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ABSTRACT. This paper is devoted to a new approach based on data mining to evaluate the

efficiency of numerical asymptotic models. We first propose an asymptotic paraxial approximations

to model ultrarelativistic particles. Then, we use data mining methods that directly deal with

numerical results of simulations, to understand what each order of the asymptotic expansion brings

to the simulation results. This new approach offers the possibility to understand, on the numerical

results themselves, the efficiency of an asymptotic model, or to compare different asymptotic models,

one to each other.

1. Introduction

The aim of this paper is to present a new approach based on data mining tech-

niques to evaluate the efficiency of numerical asymptotic models. Indeed, data mining

techniques could help scientific computing, as they have proved to be efficient in other

contexts, like in biology [8], medicine [11, 12], marketing [10], advertising and com-

munications [6, 7].

We focus our presentation on asymptotic paraxial approximations to model charged

particle beams. Indeed, solving the time-dependent Vlasov Maxwell equations, which

is one of the most complete mathematical model for collisionless plasma or non-

collisional beams, can lead to very expensive computations especially in a three-

dimensional domain. Therefore, whenever possible, it is worthwhile to take into

account the particularities of the physical problem to derive approximate asymptotic

models leading to cheaper simulations.

However, despite some theoretical convergence results, it is not always easy to

choose between two different approximate models, which sometimes can have the

same accuracy, or to determine which terms to retain in the asymptotic expansion

to get a sufficiently precise but not too expensive model. This paper propose a new

approach, based on data mining techniques, to answer to this question.
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2. The Paraxial Model

To solve charged particle beams or plasma physics problems for collisionless plasma

or non-collisional beams, one of the most complete mathematical models is the time-

dependent Vlasov-Maxwell system of equations (cf. [5]). However, the numerical

solution of such a model requires a large computational effort. Therefore, whenever

possible, it is worth to take into account the particularities of the physical problem

to derive approximate models leading to cheaper simulations, see for instance [13].

We recall here the paraxial model we consider and explain how to derive it. Details

can be found in [4].

Let us consider a beam of charged particles with a mass m and a charge q which

moves inside a perfectly conducting cylindrical tube, the z-axis being the axis of the

tube and the optical axis of the beam. Since the domain under consideration is a

bounded axisymmetric three-dimensional domain, we will therefore use the cylindrical

coordinates (r, θ, z). We denote by Ω the transverse section of the tube of radius R,

by Γ its boundary, so that Γ = {(r, θ, z); r = R}, and by ν the unit outward normal

to Γ. For the sake of simplicity, we assume here that there is no external fields.

Each particle of the beam can be characterized by its position X = (r, θ, z) and

its velocity V = (vr, vθ, vz) in the phase space (X,V). Assume that the beam is

relativistic and non collisional, we introduce the momentum P = (pr, pθ, pz). Hence,

the motion of these particles can be described in terms of particle distribution function

f(X,P, t) by the relativistic Vlasov equation. The quantity F = (Fr, Fθ, Fz) denotes

the electromagnetic Lorentz force given by F = q(E + V × B), that describes how

an electromagnetic field E = (Er, Eθ, Ez) and B = (Br, Bθ, Bz) acts on a particle

with a given velocity. This electromagnetic field satisfies the axisymmetric Maxwell

equations in the vacuum.

One then exploits the physical/geometrical properties of the problem to derive

paraxial asymptotic models, which approximate the Vlasov-Maxwell system with a

known accuracy. For high energy short beams, a paraxial relativistic model has been

derived (cf. [9], [4]) based on the following assumptions:

• The beam is highly relativistic i.e., satisfies γ ≫ 1,

• The dimensions of the beam are small compared to the longitudinal length of

the device,

• The longitudinal particle velocities vz are close to the light velocity c,

• The transverse particle velocities (v2
r + v2

θ)
1/2 are small compared to c.

Since vz ≃ c for any particle in the beam, we rewrite the Vlasov-Maxwell equa-

tions in the beam frame, which moves along the z-axis with the light velocity c. Hence

we set ζ = ct − z, vζ = c− vz. As a consequence, the bunch of particles is evolving

slowly in this frame. We denote by v the transverse characteristic velocity of the
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particles. Then, introduce a small parameter η defined by η = v
c
≪ 1. The paraxial

model is derived by retaining the first four terms in the asymptotic expansion of the

distribution function and the electromagnetic fields with respect to η, see [9], [4] for

more details.

2.1. The approximate models M1 and M2. Using the asymptotic expansion

described above, one can derive several “nested” approximate models of the Vlasov-

Maxwell equations. Indeed, a paraxial model is derived by retaining the first terms in

the asymptotic expansion of the distribution function and the electromagnetic fields

with respect to η. Hence, one can consider the model denoted Mi in which the

asymptotic function f is approximated by the ith order expansion f (0) + ηf (1) + · · ·+

ηif (i).

In this paper, our aim is to illustrate the possibility of data mining techniques

applied on scientific computing (see also [1], [2]). Hence we will only consider and

compare the 2 first models M1 and M2. Let us now expose them.

Following [4], [9] one can show that the ith order asymptotic expansion of f (here

i = 1, 2) is entirely determined from the knowledge of the (i − 1)th order expan-

sion of the electromagnetic Lorentz force (F
(i−1)
r , F

(i−1)
θ , F

(i−1)
z ). One thus obtain the

following two models.

1. The model M1:

In this model, the asymptotic expansion f (0) + ηf (1) is entirely determined from

the zero order expansion (F
(0)
r , F

(0)
θ , F

(0)
z ) of the electromagnetic force. To com-

pute them, it is sufficient to know the principal part of the transverse electro-

magnetic fields, which satisfies following [9], [4]:

(2.1)







E
(1)
r = cB

(1)
θ =

1

ε0 r

∫ r

0

ρ(1)s ds ,

E
(1)
θ = B

(1)
r = 0,

whereas the corresponding forces have the following expression

(2.2) F (0)
r = qv

(1)
ζ B

(1)
θ , F

(0)
θ = 0 , F (0)

z = qv(1)
r B

(1)
θ .

Note that in this model, the longitudinal fields E
(1)
z , B

(1)
z are identically zero.

2. The model M2:

We also consider the model M2, in which the expansion f (0) + ηf (1) + η2f (2)

is entirely determined from the first order expansion (F
(1)
r , F

(1)
θ , F

(1)
z ) of the

electromagnetic force. To characterize them, it is proved ([9], [4]) that the

transverse electromagnetic fields have to verified the same equations as (2.1) for
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the transverse fields, but at the order 2, namely

(2.3)















E
(2)
r = cB

(2)
θ =

1

ε0 r

∫ r

0

ρ(2)s ds ,

E
(2)
θ = B

(2)
r = 0,

supplemented with, for the longitudinal fields:

(2.4)



















∂E
(2)
z

∂r
=

∂B
(2)
θ

∂t
,

E
(2)
z (r = R) = 0 ,

and























∂B
(2)
z

∂r
= µ0J

(2)
θ ,

∫ R

0

B(2)
z rdr = 0 .

Finally, the corresponding forces are expressed:

(2.5) F (1)
r = q(v

(2)
θ B(2)

z + v
(2)
ζ B

(2)
θ ) , F

(1)
θ = −qv(2)

r B(2)
z , F (1)

z = q(E(2)
z + v(2)

r B
(2)
θ ) .

In the next section, our aim is to perform a sensitivity analysis of these two models

via data mining techniques; For instance to understand what the second order in the

model M2 practically brings to the simulation results over what could be obtained

by the model M1. In such Vlasov Maxwell simulations, one is often interested in

the particle motion. For this reason, we will use the particle velocities as significant

variables in the data mining analysis. Note that the choice of these variables can not

be automatic: it will always depend on the human expertise that will decide what to

be explored in the data. Following [3], [4], we introduce for each model Mi, (i = 1, 2),

the variable

δv(i)
z := γ|v(i)

z − v(i)
z,aver|

for the longitudinal velocity, where the index aver denotes in each case the average

velocity.

3. Data Mining and Decision Trees

3.1. Segmentation by decision tree. Data Mining goal is to discover hidden or

a priori unknown facts contained in databases. Decision trees [14] belong to the

supervised data mining tools to process the so-called segmentation, whose aim is to

constitute homogeneous subgroups inside a given population. For this purpose, we

select in a given database a variable y to be explained, named the target variable.

Then, we assume a formal unknown relation y = f(x1, x2, . . . , xn) between the target

y and n other variables x1, x2, . . . , xn of the database, called the predictors. Basically

based on the minimization of the standard deviation of the target variable y, an al-

gorithm of segmentation determines the resulting optimized homogeneous subgroups.

This results to a decision tree.
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A decision tree is then a tree composed by different subgroups (called nodes) of

the initial population (called root node). At each level of the tree, these nodes are

obtained by the segmentation algorithm, by identifying among the predictor variables

(x1, x2, . . . , xn), the most discriminating one, regarding the homogeneity degree of the

resulting nodes.

This process stops when the splitting is not feasible: either any new subgroup

cannot be found to be more homogeneous than the previous one or the resulting

segmentation is composed by insignificant subgroups, typically composed by a two

low number of individuals.

3.2. Application to our data. In the database we considered, the data are com-

puted by the help of finite differences method and described numerical approxima-

tions of problem (2.1-2.5) solutions. Then, at each time step and for each node of the

concerned space grid, we get a set of variables which are:

(3.1)

v(i)
r , v

(i)
θ , v

(i)
ζ , E(i)

r , E(i)
z , B(i)

z , ρ(i), J
(i)
θ , F (i−1)

r , F
(i−1)
θ , F (i−1)

z , δv(i)
r , δv(i)

z , (i = 1, 2) .

Therefore, we organize the data such that each row of the database (or ”individual”,

the devoted terminology in database language) contains the information of the above

variables for a given time step and for a space node. Because our objectives are to

appreciate the improvement of the results depending on the order of the asymptotic

development of problem (2.1-2.5) solutions, we introduce the two following variables

to define an appropriate target variable:

• Let us denote by X a given variable to be computed by the two asymptotic

models M1, M2. We set X(1) its value computed by the model M1 and X(2)

its corresponding value from the model M2. The first variable we consider here,

ω1,2, is defined by:

(3.2) ω1,2 =

∣

∣

∣

∣

X(1)

X(2)

∣

∣

∣

∣

.

It measures the weight of the model M1 in the model M2, regarding the variable

X.

• From the variable ω1,2, we are able to introduce our target variable ω
(3CLS)
1,2 , ob-

tained by splitting the distribution of ω1,2 into three equal classes of individuals:

Low, Medium and High.

Without any a priori on the meaning of Low or High contributions of the model M1

in the model M2, it is usual to define the categorial variables ω
(3CLS)
1,2 as follows: the

three classes of individuals are determined based on an equal number of individuals

for each category, (Low, Medium and High).
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The purpose of our analysis being to point out the role of the electromagnetic fields

in the sensitivity between the models M1 and M2, the dependent variables - that is

to say the predictors - we kept to explain the above two classes are the non vanish-

ing electromagnetic components, the charge and current densities and the particles

velocities computed by the model M2, namely

(3.3) v(2)
r , v

(2)
θ , v

(2)
ζ , E(2)

r , E(2)
z , B(2)

z , ρ(2), J
(2)
ζ .

As a complement to take into account the coupling with the Vlasov equation, we also

add to the above list of predictors the components of the Lorentz force involved in

the model M2, that is

(3.4) F (1)
r , F

(1)
θ , F (1)

z .

4. Result: Comparison Between the Model M1 and M2

As shown on Figure 1 , the precision of the decision tree given by the risk estimate

is equal to 5.2 percent. So, 94.8 percent of data are correctly classified by the model

of segmentation computed by the corresponding decision tree. One more time, the

quality level of the decision tree is very high and it let us to use it with a high level

of confidence.

The first segmentation which appears on the decision tree (Fig. 1) highlights

the most discriminated predictor variable in the set of all the available potential

predictors. More precisely, F
(1)
z is detected as this predictor with a corresponding

computed optimal threshold equal to 37.24.

Based on the information avalaible within the decision tree dedicated to δvz, we

get:

• F
(1)
z is the most discriminate variable. This was an expected result, since E

(1)
z =

0 in the model M1, which implies that the main difference between F
(1)
z and

F
(0)
z is essentialy due to E

(2)
z (see Eq.(2.5)).

• The second most important predictor identified at the root of the decision tree

is E
(2)
r which an unexpected feature since the corresponding component E

(1)
r is

non zero.

• On the contrary, B
(2)
z appears as a non significant predictor even if B

(1)
z was null

in the model M1.

5. Conclusion

In this paper, we have presented a new approach based on data mining tech-

niques and statistical tools applied to scientific computing. We focused our study to

the specific case of an asymptotic paraxial approximation to model ultrarelativistic

particles. Our aim was to determine the role of the different powers in the asymptotic
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expansion, restricted to the models M1 and M2. As we have considered an approxi-

mate model of the Vlasov-Maxwell equations, we have chosen δv
(i)
z , (i = 1, 2), as the

main physical variable.

Beyond the particular case we treated in this paper, we suggest that data mining

techniques can be applied to the analysis of any scientific computations as it is applied

in a lot of other domains.

Figure 1. Decision Tree related to δvz.
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