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ABSTRACT. Market liquidity risk refers to the degree to which large size transactions can be
carried out in a timely fashion with a minimal impact on prices. Emphasized by the G10 report in
1993 and the BIS report in 1997, it is viewed as one factor of destabilization in the financial markets,
as illustrated recently by the Asian crisis, the faillure of the hedge fund LTCM during the Russian
crisis. So in order to assess welfare implications of portfolio insurance strategies, it would be useful
to estimate the dynamic hedging activity in securities markets through a specific parsimonious and
realistic model.

In the paper, large traders hold sufficient liquid assets to meet liquidity needs of other traders,
and so bear the risk of their imbalanced derivatives portfolio. Their dynamic hedging strategies entail
non-linear positive feedback effects, and in turn buying and selling derivatives at prices shifted by
an amount that depends on their net holding. And therefore, the replicating equation turns to be a
fully nonlinear parabolic PDE, as proposed by Frey [10].

It turns out that such a nonlinear PDE equation may be numerically unstable when using
traditional finite-difference methods. Therefore we need some specific adequate numerical imple-
mentation in order to solve this equation with significant accuracy and flexibility, while keeping
stability. In this respect paper we devised and customized two different numerical methods: one is
a refined finite difference method; the other involves the probabilistic scheme proposed by Fahim
and al. [9]. In contrast, another method based on Lie algebra and developed by Bordag and al.
only provides a generic, albeit analytical, formulation of solutions, and not the specific one consistent
with our payoff. Still, that method offers a reference for our proposed methods in terms of numerical
accuracy.

Using such a framework, a Large Player is then in a position to take into account those positive

feedback effects in dynamic hedging. Lastly, we show how dynamic hedging may directly and

endogenously give rise to empirically observed bid-offer spreads.
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1. INTRODUCTION

Due to the finite market elasticity in the presence of large traders, the usual

continuous delta-hedging strategy may change the equilibrium price dynamics, as

was highlighted in the G10 report in 1993 and the B.I.S. report in 1997: ”One set of

market participants who rely on market liquidity are those firms engaged in dynamic

trading strategies, such as dynamic hedging or portfolio insurance. Previous research

has highlighted the possibility that such strategies could, at times, have adverse

repercussions for market functioning”. A very popular dynamic hedging program

at that time was portfolio insurance, a dynamic hedging strategy that, as already

mentioned, replicates a European put option. These strategies were used to insure

security portfolios against a fall in value under a predetermined floor. In theory, they

are supposed to protect a portfolio from large depreciations while providing unlimited

potential for appreciation. The rapid growth of such programs at that time also has

to be seen in the light of portfolio insurance firms aggressively marketing dynamic

strategies as a risk management device. These firms specialized in selling dynamic

strategies as an alleged substitute for real derivative securities. Lessons learned from

the crash teach that synthetic derivatives, in contrast to their real counterparts, may

fail to fulfill their promises in practice. One major reason is that typical hedge

programs do not incorporate the fact that they themselves, if implemented on a large

scale, can cause market conditions they are intended to protect against. This paradox

has been widely and increasingly observed since the crach of 1987, and is one factor

of destabilization in the financial markets, as illustrated recently by the Asian crisis,

the failure of the hedge fund LTCM during the Russian crisis.

It is worth pointing out that the main difference between the stock market crash

of 1987 and the crisis in 1998 is the manner in which dynamic hedging became market

influencing. In 1987 it was the simultaneous use of portfolio insurance programs by

many market participants. In contrast, the near collapse of LTCM in 1998 was

primarily caused by the high leverage that LTCM built up. Besides this difference,

the absolute amount of money being dynamically hedged is nonetheless comparable.

The severity of the LTCM case is illustrated by the fact that in 1998 assets of LTCM

alone totalled 125 billion USD compared to 100 billion USD subject to portfolio

insurance schemes in 1987 (the share of portfolio insurance induced selling in the

futures markets reached peaks of over 27% on October 19 and October 20, in the stock

market that proportion had reached 15.6% ). It is also noteworthy that LTCM’s off-

balance volume in derivatives contracts amounted to an incredible 1400 billion USD

in notional value.

Market illiquidity is generated by the inability of traders to buy or sell at no

cost any quantity according to the definition of Friend and Blume [12]. It refers to
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the degree at which transaction flows affect asset prices in a market, separately from

any change in the economic fundamentals that determine asset values. Thus market

liquidity risk is the price risk associated with the execution of large transactions,

manifested in a sharp movement of prices against a trader involved in a large purchase

or sale of a security. It may be referred to as the degree to which large size transactions

can be carried out in a timely fashion with minimal impact on prices.

In financial markets it is common that asset prices are pushed in a direction by

comparatively large trades. Liquidity or the lack of it causes a combination of trans-

action costs and a price slippage impact. Firstly, it has an impact on the transaction

price: whereas it may be possible to trade small quantities of an asset at a price

which is close to the published mid-price, the larger the trade size, the more levels

of market depth will have to be tapped and the further away the average transaction

price will deviate from the mid-price. Secondly, liquidity is directly related to the

degree of market slippage: large trades of one agent may remove entire price layers

and lead market makers to adjust their prices accordingly.

In order to analyze this market liquidity risk, we identify three groups of agents in

the market: value investors (or fundamentalists) who hold an asset when they think

it is undervalued and short it when it is overvalued; trend followers (or chartists) who

hold an asset when the price has been going up and sell it when it has been going

down; but in the typical case buy and sell orders do not match. A third category

consists of large traders who hold sufficient liquid assets to meet their joint liquidity

needs and provide immediacy by holding stocks and options in inventory to cover

imbalances in the buy and sell orders.

Consequently large traders, such as financial intermediaries (banks, pension and

mutual funds, insurance companies), behave de facto as market makers. As observed

by Kambhu [15], large dealers on OTC interest rates option market sell 50% more

options than they buy. This third group of traders lower the price when buying and

raise it when selling: orders are filled at a price that is shifted from the previous price,

by an amount that depends on the net order of traders, to avoid mishedging of their

portfolios of derivatives. Since markets only have limited liquidity, this will affect

the value of the option position through “feedback effects”, exaggerate market moves

and cause prices to rise above the levels supportable by fundamentals. Large traders

may thus move the value of the underlying in an undesired direction because the

trade-slippage feeds back into their mark-to-market contract values: buying drives

the price up, and selling drives it down.

Therefore we wish to build a model dealing with these specific dynamic hedging

problems in a parsimonious and realistic way, giving rise to consistent bid and offer

market prices. To account for the potential market impact of large transactions
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on hedging costs, we would also like to devise specific numerical hedging strategies

complying with usual large traders behaviors.

The financial market is here characterized by the interaction of one “large trader”

whose action affects prices and many price taking “small traders”. The usual funda-

mental characterization of absence of arbitrage as developed in Delbaen and Schacher-

mayer [7] cannot apply because of the impact on the underlying asset price dynamics.

Jarrow [14] finds further restrictive conditions required to exclude “Market Manipu-

lation Strategies”, i.e. arbitrage opportunities taking the price impact into account.

Jarrow [14] considers a symmetric information structure between players: instead we

emphasize here the fact that this equilibrium price only holds with respect to the

large trader’s situation, given the market impact function and the structure of her

option portfolio. Out of this no arbitrage argument, we introduce the positive feed-

back effects of a continuous dynamic delta hedging strategy by a large trader on the

unit option price, giving rise to a nonlinear Black&Scholes PDE.

We describe the financial mechanism behind: whereas among small traders end-

user needs in derivatives are roughly balanced across buyers and sellers, large dealers

are empirically net writers (sellers) of options, so their exposure to gamma risk is

significant, and they have to replicate synthetically the payoff of options by a dynamic

hedging self-financing strategy in underlying asset, which bears upper pressures on

it, inducing inventory holding costs. And the greater the net demand from the small

traders, the higher the market clearing option selling price. The cumulative cost of

these “buy high, sell low” hedge adjustments, which equals the value of the option,

turns out to be respectively higher than the price-taker B&S price.

Based on the same principle in the context of a positive net options portfolio, we

are able to give rise to a lower buying price. As a result we exhibit a parsimonious

endogenous bid ask, through an optimal response from the large trader’s dynamic

hedging to cover her inventory holding costs and risks, which makes the comparison

between the large trader and a market maker relevant. The bid-offer spread is an

increasing function of two variables: the size of the large trader’s net long or short

position in options (the inventory), and the underlying asset price volatility depending

on the residual net gamma of her portfolio.We insist here on the endogenous way

of obtaining the bid offer spread, in contrast to the usual exogeneous transaction

costs methods specifications: such costs here stem directly and endogenously from

inventory holding costs. To test the accuracy of our approach, we first check that

such an endogenous bid ask is consistent with every empirical statistical feature so

far observed and we secondly calibrate it to the empirical market bid ask of a specific

option.

For the resolution of nonlinear PDEs, we tried several method, including Lie

algebra, finite difference numerical method, probabilistic numerical scheme etc. The
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Lie algebra method provides closed-formula solutions, however, these solutions may

not be compatible with the payoff of our options. By a benchmark from Lie algebra,

we showed that the two numerical methods has enough stability and accuracy for

such equations. In case of lower dimension, finite difference method is more efficient

than the probabilistic scheme.

Thus we have developed an approach generating illiquidity as an endogenous

trading cost from the inability of traders to share a common risk perfectly.

The rest of this paper is as follows. In section 2 we introduce the framework of our

analysis and the corresponding pricing and hedging of derivatives, taking into account

hedging feedback effects. In case of the nonlinear feedback, the pricing equation turns

to be nonlinear parabolic PDE. In section 3, we talk about the numerical resolution of

nonlinear PDEs. In Section 4 we introduce an endogenous bid-offer spread stemming

from those inventory holding costs, consistent with market data and implied volatility

smiles. Section 5 contains concluding comments.

2. THE MARKET STRUCTURE SETTING

2.1. Framework and assumptions required for pricing and hedging in the

presence of a large trader. The financial market is characterized by the interac-

tion of one “large trader” whose action affects prices and many price taking “small

traders”. The framework of our analysis is based on a continuous-time version of

the models proposed by Jarrow [14], further developed by Frey [10], but no previous

model involves all the required assumptions to give rise to sensible strategies by the

large trader. Moreover we emphasize that our framework holds only with respect to

the large trader’s information who is the only one to know the number of hedged op-

tions, which highlights the information asymmetry between the large trader and the

small traders on the market. For simplicity of the argument, we assume the risk-free

interest rate is zero.

A1: There are no transaction costs and no short sale restrictions.

A2: Equilibrium price and the reaction function

The observed underlying asset price on the market S̃t can be expressed as a

function ψ called “reaction function” S̃ (t, St, αt, γt) = ψ (t, St, αt, γt) where St is the

underlying price in the absence of the large trader. α is the large trader’s position (cadl

àg, whose jumps are bounded below, and such that α+
t = lims→t αs is a continuous

semimartingale) in the underlying and γ the number of options held by the large

trader. ψ is assumed to be smooth enough on [0, T ]×R+ × I0 × I1 where I0 and I1

are open intervals.

A3: The large trader has a procyclical market power: ∂
∂α
ψ > 0
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A4: The underlying asset price process is independent of the large trader’s past

holdings. If αt = (αt, αt−1, ..., α0) represents the history vector for α, S̃ (t, St, αt , γt) =

ψ (t, St, αt, γt)

A5: Underlying asset price dynamics dS̃t = σtS̃tdWt + ρtλ
(
S̃t

)
S̃tdαt. λt (S) is a

continuous function called ’market liquidity profile’, used to retrieve a particular shape

of the implied volatility smile. ρt represents the intensity of the liquidity impact (a

possible choice is the ratio of change in the price of the underlying to notional traded,

which is observable given an order book). So 1

ρλt(S̃t)S̃t
represents the market depth

at time t, the order flow required to move prices by one unit.

In our context, the fundamental characterization of absence of arbitrage as in

Delbaen and Schachermayer [7] cannot be applied because of the direct feedback

effect in the underlying asset price dynamics. An alternative “no arbitrage condition”,

called “No Market Manipulation Strategy” (MMS) by Jarrow [14] is introduced and

based on real wealth (the value as if the holdings were liquidated).

A6: There exists an equivalent martingale measure for the underlying asset in

the absence of the large trader

A7: The market operates in the absence of corners, that is the combined effective

holding of the underlying and the derivative must not exceed the net supply of the

underlying asset.

A8: Synchronous Markets Condition ψ (t, αt + γt · ξt, 0) = ψ (t, αt, γt) where ξt is

any admissible self-financing replicating strategy (’delta’) in underlying assets. This

amounts to saying that prices adjust instantaneously across underlying and derivative

markets (i.e. price changes in one should be immediately reflected in the other). The

large trader may use information mismatches between them to post riskless profits.

Finally we introduce the notion of Market Manipulation Strategies with respect

to the information of the large trader (the structure of her portfolio), based on real

wealth:

V0 = 0

VT ≥ 0 a.s.

P [VT > V0] > 0

Proposition 2.1. Under conditions A1–A8, and given the number of options γt held

by the large trader at time t, and assuming c ≤ αt + ξtγt where c ∈ [−∞, 1] there is

no MMS in real wealth.

Proof. The proof is done in the discrete case then extended to the continuous frame-

work through convergence results. We use the self financing property then the defi-

nition of real wealth in order to show that the No MMS condition is enforced. More

details can be found in Propositions 3.10 and 3.23 of [1].
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2.2. Pricing and dynamic hedging with respect to the large trader’s infor-

mation.

2.2.1. The notion of positive feedback effects from the large trader’s hedging portfolio

strategy on the option price. In order to maintain an option portfolio’s exposure to

price risk, the large trader must adjust the hedge position after a price shock to allow

for the change in the option’s price sensitivity. More precisely, a call option’s value

increases by an amount smaller than the increase in the value of the underlying asset

because there is always some probability that the price of the underlying asset will

reverse direction by the time the contract matures, and even fall below the strike

price at expiration, rendering the option worthless. But as the underlying asset’s

price rises further, however, this probability of a worthless outcome becomes smaller,

and the option’s value becomes more sensitive to changes in the underlying asset’s

price. To compensate for this increase in the price sensitivity of a call option, a hedge

position in the underlying asset must be made larger as well, affecting in return its

price process. This mechanism generates the potential for positive feedback in price

dynamics because the hedge adjustment is to buy (sell) the underlying asset after

its price rises (falls), as the transactions could introduce further upward (downward)

pressure on prices after an initial upward (downward) shock to asset prices.

2.2.2. The underlying asset dynamics in the presence of the large trader. The large

trader’s portfolio strategy, denoted φ, is assumed to be C1,2 ([0, T ]×R+) and

ρS̃φS

(
t, S̃

)
< 1 ∀

(
t, S̃

)
∈ [0, T ]×R+.

Proposition 2.2. The portfolio strategy in the underlying assets is denoted

αt = φ
(
t, S̃t

)
(2.1)

dS̃t = v
(
t, S̃t

)
S̃tdWt + b

(
t, S̃t

)
Stdt

with “adjusted” trend and “feedback” volatility coefficients:

v
(
t, S̃t

)
=

σt

1− ρλ
(
S̃t

)
S̃tφS (t, S)

b
(
t, S̃t

)
=

ρλ
(
S̃t

)
1− λρS̃tφS̃

(
t, S̃

) ×

φt

(
t, S̃

)
+

σ2
t S̃

2
t φSS

(
t, S̃

)
2
(
1− ρλ

(
S̃t

)
S̃tφS

(
t, S̃

))2

(2.2)

Proof. According to Frey [10], Ito’s formula and Assumption A5 in [10] imply that

the stockholdings α are a semimartingale. Again by Ito’s formula we have

(2.3) dαt = φS(t, St)dSt + (φt(s, Ss) +
1

2
φSS(t, St)v

2(t, St)(Ss)
2)ds
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Assumption A4 of [10] together with (2.3) now yields the following dynamics for the

equilibrium stock price process S

(2.4) dSt = σStdWt + ρStφS(t, St)dSt + ρSt(φt(t, St)dt+
1

2
φSS(t, St)d〈S〉t)

or equivalently

(2.5) (1− ρStφS(t, St))dSt = σStdWt + ρSt(φt(t, St)dt+
1

2
φSS(t, St)d〈S〉t)

Under Assumption A5 in [10] the expression (1 − ρStφS(t, St)) is strictly positive.

Integrating 1/(1− ρStφS(t, St)) over both sides of (2.5) therefore yields the following

explicit form for the equilibrium stock price dynamics

(2.6)

dSt =
σ

1− ρStφS(t, St)
StdWt +

ρSt

1− ρStφS(t, St)
(φt(t, St) +

σ2S2
t

(1− ρStφS(t, St))2
)dt

which proves the Proposition.

Once again we emphasize that the large trader is the only one to be aware of the

specific feedback effect intensity on the option price.

2.2.3. Perfect replication of a European call option by the large trader. We consider

a usual continuous delta-hedging strategy implemented by the large trader. For sim-

plicity of notation, we assume the risk-free interest rate is zero.

Proposition 2.3. Under a zero risk-free interest rate (for simplicity of notation),

the replicating cost of a γ- option portfolio is the solution of this nonlinear PDE

(2.7)

{
ut (t, S, γ) + 1

2
1

(1+ρλ(S)SuSS(t,S,γ))2
σ2

tS
2
t uSS (t, S, γ) = 0

u (T, S, γ) = nh (S)

where α
(
t, S̃, γ

)
= φ

(
t, S̃, γ

)
= −uS

(
t, S̃, γ

)
is the replication of the option portfo-

lio continuous delta hedging strategy and Vt = u
(
t, S̃, γ

)
is the replicating value of a

γEuropean call portfolio held by the large trader whose final payoff is h (ST ) at time

T per option unit.

Proof. The existence and unicity of the solution of the above nonlinear PDE with its

terminal value was proved by Frey [11] through a quasilinear PDE,

0 =
∂

∂t
φ(t, f) +

1

2
η2f 2(1 + 2ρ

ψα

ψf

∂φ

∂f
)
∂2φ

∂f 2

+
η2

ψf

∂φ

∂f
[fψf − ψt +

f 2

2
ψff + ρ

∂φ

∂f
(f 2ψαf + fψα) + (ρ

∂φ

∂f
)2f

2

2
ψαα](2.8)

with the terminal condition

(2.9) φ(T, f) = h′(Xφ(T, f))∀f > 0
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According to [11], since the product φ(t, f)∂Xφ(t,f)
∂f

converges locally uniformly to

φ(T, f)∂Xφ(T,f)
∂f

as t→ T we get

(2.10) φ(T, f)
∂Xφ(T, f)

∂f
= lim

t→T
φ(t, f)

∂Xφ(t, f)

∂f
= lim

t→T

∂H(t, f)

∂f
=
∂H(T, f)

∂f

On the other hand we have ∂
∂f
h(Xφ(T, f)) = h′(Xφ(T, f)) ∂

∂f
Xφ(T, f) and that the

terminal condition yields the desired equality of the derivatives.

Solving such a non linear PDE requires distinguishing long and short positions

the sign of the payoff depending on whether the large trader buys or sells options:

for a short call we have

u (T, S, γ) = −γ (S −K)+

whereas for a long call

u (T, S, γ) = γ (S −K)+

so long and short positions have different values (see later).

Proposition 2.4. Given the number of options γt held by the large trader at time t,

and under the assumptions A1–A9, we consider an admissible self-financing hedging

portfolio strategy ξ = (α, β, γ) which replicates the derivative, the value of which is de-

noted by V ξ. Then the MMS condition (with respect to the large trader’s information)

implies

(2.11) V ξ
t = ct

Proof. We consider a variation in hedging positions and work out the terminal wealth,

using the Synchronous Markets Condition. Finally the MMS condition implies the

result.

The feedback effect of the large trader’s dynamic hedging portfolio strategy on

the unit call option price. Traded options exist only for well established markets, and

only for relatively short maturities. For very long dated options, dynamic replication

is the only avenue open to traders if they wish to hedge an implicit short put position.

Generally speaking, an option can be hedged by taking an offsetting position in the

underlying asset, and the required size of this position varies with the price of the

underlying asset. This variability of the hedge position results from the varying

sensitivity of the option value to the price of the underlying asset as its price changes.

Simulations illustrates the fact that when the large trader sells European call option,

the European call unit price rises, see Fig 1.

Therefore an apparent paradox arises empirically observed on the markets as

regards large traders’ transactions: selling a large amount of calls causes the price to

rise. In fact when a large amount of options is engaged in such trading strategies,
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Figure 1. ρ = 0.05, λ = 1

the market dynamics may be affected by the trading strategy itself, and hence lead

to potentially destabilising price paths.

In order to explain financially such a mechanism, let’s analyze the following steps.

Actually, as the large trader sells European calls, she has to buy a large amount of

the underlying asset in order to hedge synthetically, which makes the underlying asset

price rise, thus the short delta decreases, implying a short gamma, so the ’feedback’

volatility (
σ2

t

(1+ρλ(S)SuSS(t,S,γ))2
) rises. Consequently the option unit price turns out to

be higher than the usual price-taker B&S price.

Therefore illiquidity appears as an endogenous trading cost compensating for the

sharing of risks measured here by the spot market volatility. Actually, buying with

rising prices, the large trader’s demand is procyclic. Therefore, the apparent paradox

is just a consequence of the positive feedback effect induced by the dynamic hedging

of the large trader through its Portfolio Insurance Strategy, designed to protect the

capital during a market downturn by replicating option positions. In fact, this posi-

tive feedback effect stems from the absence of sufficient natural counterparts to meet

the demand for puts and calls, where large dealers can meet the demand by selling

puts and calls. In doing so, they become short the option; so they can neutralize

their net risk exposure by synthetically replicating long option positions, which re-

quires selling as the market falls and buying as it rises, to ensure the hedge position

is sufficient to cover the option rising exposure, which introduces transactions large

enough to amplify the initial price shock. It generates precisely the kind of vicious

feedback loop that destabilizes markets. Best estimates then suggested that around
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$100 billion in fundswere following formal portfolio insurance programs, representing

around 3% of the pre-cash market value. However, this is almost certainly an un-

derestimate of total selling pressure arising from informal hedging techniques such as

stop-loss orders.

Some observers cite the stock market crash of 1987 - which occurred in the ab-

sence of any significant change in economic fundamentals - as an example of positive

feedback dynamics: the sharp fall was intensified by portfolio insurance strategies

that prescribe the sale (purchase) of stocks when prices fall (rise). These mutually

reinforcing interactions are characteristic of markets where traders have short de-

cision horizons, or where they operate under external constraints on their decision

(due to internally imposed trading limits or under risk management system which cir-

cumscribes their actions), which may require positions to be sold for cash when net

asset values are low or when a margin call dictates liquidation of trading positions.

The Brady Commission’s report (1988) attributed the magnitude and the swiftness

of the price decline in the 1987 stock market crash to practices such as portfolio in-

surance and dynamic hedging techniques. The sales dictated by dynamic hedging

model amounted to $12 billion, but the actual sales had been around $4 billion. More

recently, the dynamic hedging associated with OTC puts has been blamed for several

bouts of market instability, notably in 1989, 1991,1997, and 1998. Furthermore, pro-

gram trading, most commonly used by large traders, currently constitutes about 10

percent of a typical day’s volume on the NYSE.

Figure 2. ρ = 0.05, λ = 1
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Symmetrically, as the large trader buys European calls, she has to sell a large

quantity of the underlying asset in order to hedge, which makes the underlying price

and its volatility fall, as shown by the PDE (see above), so the option unit price

(because the vega of a call is positive) becomes smaller than the usual price-taker

B&S price.

The unit option price depends on the total amount of options replicated by the

large trader. For the simplicity of simulations, we take ρλ (S) = φ
S
where φ, assumed to

be constant, represents the volume effect on the unit underlying price. We illustrate

here the non homogeneity of prices: the larger the absolute payoff, the wider the

relative bid-offer spreads. We show through simulations that the feedback effect of

the large trader’s activity causes the hedge cost to be non-linear in the number of

replicated options: the price of the large trader’s replicating portfolio, and in turn

the equilibrium option price is not proportional to the number of options held by

the large trader. In fact, the option unit price increases with the number of options

held by the large trader (see an analogous result in Carr, Geman, Madan [4]). More

precisely, as illustrated below, the average replicating price is nearly a quasi-linear

function of the number of options held, wich implies that the replicating unit price is

roughly a quadratic function of the number of options held by the large trader.

Figure 3. Unit 10-call versus 1-call price

As a result, the number of options held by the large trader has an impact on the

unit price of the call. But, except for the large trader, no other market participant

is aware of this information. Therefore she can use this information asymmetry in

order to manipulate prices.
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3. RESOLUTION OF NONLINEAR PARABOLIC EQUATION

Frey’s model gives a nonlinear parabolic equation (2.7). For the resolution of

these nonlinear equations, we tried different methods: Lie algebra, finite difference

and the probabilistic scheme of Fahim et al [9].

The method of Lie uses symmetry reduction technique to translate a PDE into

some ODEs. However, the solution may not fit our terminal and boundary conditions.

This method is not directly useful for our problems. However it gives a reference for

other numerical methods.

As for the resolution of linear parabolic equations, the finite difference method

discretizes the time and space and approximates the derivatives. Sevcovic [19] pro-

poses an iterative algorithm for the nonlinear equation, which is originally for the

evaluation of the American style options in nonlinear model. We use this transfor-

mation method to our problems.

We also test the probabilistic scheme proposed in Fahim and al. [9], which has a

strong lien with second order BSDE. The methods needs Monte-Carlo simulations to

estimate the conditional expectations in scheme.

3.1. Lie algebra. The general theory of the Lie algebra’s applications to the dif-

ferential equations can be found in Olver [18]. With this method, Bordag [2] gives

invariant solutions to the following Frey equation:

(3.1)
∂u

∂t
+

1

2

σ2

(1− ρSuSS)2
S2 ∂

2u

∂S2
= 0

Theorem 3.1. The invariant solution of (2.7) is given by

(3.2)


u(t, S) = dS

u(t, S) = 3
ρ
S

(
logS − σ2 t

8

)
u(t, S) = −1

ρ
S

(
logS − σ2 t

8

)
where d is an arbitrary constant.

Proof. This is a direct result from Bordag [2] Theorem 4.3.

These solutions cannot be used directly to our hedging problems, because each

option payoff has a specific terminal condition. However, this result is still useful for

us, since it provides the exact solutions which could be benchmark for other numerical

methods.

3.2. Finite difference. Finite difference method for nonlinear parabolic equation

usually uses an explicit approximation for the nonlinear parts, then uses the explicit,

implicit scheme or θ-scheme for the linear parts.
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Sevcovic [19] proposes a transformation method, which is originally for pricing

the American style options in nonlinear model. Here, we implement his method for

the European style options.

Given a nonlinear pricing equation

(3.3)
∂u

∂t
+ (r − q)S

∂u

∂S
+

1

2
σ2(t, S, uS, uSS)S2 ∂

2u

∂S2
− ru = 0,

with transformations

S = S0e
−x, τ = T − t and Π(τ, x) = u(t, S)− S

∂u

∂S
(t, S),

we get
∂Π

∂x
= S2 ∂

2u

∂S2
,

∂2Π

∂x2
= −2S2 ∂

2u

∂S2
− S3 ∂

3u

∂S3

and
∂Π

∂τ
= −∂u

∂t
+ S

∂2u

∂S∂t
.

Plugging them into (3.3), it gives

∂Π

∂τ
+ (r − q − σ2

2
)
∂Π

∂x
− 1

2

∂

∂x

(
σ2∂Π

∂x

)
+ rΠ

=

(
S
∂

∂S
− 1

) (
∂u

∂t
+ (r − q)S

∂u

∂S
+

1

2
σ2(t, S, uS, uSS)S2 ∂

2u

∂S2
− ru

)
= 0

On the other side, given the function Π, there is expression of u in terms of Π.

Since

Π(τ, x) = u(t, S)− S
∂u

∂S
(t, S)

we have
∂

∂S

(
−u(t, S)

S

)
=

Π(τ, x)

S2

then
u(t, S)

S
− u(t, SMax)

SMax
=

∫ SMax

S

Π(τ, x̃)

S̃2
dS̃ =

∫ x

XMin

Π(τ, x̃)

S0

ex̃dx̃

Finally, we propose a finite difference numerical scheme on Π:

1〉 For the convective part, we use the exact scheme:

Π(tn+ 1
2
, xi) = Π (tn, xi − (r − q)∆t)

2〉 For the diffusion part, we use an implicit scheme:

Πn+1
i − Π

n+ 1
2

i

∆t
− σ̃2

i

2

Πn+1
i+1 − Πn+1

i−1

2∆x
+ rΠn+1

i

− 1

2

(
σ̃2

i

Πn+1
i+1 − Πn+1

i

∆x2
− σ̃2

i−1

Πn+1
i − Πn+1

i−1

∆x2

)
= 0
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Finally, to test the stability and convergence of the numerical scheme, we compare

it to the exact solution from (3.2). As shown in Figure 4, it converges very well to

theoretical solutions.

Figure 4. Comparaison of the theoretical solution and numerical so-

lution for Frey’s equation.

3.3. BSDE and non-linear parabolic equations. With its relation to nonlinear

parabolic PDEs, the BSDE (Forward Backward Stochastic Differential Equation) can

be viewed as an extension of Feynman-Kac formula. As a result, we can resolve a

nonlinear parabolic equation by the resolution of BSDE.

Let (Ω,F , (F)0≤t≤T ,P) be a probability space generated by a d-dimensional stan-

dard Brownian motion W . A FBSDE (Forward-Backward Stochastic Differential

Equation) is the equations:

(3.4) dXt = b(t,Xt)dt+ σ(t,Xt)dWt with X0 = x

(3.5) −dYt = f(t,Xt, Yt, Zt)dt− ZtdWt with YT = Φ(XT )

Given Lipschitz conditions on the coefficients, we have the existence and unique-

ness of the solution (X,Y,Z) in a Hilbert space H2
T (Rd) × H2

T (Rd) × H2
T (Rn×d). (For

details, see [8] or [17] for example.)
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Suppose that the semilinear parabolic differential equation

(3.6) ∂tu(t, s) + b(t, x)Dxu+
1

2
σσT ·D2

xxu(t, s) + f(t, s, u, σ(t, s) ∗ ∂su) = 0

with terminal condition u(T, s) = Φ(s) have a smooth solution in C1,2([0, T ]×R), and

|u(t, s)|+ |σ(t, s) ∗ ∂su(t, s)| ≤ C(1 + |s|),

then (Ys, Zs) = (u(s,Xs), ∂xu(s,Xs)σ(s,Xs)) solves the FBSDE (3.4, 3.5).

For fully nonlinear parabolic equations, Cheridito et al. [6] and later Soner et al.

[20] developed a second-order BSDE to establish a relation with it.

Analytical solutions of nonlinear PDEs or BSDEs are not usually available, we

need numerical resolutions. With discretization on time inteval and the approxima-

tions of derivatives by conditional expectations, we get a numerical scheme for BSDE.

Concretely, we discretize firstly the interval [0, T ] into N parts, then with terminal

condition Y N
tN

= Φ(XN
tN

), we solve the dynamic programming equation:

Y N
tk

= Etk(Y
N
tk+1

) + ∆t · Etkf(tk, X
N
tk
, Y N

tk+1
, ZN

tk
)

∆t · ZN
tk

= Etk(Y
N
tk+1

∆Wk)

where Etk(·) = E(·|Ftk) denotes the conditional expectation.

Fahim et al. [9] proposed a similar numerical scheme for fully nonlinear parabolic

equation. Consider the nonlinear equation:

(3.7) −Lv − F (·, v,Dv,D2v) = 0,

where

Lv := ∂tv + µ ·Dv +
1

2
σσT ·D2v is the linear part,

and F is the nonlinear part. For X̂ t,x
h = x + µ(t, x)∆t + σ(t, x)∆W , they propose

scheme

vh(t, x) = E(vh(t+ h, X̂ t,x
h )) + F (t, x,Dhv),

where

Dhv = E[v(X̂ t,x
h )Hh

i ], i = 0, 1, 2

with

H0 = 1, H1 = (σT )−1Wh

h
, H2 = (σT )−1WhW

T
h − h1d

h2
σ−1.

For the calculus of this conditional expectation, Bouchard and Touzi [3] pro-

posed a Malliavin calculus techniques, while Gobet et al. [13] proposed a regression

technique. The idea of regression technique is to mimic the formula

E(G|Ft) = arg min
k∈Ft

E
(
(G− k)2

)
with simulations.



DYNAMIC HEDGING BY A LARGE PLAYER 207

4. DYNAMIC HEDGING STRATEGIES BY A LARGE PLAYER

4.1. The inventory holding cost component of the option bid-offer spread.

Because the large player will buy low and sell high through the feedback effect from her

dynamic hedging strategy, a bid-offer spread for derivatives endogenously naturally

arises, serving as a revenue source as well as a risk insurance buffer. Furthermore

large imbalances through higher hedging ratios lead to price movements and to a

higher volatility, which increases the ask-price and decreases the bid-price, so widen

the bid-offer spread.

Figure 5. Unit 10-call versus 1-call price

Therefore the large player accepts orders to buy and sell an option at the bid

and ask prices which are adjusted to cover her average costs. A number of theoretical

models specify the cost component of the large player’s bid/ask spread. Stoll [21]

and [22] posit that large player’s costs fall into three categories: order-processing

costs, inventory-holding costs, and adverse selection costs. The first category costs

are largely fixed, at least in the short run, and their contribution decreases with the

trading volume, so we will neglect them in our setting. The second category, inventory

holding costs, are the costs that a large player incurs while carrying positions acquired

in supplying investors with immediacy of exchange (i.e. liquidity). If the net position

in derivatives is non zero, market makers can hedge the value of their options inventory

using underlying assets. In fact, in the absence of sufficient natural counterparts to

meet the demand for puts and calls, large dealers meet the demand by selling puts

and calls, which increases the size of their net inventory. They can neutralize their

risk exposure by synthetically replicating option positions. These costs of hedging
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the inventory need to be covered by the revenues from market making, i.e. by the

bid-offer spread, and they will depend both on the size of the inventory and on the

price-change in the derivative (the higher the price-change risk, the higher the bid-

offer spread). Limiting inventory cost is all the more a key issue as the large trader

is short gamma, characterizing a procycling behavior (buy high, sell low), especially

when the underlying asset price evolves inside a corridor.

Furthermore, as shown above, this replicating cost grows more than linearly with

respect to the number of replicated options, the necessary compensation of bearing

price risk hence under an increasing constraint on the large player as her inventory is

less and less balanced. This explains the widening bid-offer spread as the number of

replicated options increases. This is consistent with Vijh [23] who reports that large

option trades cause a widening of the bid-offer spread in the option market.

In summary the bid-offer spread is an increasing function of two variables: the size

of the large trader’s net long or short position in options, and market price volatility.

Kim, Ko and Noh [16] show that the holding of undesired risky positions account for

a very large proportion of the bid-offer spread, so that transaction costs arise from

the trader’s inability to share risk under no constraints with the rest of the market.

The other essential component of the bid-offer spread is linked to the third cate-

gory of large player costs, the adverse selection costs, which are presented later.

4.2. A parsimonious endogenous bid-offer spread consistent with market

data. As observed before, the hedging strategy of a large trader naturally induces the

empirically observed spread between bid and offer prices. As a result, we account for

bid-offer spreads endogenously, stemming directly from the limited market depth and

the hedging behavior of large players. In order to test the accuracy of our approach,

we look at several key issues such as pricing accuracy, volatility smile and bid-offer

spread statistical features.

First we show that such a model improves pricing. We use IBM call options traded

on the CBOE during 1995, assuming that all option writers use delta hedging, to

estimate the parameter (λρ) of the large trader, whose stock holding is the aggregate

hedging position of all option writers, i.e. the number of written options.. The risk

free rate is assumed to be 3%, approximating the rate on the month treasury bill

during 1995.

E [λρ] = 0.30

Second, such a complete market model is likely to give rise to a volatility smile due

to the random “feedback” volatility. Financially speaking such an anomaly has often

been linked to the net buying pressure of calls and puts used for hedging purpose, in

agreement with liquidity features: in a downward trending market liquidity is usually
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with far more large moves.Thus the large player’s hedging activity may play quite a

significant role. Choosing ρλ (S) = φ
S

gives rise to a skew

Figure 6. ss

In order to get various and flexible “smirk” profiles we specify the function λ (S)

by taking a decreasing function, with a minimum around the forward price S0

(4.1) λ (S) = 1 + (S − S0)
2 (
a11{S≤S0} + a21{S≥S0}

)
Based on S&P 500 index call options from July to December 1990, we estimate

ρ, a1, a2 through calibration on options prices, and obtain

ρ = 0.017(4.2)

a1 = 0.236

a2 = 0.007

From this we get the implied volatility smile through the Raphson-New on algo-

rithm

Whereas most models obtain the smile by exogenously altering the volatility

structure of the underlying price process, such as stochastic volatility models, here no

assumptions are needed on the underlying price volatility; the smile pattern rather

occurs endogenously as a consequence of the market structure.

Third, our model is consistent with empirically observed statistical features of

bid-offer spreads (see for instance [5]):

• the bid price is strictly higher than the ask price, and the spread between B&S

and bid prices is higher than the spread between Black & Scholes and ask prices:
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Figure 7. ss

the option value is closer to the bid than to the ask quote. This illustrates the

fact that the market impacts of buying and selling are different.

• the higher the underlying asset price, the greater the investment in inventory,

the carrying cost, and in turn the spread. Moreover the larger the liquidity

parameter ρ, the lower the market liquidity of the underlying, and the wider the

bid-offer spreads on the derivative.

• The option value is closer to the bid than ask quote and the degree of the

asymmetry increases as the moneyness of the option decreases or increases:

Figure 8. ss

• The ask quote changes more than the bid quote, the same for their standard

deviations and the standard deviations of their changes

• The ratios of these two quotes and of their changes are also in accordance with

empirical facts: the slope coefficients decline as the moneyness (S/K for calls)

of the options declines
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Figure 9. ss

• Both quotes standard deviations decrease with respect to the quantity. K/S in

the case of a call whereas it increases for puts. So the more out-the-money an

option, the less variable its value, thus implying a volatility smile.

Figure 10. ss

5. CONCLUSION

In this paper illiquidity has been introduced in the optimization of the large

trader as an inability to trade and share risk without changing the market price.

Actually transaction costs and market slippage aspects of market liquidity risks

have been isolated through a parsimonious complete market model involving feedback
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hedging effects. A nonlinear feedback leads to a nonlinear pricing equation. We tested

a finite difference scheme as well as a probabilistic scheme for the numerical resolution

of such nonlinear equation.

Thus we integrated this feedback effect in dynamic hedging into a market frame-

work and extended it to give rise to an endogenously and empirically consistent

bid-offer spread. Specifically, this model accounts for essential features of illiquidity:

1) Illiquidity trading costs are directly associated with the volatility of the spot price

through the feedback effects, something that had to be assumed previously. 2) Illiq-

uidity is also associated with the net volume generated by hedging pressures, a result

common to the microstructure literature.
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