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1. Introduction

Multidimensional singular integral equation in the space Rm is called the equation

of type

(1.1) a(x)u(x) +

∫

Rm

K(x, x − y)u(y)dy = v(x), x ∈ Rm,

where the kernel K(x, y) is so-called Calderon-Zygmund kernel [6,8], and the integral

in (1.1) is treated in a principal value sense
∫

Rm

K(x, x − y)u(y)dy = lim
ε→0

N→∞

∫

ε<|x−y|<N

K(x, x − y)u(y)dy.

Definition 1.1. The function K(x, y), defined on Rm×(Rm\{0}), is called Calderon-

Zygmund kernel, if it satisfies the following conditions:

1) K(x, ty) = t−mK(x, y), ∀x ∈ Rm, ∀t > 0;

2)
∫

Sm−1

K(x, ω) = 0, ∀x ∈ Rm;

3) |K(x, y)| ≤ C, K(x, ω) is differentiable on Sm−1, ∀x ∈ Rm,

Sm−1 is unit sphere in m-dimensional space, C is a constant.

For such equations of type (1.1) the solvability problem was studied in papers of

many authors in different functional spaces. The equations of type (1.1) for example
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with bounded domain or surface instead of Rm arise often in different mathematical

physics problems [9,10], and their solving is very important point. But theoretical

studies based, as a rule, on a local principle, lead to Nöther conditions and calculating

the index of the operator. Thus, in this paper we will try for simplest types of

equations (1.1) to justify the digitization scheme for such equations, and finding the

approximate solution, to obtain the approximation rate and to show, that fast Fourier

transform can be applied to solving such equations.

We consider the equation (1.1) for the case, when the kernel K(x, y) doesn’t

depend on the pole x, i.e. it has the form

(1.2) au(x) +

∫

Rm

K(x − y)u(y)dy = v(x), x ∈ Rm.

It seems, the equation (1.2) can be solved simply by the Fourier transform, but

it is possible theoretically only. From computer point of view we need discrete (and

finite else) sets of points for simulating the equation (1.2). Thus, first we suggest

to change the equation (1.2) by the discrete system, and then to consider its finite

approximations. Some pieces of this paper earlier were described in authors’ papers

[2–5].

2. Discrete Singular Integral Operator

For multidimensional singular integral operator

(Ku)(x) =

∫

Rm

K(x − y)u(y)dy

we suggest to consider the following discrete analogue:

(2.1) (Kdud)(x) =
∑

ỹ∈Zm

h

Kd(x̃ − ỹ) [ud(ỹ) − ud(x̃)] hm, x̃ ∈ Zm
h ,

where we take the following notations.

In m-dimensional space Rm we define integer point lattice (mod h)Zm
h , take into

account K(0) = 0 and denote by Kd the restriction of the kernel K(x) on Zm
h , ud

is function of discrete variable, defined on the lattice Zm
h and last, the sum of series

(2.1) is treated as a limit of partial sums

lim
N→∞

∑

ỹ∈Zm

h
∩QN

Kd(x̃ − ỹ) [ud(ỹ) − ud(x̃)] hm,

where

QN =

{

x ∈ Rm : max
1≤k≤m

|xk| ≤ N

}

.
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We denote by ℓ2
h the Hilbert space of discrete variable functions L2(Z

m
h ) with

inner product

(ud, vd) =
∑

x̃∈Zm

h

ud(x̃)vd(x̃)

and corresponding norm

‖ud‖ℓ2
h

=





∑

x̃∈Zm

h

|ud(x̃)|2hm





1/2

.

It’s well-known, that under conditions for the kernel above the operator K con-

tinuously acts in the space L2(R
m) [6,8]. This fact implies the following

Theorem 2.1. The estimate

‖Kdud‖ℓ2
h

≤ c‖ud‖ℓ2
h

,

holds, where constant c doesn’t depend on h.

So, the family of discrete operators (2.1) is uniformly bounded on h.

3. Operator Symbols and Invertibility

Definition 3.1. Symbol of the operator K is called the Fourier transform of the

kernel K(x) in principal value sense

σ(ξ) = lim
ε→0

N→∞

∫

ε<|x|<N

K(x)eiξ·xdx.

If we apply the Fourier transform to the equation (1.2), then we obtain the

equation

(3.1) (a + σ(ξ))ũ(ξ) = ṽ(ξ),

for which the necessary and sufficient condition for its solvability in the space L2(R
n)

is [6,8]

(3.2) inf |a + σ(ξ)| > 0, ξ ∈ Rm.

The function a + σ(ξ) is called symbol of the operator aI + K, I is identity operator.

To the discrete operator Kd we attach the symbol σd(ξ), ξ ∈ [−πh−1, πh−1]m,

defined by multivariable Fourier series

(3.3) σd(ξ) =
∑

x̃∈Zm

h

K(x̃)e−ix̃·ξhm,

where the partial sums are chosen over discrete cubes QN ∩ Zm
h , and it is periodic

function in Rm with basic cube period [−πh−1, πh−1]m [11].
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The function a + σd(ξ), ξ ∈ [−πh−1, πh−1]m is called the symbol of discrete

singular integral equation

(3.4) (aI + Kd)ud = vd,

respectively.

In the paper [14] the result asserting the coincidence of the images of symbols

σ(ξ) and σd(ξ) was described, and this implies immediately that the equation (1.2)

and its discrete analogue (3.4) are both solvable or unsolvable. So, if we have the

solution of infinite system of linear algebraic equation (3.4), then we can think, that

for small h > 0 it will be near the solution of starting equation (1.2).

4. Error Estimate

Let’s denote Ph the restriction operator on the lattice Zm
h , i.e. the operator,

which an arbitrary function, defined on Rm, maps to the set of its discrete values in

lattice points Zm
h .

Following [15], we give

Definition 4.1. The approximation rate for the operators K and Kd in vector normed

space X of functions defined on Rm, is called the operator norm

‖PhK − KdPh‖Xd
,

where Xd is the normed space of functions defined on the lattice Zm
h with norm, which

is induced by the norm of the space X.

For the space Xd we will use (with the space ℓ2
h) the space Ch, which is the space

of functions ud of discrete variable x̃ ∈ Zm
h with the norm

‖ud‖Ch
= max

x̃∈Zm

h

|ud(x̃)|.

In other words, the space Ch is the space of functions u ∈ C(Rm) restricted on

lattice points Zm
h . Here we remind, that the operator K isn’t bounded in the space

C(Rm), but it is bounded in the space L2(R
m), and it is well-known, that if the

right hand side of the equation (1.2) has some smoothness properties (for example,

it satisfies the Hölder condition), then the solution of the equation (1.2) (if it exists

in the space L2(R
m)) has the same smoothness property [6].

Let’s define the discrete space Ch(α, β) as a functional space of discrete variable

x̃ ∈ Zm
h with finite norm

‖ud‖Ch(α,β) = ‖ud‖Ch
+ sup

x̃,ỹ∈Zm

h

|x̃ − ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β
,
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and additional assumptions

|ud(x̃) − ud(ỹ)| ≤ c
|x̃ − ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β
,

|ud(x̃)| ≤ c

(1 + |x̃|)β−α
, ∀x̃, ỹ ∈ Rm, α, β > 0, 0 < α < 1.

The continual analogue of such spaces is the space Hα
β (Rm) of functions, which

are continuous in Rm and satisfy the Hölder condition of order 0 < α < 1 and

with weight (1 + |x|)β (see [1]). The results from [1] implies particularly, that the

operator K is linear bounded operator K : Hα
β (Rm) → Hα

β (Rm) under the condition

m < β < α + m.

For the space Ch(α, β) we have

Theorem 4.2. If m < β < α + m, then the estimate

‖Kdud‖Ch(α,β) ≤ c‖ud‖Ch(α,β),

is valid, and c doesn’t depend on h.

We will give the approximation rate for the operators K and Kd in the space

Ch(α, β). It will permit to obtain the error estimate for approximate solution, if we

will change the continual operator K by its discrete analogue Kd.

Theorem 4.3. The approximate rate for the operators K and Kd is the following

‖PhK − KdPh‖Ch(α,β) ≤ chα̃,

where c doesn’t depend on h, α̃ < α, β̃ > β.

Proof. We need the following two estimates:

(4.1) |((PhK − KdPh)u) (x̃)| ≤ c1h
α̃,

|[(PhK − KdPh)u] (x̃) − [(PhK − KdPh)u] (ỹ)| ≤

≤ c2h
α̃ sup

x̃,ỹ∈Zm

h

|x̃ − ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β̃
.(4.2)

with constants c1, c2, non-depending on h.
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We will start from the estimate (4.1).

((PhK − KdPh)u) (x̃) =

=

∫

Rm

K(x̃ − y)[u(y)− u(x̃)]dy −
∑

ỹ∈Zm

h

K(x̃ − ỹ[u(ỹ) − u(x̃)]hm

=

∫

Rm\QN

K(x̃ − y)[u(y)− u(x̃)]dy −
∑

ỹ∈Zm

h
\QN

K(x̃ − ỹ)[u(ỹ) − u(x̃)]hm

+
∑

ỹ∈Zm

h
∩QN

∫

Qh(ỹ)

(K(x̃ − y)[u(y)− u(x̃)] − K(x̃ − ỹ)[u(ỹ) − u(x̃)]) dy

= I1 + I2 + I3,

where Qh(ỹ) is the cube with the center ỹ ∈ Zm
h and the edge of length h.

The first two summands are the tailes of continual and discrete singular integrals,

and the third summand only estimates the distance between a singular integral and

corresponding cubature formula. Thus, we start from I3.

1) If x̃ = ỹ, then
∣

∣

∣

∣

∣

∣

∣

∫

Qh(ỹ)

K(x̃ − y)[u(y)− u(x̃)]dy

∣

∣

∣

∣

∣

∣

∣

≤ c

∫

Qh(ỹ)

|u(y) − u(x̃)|
|x̃ − y|m dy

≤ c

∫

Qh(ỹ)

dy

|x̃ − y|m−α(1 + |y|)β
.(4.3)

2) If x̃ 6= ỹ, x̃ ∈ QN , then denoting

I3,n =

∫

Qh(ỹ)

(K(x̃ − y)[u(y)− u(x̃)] − K(x̃ − ỹ)[u(ỹ) − u(x̃)]) dy,

we will decompose it on two summands

I3,n =

∫

Qh(ỹ)

[K(x̃ − y) − K(x̃ − ỹ)] [u(y) − u(x̃)]dy

+

∫

Qh(ỹ)

K(x̃ − ỹ)[u(y) − u(ỹ)] = I
(1)
3,n + I

(2)
3,n.

We have, because |x̃ − y| ∼ |x̃ − ỹ|,

(4.4)
∣

∣

∣
I

(2)
3,n

∣

∣

∣
≤ chα

∫

Qh(ỹ)

dy

|x̃ − y|m(1 + |y|)β
.

For the estimate I
(1)
3,n we need the following estimate for the Calderon-Zygmund

kernel

|K(x̃ − y) − K(x̃ − ỹ| ≤ c
|y − ỹ|

|x̃ − y|m+1
,
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which can be obtained by simple calculations.

Taking into account this fact, we have

(4.5)
∣

∣

∣
I

(1)
3,n

∣

∣

∣
≤ ch

∫

Qh(ỹ)

dy

|x̃ − y|m+1−α(1 + |y|)β
.

It is left to collect the estimates (4.3)–(4.5) summing over the cubes Qh(ỹ) ⊂ QN .

Let’s note the estimate (4.3) is single.

For the

RN =

∫

QN

dy

|x̃ − y|m(1 + |y|)β
.

we have the following estimate (remind, |x̃ − y| ≥ h/2), dividing Rm by two sets

A =

{

y ∈ Rm : |x̃ − y| ≥ 1 + |x̃|
2

}

B =

{

y ∈ Rm : |x̃ − y| <
1 + |x̃|

2

}

,

RN ≤





∫

A

+

∫

B





dy

|x̃ − y|m(1 + |y|)β
.

On the set A
∫

A

dy

|x̃ − y|m(1 + |y|)β
≤ c

(1 + |x̃|)m

∫

A

dy

(1 + |y|)β

≤ c(1 + |x̃|)−β,

because β > m.

On the set B, we introduce the spherical coordinates with the center x̃, and

obtain

∫

B

dy

|x̃ − y|m(1 + |y|)β
≤ c

1+|x̃|
2

∫

h

dt

t
∼ c ln

1 + |x̃|
h

.

Taking into account (4.4) we have
∣

∣

∣

∣

∣

∑

n

I
(2)
3,n

∣

∣

∣

∣

∣

≤ c hα ln
1 + |x̃|

h
.

Further, summing the estimates (4.5) we need to bound the integral

rN =

∫

QN

dy

|x̃ − y|m+1−α(1 + |y|)β
.

Using the same partition A + B, we have
∫

A

(· · · ) ≤ c,
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∫

B

dy

|x̃ − y|m+1−α(1 + |y|)β
≤ c

1+|x̃|
2

∫

h

dt

t2−α

= c

(

1

(1 + |x|)1−α
− 1

h1−α

)

≤ ch−1+α.

Collecting the estimates for (4.5), we obtain
∣

∣

∣

∣

∣

∑

n

I
(1)
3,n

∣

∣

∣

∣

∣

≤ chα.

Taking into account all estimates obtained we have

|I3| ≤ c hα ln
1 + |x̃|

h
.

The estimates for the integrals I1, I2 are very like. Particularly,

|I1| ≤ c

∫

Rm\QN

dy

|x̃ − y|m−α (max{1 + |y|, 1 + |x̃|})β

≤ c

∫

Rm\QN

dy

|x̃ − y|m−α(1 + |y|)β
≤ c

∫

Rm\QN

dy

|y|m−α+β
≤ c

Nβ−α

(N is enough large.)

Tending N to ∞, we have finally

|((PhK − KdPh)u) (x̃)| ≤ const · ln 1 + |x̃|
h

.

The second estimate (4.2) is proved by the same more complicated calculations, and

we don’t stay on this point here. Let’s note that the estimate (4.1) proves the nearness

of operators K and Kd for Ch-norm.

5. Computational Algorithms

The results above imply, that theoretically one can obtain the convergence of

discrete solution to continual ones varying the step of lattice. But (3.4) is infinite

system of linear algebraic equations, and so in practice the evaluation of the solution

for such system deals with the finding good finite approximation.

Such infinite systems of linear algebraic equations were considered earlier in math-

ematical papers [7], in which were suggested and justified projection methods for their

solving. Concerning the equation (3.4) this scheme is looked as following. If we de-

note by PN the restriction operator acting from Zm
h to the discrete cube Zm

h ∩ QN ,

then the equation (3.4) is replaced by the finite system of linear algebraic equations

(5.1) PN(aI + Kd)ud,N = PN vd.
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The theoretical studying as a rule are restricted by justifying the transfer from (3.4)

to (5.1), and it means that the following [7]

Assertion. If the equation (3.4) is uniquely solvable in the space ℓ2
h, then for enough

large N the equation (5.1) is uniquely solvable on the sub-space PNℓ2
h

is valid.

From practical point of view this assertion is not effective, because for small h

and large N the system (5.1) can be very large, and from computational point of view

is hardly realizable.

In our opinion, the following scheme for finite approximation is more pragmatic.

Given discrete kernel Kd and right-hand side vd one construct their periodic approx-

imation by restriction on QN ∩ Zm
h and by periodic continuation on Zm

h . We denote

these continuations by Kd,N and vd,N respectively. We consider the equation

(5.2) aud,N(x̃) +
∑

ỹ∈Zm

h

Kd,N(x̃ − ỹ)ud,N(x̃)hm = vd,N(x̃), x̃ ∈ Zm
h ,

instead of the equation (3.4), and really it is finite system of linear algebraic equations

with so-called cyclic convolution [12,13]. The theory of discrete Fourier transform and

symbol properties of multidimensional singular integral permits to prove the solvabil-

ity of the equation (5.2) for large N , fast Fourier transform permits to reject the

solving system of linear algebraic equations and restricting himself by calculating the

Fourier transform twice (direct transform and inverse ones). Moreover, the compar-

ison of numerical results for simplest test equations (both regular integral equations

and singular ones) obtained by projection methods and fast Fourier transform, showed

their nearest location and large advantage in time for the last method even in one-

dimensional case [4]. It seems, the difference in time will be more essential under

enlarging space’s dimension.

Example 5.1. If we consider the convolution equation

+∞
∫

−∞

K(x − y)u(y)dy = v(x),

where K(x) = exp(−x2

2
), v(x) = exp(−x2

4
), then the Fourier transform

+∞
∫

−∞

exp(−ixξ)f(x)dx ≡ f̃(ξ) (direct)

and

1

2π

+∞
∫

−∞

exp(ixξ)f̃(ξ)dξ ≡ f(x) (inverse)
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permits to find exact solution immediately:

u(x) =
1√
2π

exp(−x2

2
).

The following table involves the approximate values of u(x) obtained by three different

ways. The fast Fourier transform works more rapidly than solving truncated system

of linear algebraic equations (approximately ten times).

Type/X axis -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Analytical 0 0,0000003 0,00008 0.039 0.135 0.29 0.369 0.29 0.135 0.039 0,00008 0,0000003 0

System 0 0,0000003 0,000025 0.0251 0.1005 0.25 0.355 0.25 0.1005 0.0251 0,000025 0,0000003 0

Fourier 0 0,0000003 0,000025 0.025 0.1 0.247 0.3548 0.247 0.1 0.025 0,000025 0,0000003 0

6. A Half-Space Case

Here we consider more complicated equation, so called pair equation

(6.1) (M1P+ + M2P−)U = F,

assuming M1, M2 are Calderon-Zygmund operators (like in equation (1.2)), and P+, P−

we denote the restriction operators on half-space Rm
± = {x = (x1, . . . , xm), ±xm > 0}.

For this case using the Fourier transform leads to the following constructions [18]:

FP+ = Qξ′F, FP− = Pξ′F,

P = 1/2(I + Hξ′), Q = 1/2(I − Hξ′),

where F is the Fourier transform, Hξ′ is the Hilbert transform on variable ξm, ξ′ =

(ξ1, . . . , ξm−1) is fixed:

(Hξ′u)(ξ′, ξm) ≡ 1

πi
v.p.

+∞
∫

−∞

u(ξ′, τ)

τ − ξm
dτ.

The equation (6.1) for this case will take the form of the following one-dimensional

singular integral equation with the parameter ξ′ [17]:

σM1
(ξ′, ξm) + σM2

(ξ′, ξm)

2
Ũ(ξ)

+
σM1

(ξ′, ξm) + σM2
(ξ′, ξm)

2πi
v.p.

+∞
∫

−∞

Ũ(ξ′, η)

η − ξm
dη = F̃ (ξ).(6.2)

It corresponds to the Riemann boundary problem (with parameter ξ′ also) with co-

efficient [16]

G(ξ′, ξm) = σM1
(ξ′, ξm)σ−1

M2
(ξ′, ξm).

For unique solvability of the equation (6.2) we need the index of G(ξ′, ξm) on variable

ξm is equal to 0.
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The symbol of the Calderon-Zygmund operator is very specific, it is a function

homogeneous of order 0, i.e. indeed it is defined on unit sphere Sm−1. Let m ≥ 3.

Fix ξ′ ∈ Sm−2 and suppose G(0,−1) = G(0, +1). Varying ξm from −∞ to +∞ the

function G(ξ) will vary along the arc of big half-circle across south pole (0,−1) and

north pole (0, +1). At the same time the symbol’s values will go along closed curve

in a complex plane. These all curves for different ξ′ will be homotopic, and therefore

they have the same entire-valued index æ with respect to origin. The condition æ = 0

implies the unique solvability for the equation (6.2).

7. Discrete Half-Space Case

Here we return again to the equations in a discrete context assuming that in

equation (6.1) P± are restriction operators on Zm
h,±, M1, M2 are discrete Calderon-

Zygmund operators generated by kernels M1(x), M2(x), which are bounded in the

space L2(Z
m
h ).

For functions of discrete variable defined on the lattice Zm
h its discrete Fourier

transform is given by the formula

u(x̃) 7−→ 1

(2π)m

∑

x̃∈Zm

h

u(x̃)e−ix̃·ξhm ≡ ũ(ξ), ξ ∈ [−π, π]m.

Such Fourier transform has the same properties as usual Fourier transform [11].

According to Sec. 6 we introduce periodic analogue of the Hilbert transform on

variable ξm (ξ ∈ [−π, π]m, ξ′ is fixed) by the formula

(Hper
ξ′ u)(ξm) =

1

2πi

πh−1
∫

−πh−1

u(t) cot
h(t − ξm)

2
dt

and periodic analogues of projectors P, Q

P per
ξ′ = 1/2(I + Hper

ξ′ ), Qper
ξ′ = 1/2(I − Hper

ξ′ ).

Instead of the equation (6.2) we obtain its periodical analogue

σ1,h(ξ
′, ξm) + σ2,h(ξ

′, ξm)

2
Ũ(ξ) +

σ1,h(ξ
′, ξm) + σ2,h(ξ

′, ξm)

4πi

× v.p.

πh−1
∫

−πh−1

Ũ(ξ′, η) cot
h(η − ξm)

2
dη = F̃ (ξ)(7.1)

where σ1,h, σ2,h are symbols of discrete operators M1, M2. Naturally, the equation

(7.1) will be related to corresponding periodic Riemann boundary problem, for which

its unique solvability condition is

Ind σ1,h(·, ξm)σ−1
2,h(·, ξm) = 0.
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Further we remind, that images of symbols σ and σh are the same [14]. Moreover,

the index is entire-valued characteristic both in continual case (if the transmission

condition σ(0,−1) = σ(0, +1) holds) and in discrete (periodic) ones. Looking for the

variation σh(·, ξm) along arcs of big half-circles on Sm−1 and taking into account that

lim
h→0

σh(ξ) = σ(ξ), ∀ξ ∈ Sm−1,

we conclude, that for transmission condition we have

Theorem 7.1. The equations (6.2) and (7.1) are both solvable or unsolvable.

8. Conclusion

We intend to continue these studies and to obtain the same error estimate for

multidimensional discrete singular integral in corresponding Hölder space with weight

Hα
β (Rm

+).
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