3 and Table 4.

Theorem 4.1. The server is busy with primary customers is given by

PBSY P =
λ

θ + µ
.

Proof. The steady state equations given in (3.3) can be written as

(4.1) x∗(0)E0 + x(0)B1 = 0,

(4.2) x∗(0)C0 + x(0)A1 + x(1)A2 = 0,

and

(4.3) x(i− 1)A0 + x(i)A1 + x(i + 1)A2 = 0, i ≥ 1.
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Post-multiplying equations (4.1) through (4.3) by e of appropriate dimensions, we

get

(4.4) λx∗(0)e + η

K∑
r=0

rx∗0,0,r(0) = µx1,0,0(0)e + (µ + θ)x1,1,0(0)e,

and

(4.5) λ(x1,0(i)e + x1,1(i)e) = µx1,0,0(i + 1)e + (µ + θ)x1,1,0(i + 1)e, i ≥ 0.

Now post-multiplying equations (4.2) and (4.3) by (e1(2)⊗ e) and adding over i = 1

to ∞, we get

(4.6) λx∗(0)e = (µ + θ)
∞∑
i=0

x1,1(i)e− µ
∞∑
i=1

x1,0,0(i)e− (µ + θ)
∞∑
i=1

x1,1,0(i)e.

The stated result follows by immediately by adding (4.5) over i and (4.6).

5. CONCLUSION

In this paper we considered a multi-server queueing system with customer induced

interruption of service. All underlying distributions are assumed to be exponential

that are independent of each other. A finite buffer BIP , of capacity K, for self

interrupted customers to wait for completion of interruption and another buffer BIC,

of the same capacity, for those who have completed interruptions, are introduced.

The combined maximum customers held in BIP and BIC together is K for reasons

obvious from the formulation of the model.

The steady state analysis of the model is performed using Matrix Analytic Method.

The Lapalace-Stieltjes transform of the waiting time distribution in the primary queue

is computed. Several performance measures are derived. Numerical illustration of the

system behavior is also performed. Two optimization problems of interest that deter-

mine the optimal number of servers to be employed and the optimal capacity of the

buffer for interrupted customers, so as to maximize the Expected Total Profit when

all other parameters stay put are investigated.
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Table 3: Some selected measures

K θ µIDS µBY S µSBY P µSBY I µPQ µBIC µBIP

c = 2

1 2 0.26132 1.73868 1.57895 0.15973 5.25534 0.05008 0.59898

5 0.60368 1.39632 1.20000 0.19632 1.30872 0.03289 0.73620

20 1.23131 0.76869 0.54545 0.22323 0.14794 0.00682 0.83713

2 2 0.14376 1.85624 1.57895 0.27729 11.10428 0.10525 1.03985

5 0.43414 1.56586 1.20000 0.36586 2.39902 0.08353 1.37199

20 1.02358 0.97642 0.54545 0.43096 0.35211 0.02675 1.61612

3 2 0.06821 1.93179 1.57895 0.35284 25.85523 0.15279 1.32316

5 0.29584 1.70416 1.20000 0.50416 4.27361 0.14768 1.89060

20 0.83553 1.16447 0.54545 0.61902 0.67847 0.06551 2.32132

4 2 0.02722 1.97278 1.57895 0.39383 69.09705 0.18462 1.47687

5 0.18978 1.81022 1.20000 0.61022 7.62419 0.21759 2.28834

20 0.67038 1.32962 0.54545 0.78416 1.15030 0.12495 2.94061

5 2 0.00907 1.99093 1.57895 0.41199 215.16866 0.20109 1.54495

5 0.11346 1.88654 1.20000 0.68654 14.06905 0.28438 2.57451

20 0.52979 1.47021 0.54545 0.92476 1.79329 0.20361 3.46783

c = 4

2 2 2.13756 1.86244 1.57895 0.28349 0.11152 0.00737 1.06310

5 2.42401 1.57599 1.20000 0.37599 0.04801 0.00443 1.40996

20 3.01456 0.98544 0.54545 0.43998 0.00491 0.00056 1.64993

3 2 2.06197 1.93803 1.57895 0.35909 0.13390 0.01128 1.34657

5 2.27775 1.72225 1.20000 0.52225 0.07062 0.00877 1.95844

20 2.81373 1.18627 0.54545 0.64082 0.01154 0.00182 2.40307

4 2 2.02320 1.97680 1.57895 0.39786 0.14831 0.01406 1.49196

5 2.16591 1.83409 1.20000 0.63409 0.09452 0.01400 2.37785

20 2.63037 1.36963 0.54545 0.82417 0.02265 0.00442 3.09065

5 2 2.00722 1.99278 1.57895 0.41383 0.15558 0.01556 1.55186

5 2.08901 1.91099 1.20000 0.71099 0.11628 0.01918 2.66622

20 2.46836 1.53164 0.54545 0.98619 0.03871 0.00878 3.69821

6 2 2.00190 1.99810 1.57895 0.41915 0.15850 0.01620 1.57183

5 2.04244 1.95756 1.20000 0.75756 0.13314 0.02346 2.84086

20 2.33115 1.66885 0.54545 1.12340 0.05917 0.01494 4.21275
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Table 4: Continued

K θ µIDS µBY S µSBY P µSBY I µPQ µBIC µBIP

c = 6

2 2 4.13722 1.86278 1.57895 0.28383 0.00501 0.00040 1.06437

5 4.42355 1.57645 1.20000 0.37645 0.00161 0.00017 1.41169

20 5.01441 0.98559 0.54545 0.44014 0.00006 0.00001 1.65052

4 2 4.02301 1.97699 1.57895 0.39804 0.00721 0.00089 1.49264

5 4.16494 1.83506 1.20000 0.63506 0.00384 0.00069 2.38149

20 4.62924 1.37076 0.54545 0.82530 0.00045 0.00010 3.09488

5 2 4.00715 1.99285 1.57895 0.41391 0.00768 0.00102 1.55215

5 4.08809 1.91191 1.20000 0.71191 0.00502 0.00105 2.66965

20 4.46640 1.53360 0.54545 0.98815 0.00092 0.00024 3.70556

6 2 4.00187 1.99813 1.57895 0.41918 0.00788 0.00108 1.57193

5 4.04176 1.95824 1.20000 0.75824 0.00600 0.00137 2.84339

20 4.32836 1.67164 0.54545 1.12619 0.00165 0.00050 4.22321

8 2 4.00008 1.99992 1.57895 0.42097 0.00796 0.00111 1.57864

5 4.00652 1.99348 1.20000 0.79348 0.00708 0.00178 2.97556

20 4.13472 1.86528 0.54545 1.31982 0.00372 0.00135 4.94933

c = 8

4 2 6.02300 1.97700 1.57895 0.39805 0.00029 0.00004 1.49269

5 6.16489 1.83511 1.20000 0.63511 0.00012 0.00002 2.38167

20 6.62922 1.37078 0.54545 0.82533 0.00001 0.00000 3.09497

5 2 6.00714 1.99286 1.57895 0.41391 0.00031 0.00005 1.55217

5 6.08805 1.91195 1.20000 0.71195 0.00017 0.00004 2.66983

20 6.46635 1.53365 0.54545 0.98820 0.00002 0.00000 3.70575

7 2 6.00042 1.99958 1.57895 0.42063 0.00033 0.00005 1.57737

5 6.01749 1.98251 1.20000 0.78251 0.00026 0.00007 2.93440

20 6.21754 1.78246 0.54545 1.23700 0.00006 0.00002 4.63876

8 2 6.00008 1.99992 1.57895 0.42097 0.00033 0.00005 1.57864

5 6.00651 1.99349 1.20000 0.79349 0.00028 0.00008 2.97560

20 6.13460 1.86540 0.54545 1.31994 0.00010 0.00004 4.94979

10 2 6.00000 2.00000 1.57895 0.42105 0.00033 0.00005 1.57894

5 6.00065 1.99935 1.20000 0.79935 0.00030 0.00009 2.99757

20 6.04095 1.95905 0.54545 1.41360 0.00018 0.00008 5.30099
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