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CONTROL THEORY METHODOLOGY FOR SOCIAL NETWORKS:
PREDICTION OF MISSING LINKS

N. G. MEDHIN AND G. L. PORTER
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ABSTRACT. In this paper, we present a novel method for predicting missing links in a social
network. The evolution of the social network is governed by a multiobjective optimal control problem
(MOCP) where the dynamics is formulated based on social forces theory. The solution of the control
problem is used to obtain an observed network structure as well as the initial conditions, parameters
and constraints that led to its formation. From this observed network, we label some links as
known and then identify a random subset of network connections and consider them as unknown or
missing. Afterwards, a new MOCP is formed using the same network dynamics as before but now
with constraints on the state to preserve the known links. In solving the new MOCP, we are able to
reproduce existing links as well as predict or uncover the unknown or missing links. There are some
advantages to this approach over those in the literature that rely heavily on network topology for
link prediction. Within the MOCP framework, nodal attributes and past history is considered for
link formation. This approach works for any given network structure and is capable of uncovering
the qualitative, not just topological, reasons underlying link predictions unlike some other methods
in the literature.

KEY WORDS: Multiobjective optimal control, missing links, Differential Evolution, social net-

works

1. Introduction

In this paper, we consider how to predict missing links within a social network.

Missing links are those that are unobserved but are actually present within the social

network [1]. The links may be unobserved for various reasons: it may be that the

network itself is simply incomplete or it may be that the actors themselves attempt

to hide their ties on purpose. Whatever the reason, predicting these unobserved links

has garnered much attention from researchers in today’s society. In particular, in the

aftermath of the events of September 11, 2001, the capability to uncover missing links

in terrorist and other criminal networks is believed to be crucial to national security.

The ability to uncover hidden network relations provides a total picture of current

and future interactions between entities within a social group.

In the literature, there are various methods used to predict missing networks links

[5], [7], [10], [12], [2]. For instance, Liben-Nowell and Kleinberg (2004), [5], focus on
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network topology such as common neighbors, degree, and shortest paths to predict

links for actors within collaborations. Clauset, Moore, and Newman (2008), [1], use

hierarchical structure of networks for link prediction. In their approach, Markov

chains are used to sample hierarchical random graphs to fit the observed network.

Pairs that have high average connection probability but appear unconnected in the

observed network are identified as missing links. Our method for link prediction also

starts with an observed network link structure but differs from those in the literature

by not relying so heavily on network topology to predict missing links. Instead,

our model uses constrained multiobjective optimal control and social force theory to

predict missing links.

2. Social Networks

Several key concepts [13] form the basis of social network analysis and are fun-

damental to our study of social networks.

2.1. Methodology for Social Networks. Nodes form the basis of social networks

and are often referred to as actors, actors or points depending on the context of

discussion. Nodes in a social network can be social entities such as people, businesses,

organizations, cities, nations, etc. An edge is a line connecting nodes. Edges are

also referred to as links, ties, lines or arcs, representing a relationship or connection

between a pair of nodes. In network analysis, there are many types of ties to include

behavioral interaction ties (i.e., conversing or emailing), physical movement ties (i.e.,

migration) and individual evaluation ties (i.e., friendship among actors which is the

focus of this paper). Network ties are often made based on some type of individual

or entity attributes. Attributes describe characteristics of actors in a group. For

example, for a friendship network, such attribute variables might include income

potential, gender, race, sex, education level, political tendency, religious affiliation,

marital status, etc. In fact, measurements on actors’ attributes often constitute the

make-up of social data and social networks.

There are two tools in particular which are often seen in the literature to represent

social networks: matrices and graphs. In this work, we’ll use both in illustrative

examples of friendship networks. A sociomatrix is the primary matrix used in social

network analysis and is denoted by X. If there are N actors in a social group, then the

sociomatrix for the group would be an N × N matrix of binary entries representing

the relations between the actors. Each actors in the sociomatrix has a row and

column both indexed 1, 2, . . . , N . The entries in the sociomatrix, xij, represent which

nodes are linked. For our friendship model, relations in the sociomatrix may be

directional and nondirectional which will lead to both symmetric and nonsymmetric

sociomatrices. For symmetric sociomatrices, if two actors are friends, there will be a
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1 in the ij-th and ji-th cells and a 0 if they’re not friends. The ii-th cells will contain

a value of 0 since actors do not befriend themselves. For nonsymmetric sociomatrices,

while the ij-th cells may contain a 1, this may not be the case for the ji-th cell if the

relation is not reciprocated.

A graph (often referred to as digraph) has a set of nodes representing the actors in

the network and a set of lines to represent the existence of ties or links between pairs of

actors. The graph can be drawn directly from the sociomatrix. Since relations in our

model may or may not be symmetric, lines are both directional and nondirectional.

In essence, if a directional line exists from actor i to j, it may not exist from j to i.

We exclude any loops, which are lines between actors and themselves since actors do

not befriend themselves.

2.2. Social Forces Model for Social Networks. Different modeling approaches

have been developed to model social networks and social interaction. In this work,

we take a more physical approach inspired by Helbing’s social forces model for pedes-

trian walking behavior. We adapt Helbing’s model to describe social interaction and

ultimately, formulate a friendship model mathematically using the notion of social

forces. In essence, actors interact as though they were subject to acceleration and

repulsive forces when making their friendship choices. This approach assumes that

individuals behave according to a set of rules in a manner that promotes their util-

ity minimization, i.e, they choose courses of action with the most benefit and least

cost. In the context of friendship networks, social forces theory assumes that each

actor possesses a specific attitude toward making friends, a desire to befriend those

who share their preferences and attributes and that they respect the private space of

others. Consequently, following Helbing and Molnar’s theory, these rules describing

social interaction can be placed into a set of equations of motion [3].

2.2.1. Assumptions. We start with a fixed set of actors, denoted Λ, consisting of N

actors, who begin as mutual strangers and enter into social relationships with other

actors as time evolves. We make the following assumptions [4] in our model of network

dynamics:

• All actors consider the same attributes when attempting to make friends.

• Actors do not change categories within a particular attribute.

• Relationships between actors depend on shared preferences for attributes and

categories.

• Reciprocity for numerical preference levels is automatic by virtue of using the

Euclidean distance as a measurement of closeness but this is not so for categorical

preferences.

• Each actor attempts to maximize his status in the social group, i.e, he wishes

to form as many relationships as possible.
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• Finally, the objective functional of each actor decreases with an increase in

shared attribute preferences and categories.

2.2.2. Data. The following data is required to run our model of network dynamics:

Data:

N − total number of actors in a social environment

m − total number of attributes under consideration

l − total number of categorical attributes under consideration

k − number of categories in a particular categorical attribute

ri(t) − position vector describing actor i’s preference for each attribute, 1, . . . ,m

yi − vector identifying various attribute categories to which actor i belongs

wi − vector containing actor i’s preferences for similar attribute categories

v0
i − vector describing actor i’s initial rate of change of attribute preferences

at time t = 0

vi(t) − vector describing actor i’s rate of change of attribute preferences at time t

ui(t) − vector describing actor i’s control for each attribute, 1, . . . ,m

Parameters:

lij − constant value set to ensure that actor j respects the private space of actor i

τi − relaxation time of actor i (a measure of how fast he returns to his v0
i )

Ni − reflects an actor’s desire to stick to his belief system

Now that we have formally stated what each data variable represents, we can describe

a few variables in more detail. For instance, v0
i is meant to reflect how quickly a person

intends to change their preference on a certain attribute in order to make friends; it is

represented by a ”velocity” vector in the social forces model described in Section 3.3

and hereafter, we will call it intended social velocity. Therefore, if a person intends

to change their attribute preference levels rapidly, we’d expect to see a larger v0
i

compared to those who intend to change less rapidly. Similarly, ui(t) controls how

much actors vary their attribute preferences within a given set of bounds in order

to make friends. The control variables of people who desire to make many friends

will fluctuate greatly when compared to those actors who desire fewer relationships,

reflected by control variables which are greatly restricted. Similarly, since lij controls

how close actors allow others to get to them, those actors who desire to make many

friends will have a larger value for lij than those who desire to keep others at a

distance. Further, a large Ni is meant to penalize an actor for deviating from his

belief system and thus results in an increase in an actor’s performance index. Finally,
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τi will be small for those who are more reluctant to change their attribute preferences

permanently.

3. The Model

Our model for predicting missing links employs the same components as the social

forces model for network dynamics with memory presented in an earlier paper [6] but

adds additional constraints on the state.

3.0.3. Model Components. The model components for predicting missing links are as

follows. First, we modify the performance index from its original version in [6] by

adding penalties to remove the inequality constraints, hi(u):

min
u

[J1, . . . , JN ](1a)

Ji =
[∑

j 6=i

‖ri(tf )− rj(tf )‖2 +
∑
j 6=i

∥∥wi(tf ) · (yi(tf )− yj(tf ))
∥∥2

(1b)

+Ni

∫ tf

t0

‖ui(t)‖2 dt
] p∏

q=1

ξcq
q

where

ξq =

1 + hq(u), if hq(u) > 0, q = 1, . . . , p

1, otherwise

and the constant cq = 10.

The network dynamics remain unchanged:

ṙi = vi(1c)

v̇i =
1

τi

(v0
i − vi)−∇ri

Vint −∇ri
Vm(1d)

where

Vint =
∑
j 6=i

‖ui − uj‖2

·(1 + ((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))

· exp{−lij((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)}

and

Vmem(ri, t) =

∫ t

0

∑
j 6=i

G(r, s) exp
{t− s

T

}
ds

where

G(r, s) = −γ(1 + ((‖ri(t)− rj(s)‖+ ‖ri(t)− rj(s)− vj(s)∆t‖)2 − ‖vj(s)∆t‖2)

· exp
{
− lij((‖ri(t)− rj(s)‖+ ‖ri(t)− rj(s)− vj(s)∆t‖)2 − ‖vj(s)∆t‖2)

}
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The same state and control bounds must be satisfied:

(ri(0)− δimin
) ≤ ri(t) ≤ (ri(0) + δimax)(1e)

−δimin
≤ ui ≤ δimax(1f)

The following state constraints are added to the model in order to reproduce

existing relations between actors which are known in advance:

dij ≤ .8davg , if i, j are linked(1g)

dij > .8davg , if i, j are not linked(1h)

The social distance between actors, dij, and the average distance, davg , are calculated

as follows:

dij =
∑
j 6=i

‖ri(t)− rj(t)‖2 +
∑
j 6=i

∥∥wi(t) · (yi(t)− yj(t))
∥∥2

davg =

∑
i

∑
j 6=i dij

N2 −N

In the missing link model, the most significant difference from the original model

in [6] are the added state constraints and the modified performance index to deal with

these new constraints. The constraints exist on the state variables to ensure that we

reproduce known relations as well as uncover the missing links. In essence, we want

there to be links between those people who were already friends and we don’t want

links between those who were not friends. By using known information on parameters

and data for existing links, the new model uncovers missing link information.

4. Pareto Optimality

Most likely the objective functions in the above MOCP are competing objectives

which will make it difficult to minimize them all at once; yet, if it happens that a

single solution is found for the MOCP, then the objectives are really not competing

after all. That said, since no single minimum is likely to be found, the concept of

optimality for multiobjective optimal control problems with vector-valued cost must

be defined. Once again, our definition of optimality in the multiobjective framework

is Pareto optimality.

A solution u∗ dominates u if and only if Ji(u
∗) ≤ Ji(u) ∀ i ∈ {1, 2, . . . , s} and

Ji(u
∗) < Ji(u) for at least one i ∈ {1, 2, . . . , s}. The set of nondominated points from

the search space form Pareto front or Pareto optimal set.
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Definition 4.1. For a given vector of objective or cost functions J(u) = [J1(u), J2(u), . . . ,

Js(u)], the control u∗ is Pareto optimal if there does not exist u such that

Ji(u) ≤ Ji(u
∗)

and for at least one i, i ∈ {1, 2, . . . , s}, we get

Ji(u) < Ji(u
∗)

Evolutionary algorithms (EA), like Differential Evolution, are well-suited for solv-

ing multiobjective optimization problems since they are capable of providing a Pareto

optimal set in a single run.

5. Numerical Methods

5.1. Differential Evolution. Differential Evolution (DE) is a population-based search

method developed by Storn and Price [9] to handle problems with multiple objectives

over continuous domains. DE is an appealing approach for solving MOCPs because

it eliminates the need to consider function continuity, convexity, or concavity unlike

some traditional search techniques where the complexities must be given great atten-

tion. In addition, DE is capable of providing a complete set of Pareto-optimal solu-

tions in a single run [8]. It is a stochastic population-based direct search method that

improves some randomly generated initial population through mutation, crossover,

and selection. The algorithm includes the following steps.

5.1.1. Steps for Differential Evolution (DE) Algorithm.

• Step 1: Random Population Initialization

In this step, ug
j,i means the i-th entry of the vector ug

j . We initialize the popu-

lation as follows:

ug
j,i = ug

j,imin
+ rand() ∗ (ug

j,imax
− ug

j,imin
), j = 1, 2, . . . , NP,

g is the current generation and rand() is a random number in [0, 1). The i-th

component of the vector ug
j , j = 1, 2, . . . , NP , has a lower bound, ug

j,imin
, and

an upper bound, ug
j,imax

.

• Step 2: Mutation

For each j = 1, 2, . . . , NP , pick j1, j2, j3 ∈ {1, 2, ..., NP} randomly and form the

vector ẑg
j according to the formula:

ẑg
j = ug

j1
+ W ∗ (ug

j2
− ug

j3
), j = 1, 2, . . . , NP

where j1, j2, j3 are mutually different and not equal to j. The parameter W is a

scaling factor for mutation and is usually a value between 0 and 1.
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• Step 3: Crossover

As in Step 1, we denote the i-th component of the vector zg
j by zg

j,i. The operation

crossover is implemented as follows:

zg
j,i =

ug
j1,i + W ∗ (ug

j2,i − ug
j3,i) if rand() < CR or i = î,

ug
j,i otherwise

where î is a randomly selected index from {1, 2, . . . , D}.
• Step 4: Selection

ug+1
j =

zg
j if J(zg

j ) ≤ J(ug
j ),

ug
j otherwise

• Step 5: Termination criteria in the literature often includes running the algo-

rithm for some maximum number of generations or until some desired objective

function value is reached.

5.2. Parallel Differential Evolution. There are several variations of Parallel Dif-

ferential Evolution [11] found in the literature and here we have modified and merged

the different ones into one suitable for our problem. We implement our version as

follows:

• Step 1: Request K nodes (or processors) taking one node to be the master

node.

• Step 2: At the master node, create K-1 populations and send one to each of

the remaining K-1 nodes.

• Step 3: At each of the K-1 nodes, each population evolves toward a nondomi-

nated set using DE.

• Step 4: As the termination criteria is met, each node sends its nondominated

set to the master node.

• Step 5: At the master node, compare the K-1 nondominated sets to get the

final Pareto-optimal set.

6. Computer Simulation

6.1. Problem Formation. To demonstrate the capabilities of the missing link model,

we solve the MOCP in (1a)–(1h) with N = 25 actors and five attributes. We use

the sociomatrix in Figure 1 as our observed network. From this matrix, we discover

two disjoint cliques: Clique 1: {5,6,12} and Clique 2: {9,11,16,23,23,25}. Relations

between members in these cliques will serves as the known links. We create an ad-

ditional set of actors chosen randomly from the sociomatrix and denoted them by

M: {2,4,7,10,14}. We pretend the internal links between actors in M as well external

links between actors in M and actors in the cliques are unknown. The objective now
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is to try to reproduce known relations amongst members in the cliques while simul-

taneously uncovering the relations between the cliques and actors in the set M using

the information we already have on existing links and parameters.

Figure 1. Sociomatrix with Interaction Potential, Vint (N = 25)

6.2. Implementation. To start, we must assume that we have some observable data

on the nodes in set M for whom we do not know the links and wish to identify them.

Therefore, we assume we know their initial attribute data to include preferences and

categories. From this information, we infer their similarity weights, wi, and intended

motivation toward making friends, v0
i .

For actors within cliques 1 and 2, we use their known parameter values but

we estimate the parameter values of those actors in set M by permitting them to

fall within the allowable limits previously established. For instance, in determining

the previous sociomatrix, certain maximum and minimum bounds were identified for

parameters, lij and τi:

0.05 ≤ lij ≤ 0.25

5.0 ≤ 1

τi

≤ 15.0.

There are several state constraints which must be satisfied in order to maintain

the existing links between actors in Clique 1. Here is an example of such constraints
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using the smaller clique:

d5,6 ≤ .8davg

d5,12 ≤ .8davg

d6,5 ≤ .8davg

d6,12 ≤ .8davg

d12,5 ≤ .8davg

d12,6 ≤ .8davg

Similar constraints must be satisfied to maintain the existing links between actors

belonging to Clique 2 as well.

In addition, the model must ensure that there are no links between members

belonging to the different cliques. For example, here are the constraints that must be

met for actor 5 from Clique 1 to maintain his “no link” status to actors in Clique 2:

d5,9 > .8davg

d5,11 > .8davg

d5,16 > .8davg

d5,22 > .8davg

d5,23 > .8davg

d5,25 > .8davg

Constraints similar to these must be established and satisfied for each actor belonging

to the two cliques.

Once the existing links as shown in Table 1 have been established in the manner

suggested, attention can then be focused on filling in the missing links between actors

in the cliques and actors in set M. To do so, we again construct the multiobjective

optimal control problem (MOCP) in similar fashion as before but subject to the

additional state constraints used to ensure the existing relationships. Finally, a Pareto

optimal solution of this newly formed MOCP as outlined in equations 1 is used to

construct the sociomatrix and identify the existing links as well as the missing links.

6.3. Numerical Results and Analysis. To solve the MOCP, we used Parallel

DE as outlined above with slight modifications to the basic DE algorithm. For those

actors in set M, the parameters, lij and τi, are treated as control variables and allowed

to evolve as a population using the random search method. Specifically, in the basic

Differential Evolution scheme, the initialization and mutation steps were modified

for parameters, lij and τi. For the sake of clarity in the following modifications, we
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drop the j from the lij parameter and just use li; this notation does not change the

parameter’s definition.

In the initialization step, we added the following equations:

lgk,i = lgk,imin
+ rand() ∗ (lgk,imax

− lgk,imin
)

and

τ g
k,i = τ g

k,imin
+ rand() ∗ (τ g

k,imax
− τ g

k,imin
)

where rand() is a uniformly distributed random number ∈ [0, 1) and lgk,imin
and lgk,imax

are lower and upper bounds respectively on the i-th component of the k-th vector,

k = 1, 2, . . . , NP .

In the mutation step, in addition to the existing control vectors, for each of the

population vectors, lk and τk, k = 1, . . . , NP , Differential Evolution would generate

competing trial vectors, l̂k and τ̂k:

l̂gk = lgj1 + W ∗ (lgj2 − lgj3)

and

τ̂ g
k = τ g

j1
+ W ∗ (τ g

j2
− τ g

j3,i)

where j1, j2, and j3 are random mutually different vectors belonging to [0, NP ] and

not equal to vector k.

To solve the problem, we used Parallel DE as outlined in subsection 5.2 with the

following criteria:

1. Requested number of nodes: 61

2. DE parameters: NP = 30 per node, W = 0.5, and CR = 0.5

3. Termination Criteria:

25∑
i=1

∣∣∣J (k)
i (u(1)) + · · ·+ J

(k)
i (u(NP ))

NP
− J

(k−1)
i (u(1)) + · · ·+ J

(k−1)
i (u(NP ))

NP

∣∣∣ < 10−5

We used the fourth order Runge Kutta method to integrate the state equations.

We handled the bounds on the state and control vectors by choosing the controls

appropriately to satisfy both. In order to avoid problems in distinguishing the added

state constraints for link prediction, we had to make modifications in order to solve

the problem:

dij + ε ≤ .8davg , if i, j are linked,(2)

and

dij + ε > .8davg , if i, j are not linked.(3)
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Essentially, we simply adjust these constraints by some small amount, ε = .1∗min(dij),

in order to solve the problem. We believe this slight adjustment does not impact

the accuracy of link prediction. Parallel DE was implemented in C++ and took

approximately ? hours to generate a set of Pareto optimal points.

In Table 2, the sociomatrix for members in the cliques and set M is shown. The

model was able to reproduce the known relations as well as fill in the blanks for the

unknown relations. When compared to the observed network in the sociomatrix from

Figure 1, which shows the actual links between actors, our link prediction model is

100% accurate in predicting missing links. Figure 2 shows the associated digraph for

the predicted links.

Table 1. Sociomatrix with Missing Links

Actor 2 4 5 6 7 9 10 11 12 14 16 22 23 25

2 0

4 0

5 0 1 0 0 1 0 0 0 0

6 1 0 0 0 1 0 0 0 0

7 0

9 0 0 0 1 0 1 1 1 1

10 0

11 0 0 1 0 0 1 1 1 1

12 1 1 0 0 0 0 0 0 0

14 0

16 0 0 1 1 0 0 1 1 1

22 0 0 1 1 0 1 0 1 1

23 0 0 1 1 0 1 1 0 1

25 0 0 1 1 0 1 1 1 0

7. Clique Expansion and Infiltration

7.0.1. Introduction. In this section, we leverage what was learned concerning clique

formation in [6] to explore clique infiltration. Previously, it was discovered that clique

formation requires mutual affection amongst actors which is based on shared attribute

preferences and categories as well as similar choices for the various model parameters.

To build on that knowledge, the goal of this section is to try to determine under what

circumstances existing cliques would allow other actors to join them. Alternatively,

the goal can be restated as how to forcibly insert certain actors into cliques.

When looking across the row labeled 10 in Table 2, we see clearly that actor

10 has directional relations or perceived closeness on his part toward members of
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Table 2. Sociomatrix with Predicted Links

Actor 2 4 5 6 7 9 10 11 12 14 16 22 23 25

2 0 0 0 0 0 0 0 0 1 0 1 1 1 1

4 0 0 1 1 1 0 1 0 1 0 0 0 0 0

5 0 0 0 1 0 0 0 0 1 0 0 0 0 0

6 0 0 1 0 0 0 0 0 1 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 1 1 0 1 1 1 1 1

10 0 0 1 1 0 0 0 1 1 0 0 0 0 0

11 0 0 0 0 0 1 1 0 0 1 1 1 1 1

12 0 0 1 1 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 1 0 1 0 0 0 1 0 1

16 1 0 0 0 1 1 1 1 0 1 0 1 1 1

22 0 0 0 0 1 1 0 1 0 1 1 0 1 1

23 1 0 0 0 0 1 0 1 0 1 1 1 0 1

25 0 0 0 0 1 1 0 1 0 1 1 1 1 0

Figure 2. Digraph for Predicted Links

Clique 1. Yet, this affection from actor 10 is not shared by Clique 1 members as

shown by looking down the column labeled 10 in the table. This lack of reciprocity
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is further confirmed by the social distance plotted in Figure 3(a). It is interesting to

see what choice of parameters on the part of actor 10 will allow Clique 1 members to

show reciprocity thus allowing actor 10 to infiltrate the clique.

7.1. Infiltration of Clique 1. To start the process, we implement a slight change

to the model by deleting the memory potential, Vmem, in equation (1d). This should

allow individuals more freedom to interact since actors in Clique 1 will base their

friendship decision on current information instead of actor 10’s entire history.

Suppose that in addition to the constraints in (1), we add the below constraints

to the model in an attempt to try to force Clique 1 to accept actor 10. That is, we

use

d10,5 ≤ .8davg

d10,6 ≤ .8davg

d10,12 ≤ .8davg

d5,10 ≤ .8davg

d6,10 ≤ .8davg

d12,10 ≤ .8davg

Afterwards, we initialize actor 10’s parameters, lij and τi, to values ranging be-

tween the previously identified minimum and maximum values and allow them to

evolve as a population along with the control parameters using Differential Evolu-

tion. In this manner, we hope to discover whether or not certain choices for the

various parameters guarantee membership in a particular clique.

Once again, the same algorithmic criteria as before was used to solve the problem.

The result was that actor 10 did not immediately become a member of Clique 1

given changes to his parameters values, lij and τi. After several more attempts and

even modifying other parameters like actor 10’s similarity weights, wi, and attitude

toward making friends, v0
i , actor 10 was still unsuccessful in penetrating the clique.

A thorough review of the raw data indicates that actor 10 actually has many things

in common with members of the clique. In fact, actor 10 is in the same age group and

shares the same political preference as members of the clique. While they all share

similar education and income preferences as well as views on tolerating diversity,

actor 10 belongs to a different religious category than clique members. Significantly,

it turns out that Clique 1 is very strongly aligned when it comes to religious preference

evident by the fact that all of its members have the highest similarity weight possible,

1.0, for this particular attribute preference.

Tables 3–7 show the social distance between Clique 2 and actor 10 by attribute

and allow us to take a microscopic look at their preferential differences. Analyzing
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these tables confirms what we learned from reviewing the raw data. Indeed, Clique

2 members are strongly aligned in all attribute preferences especially religious pref-

erence. We highlight the large difference in religious preference between Clique 2

members and actor 10 in Table 7.

Undoubtedly, we have discovered the primary reason for actor 10’s failure, thus

far, to successfully penetrate the clique. Since it is so important to members of Clique

1 to only associate with actors of their same religious category, actor 10 may have to

take some drastic measures to successfully penetrate the clique. Suppose we relax one

of the basic assumptions of the model as discussed in subsection ?? and allow actor

10 to change his religious category. With this change, members of the clique finally

find actor 10 appealing enough to reciprocate his friendship. This mutual affection is

captured in Figure 3 which graphs the social distance between Clique 1 and actor 10

before and after the change in category. Actor 10 successfully enters Clique 1 with

evolved parameter values lij = 0.177365 and τi = 1/8 which is within the range of

values used by the rest of the members in Clique 1.

Table 3. Distance between Education Preferences for actors in Clique 1

Actor j

i 5 6 10 12

5 0 0.0014 0.8574 0.8638

6 0.0014 0 0.8560 0.8624

10 0.5074 0.5060 0 0.0064

12 0.5138 0.5124 0.0064 0

Table 4. Distance between Age Preferences for actors in Clique 1

Actor j

i 5 6 10 12

5 0 0.0062 0.0043 0.0090

6 0.0062 0 0.0020 0.0152

10 0.0043 0.0020 0 0.0132

12 0.0090 0.0152 0.0132 0

7.2. Infiltration of Clique 2. As for Clique 2, we repeat the experiment using

actor 14 with much success and far greater ease than with Clique 1. The primary

reason for this is that Clique 2 is very tolerant of others which is evident by their

choice of parameters, in particular, their similarity weights. If we look down column

labeled 14 in Table 2, it is clear that every member in Clique 2 has directional ties

toward actor 14, which means they already consider him their friend. However, the
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Table 5. Distance between Income Preferences for actors in Clique 1

Actor j

i 5 6 10 12

5 0 0.0025 0.0007 0.0216

6 0.2525 0 0.0018 0.2691

10 0.2507 0.0018 0 0.2709

12 1.0216 0.5191 0.5209 0

Table 6. Distance between Political Preferences for actors in Clique 1

Actor j

i 5 6 10 12

5 0 0.0004 0.0013 0.0258

6 0.0004 0 0.0008 0.0262

10 0.0013 0.0008 0 0.0271

12 0.0258 0.0262 0.0271 0

Table 7. Distance between Religious Preferences for actors in Clique 1

Actor j

i 5 6 10 12

5 0 0.0005 2.0019 0.0050

6 0.0005 0 2.0013 0.0045

10 0.5019 0.5013 0 0.5031

12 0.0050 0.0045 2.0031 0

problem in this experiment is that actor 14 is not friendly toward all members in

the clique, in particular, actors 16 and 23, from looking across the row labeled 14

in the same table. While actor 14 shares numerous parameters, preferences, and

categories with Clique 2 members, his beliefs on diversity initially prevent him from

entering the clique as indicated by Figure 4(a). Once again, breaking out the social

distance between Clique 2 members and actor 14 in Tables 8 and 12 allows us to

take a microscopic look at their relations. When analyzing the tables , we focus on

the distance between actors 14, 16, and 23. We discover that actor 14 may need to

reduce his large similarity weights for age preference and political preference to reflect

more tolerance for diversity. These changes allow him to easily infiltrate Clique 2 as

supported by the before and after pictures in Figure 4. Actor 14 successfully enters

Clique 2 with evolved parameter values lij = 0.234454 and τi = 1/12 which is within

the range of values used by the rest of the members in Clique 2.
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(a) Before Infiltration

(b) After Infiltration

Figure 3. Social Distance between Clique 1 and Actor 10

8. Conclusion

In this paper, we discovered that multiobjective optimal control coupled with

social forces theory provides a suitable framework for uncovering missing links within

social networks with reasonable accuracy. We were successful in our approach to use

known information regarding existing network links to predict hidden links. We also

gained insight as it relates to clique infiltration. In fact, the clique expansion experi-

ments indicate that the model is performing as designed which is very reassuring. At

times, actors were able to relate to each other on shared attribute preferences alone;

yet, at other times, shared preferences for attributes did not seem to be enough
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Table 8. Distance between Education Preferences for actors in Clique 2

Actor j

i 9 11 14 16 22 23 25

9 0 0.0016 0.0008 0.5007 0.5026 0.5013 0.5062

11 0.0016 0 0.0008 0.5009 0.5010 0.5002 0.5078

14 0.0008 0.0008 0 0.5001 0.5018 0.5005 0.5070

16 0.2507 0.2509 0.2501 0 0.0019 0.0007 0.0069

22 0.2526 0.2510 0.2518 0.0019 0 0.0012 0.0088

23 0.2513 0.2502 0.2505 0.0007 0.0012 0 0.0075

25 0.2562 0.2578 0.2570 0.0069 0.0088 0.0075 0

Table 9. Distance between Age Preference actors in Clique 2

Actor j

i 9 11 14 16 22 23 25

9 0 0.0028 0.0062 0.0028 0.0055 0.0067 0.0054

11 0.0028 0 0.0034 0.0000 0.0027 0.0039 0.0082

14 0.0062 0.0034 0 0.0034 0.0007 0.0005 0.0116

16 0.0028 0.0000 0.0034 0 0.0027 0.0039 0.0082

22 0.0055 0.0027 0.0007 0.0027 0 0.0012 0.0109

23 0.0067 0.0039 0.0005 0.0039 0.0012 0 0.0120

25 0.0054 0.0082 0.0116 0.0082 0.0109 0.0120 0

Table 10. Distance between Income Preferences for actors in Clique 2

Actor j

i 9 11 14 16 22 23 25

9 0 0.0009 0.0013 0.0003 0.0006 0.0002 0.0055

11 0.0009 0 0.0004 0.0006 0.0002 0.0011 0.0047

14 0.0013 0.0004 0 0.0010 0.0007 0.0015 0.0042

16 0.0003 0.0006 0.0010 0 0.0003 0.0005 0.0052

22 0.0006 0.0002 0.0007 0.0003 0 0.0009 0.0049

23 1.0002 1.0011 1.0015 1.0005 1.0009 0 1.0058

25 0.0055 0.0047 0.0042 0.0052 0.0049 0.0058 0

to make connections. For instance, the numerous failures of actor 10 to penetrate

Clique 1 reflect the impact of categorical differences on friendship choices. The model



CONTROL THEORY METHODOLOGY FOR SOCIAL NETWORKS 345

Table 11. Distance between Political Preferences for actors in Clique 2

Actor j

i 9 11 14 16 22 23 25

9 0 0.0012 0.0010 0.0009 0.0035 0.0028 0.0064

11 0.5012 0 1.0002 0.5003 1.0022 0.5016 1.0076

14 2.5510 1.7002 0 2.5501 0.0024 2.5517 0.0074

16 0.0009 0.0003 0.0001 0 0.0025 0.0018 0.0073

22 2.5535 1.7022 0.0024 2.5525 0 2.5507 0.0098

23 0.0028 0.0016 0.0017 0.0018 0.0007 0 0.0091

25 2.5564 1.7076 0.0074 2.5573 0.0098 2.5591 0

Table 12. Distance between Religious Preferences for actors in Clique 2

Actor j

i 9 11 14 16 22 23 25

9 0 0.0016 0.0000 0.0008 0.0013 0.0003 0.0025

11 0.0016 0 0.0017 0.0008 0.0003 0.0019 0.0041

14 0.0000 0.0017 0 0.0009 0.0014 0.0002 0.0025

16 0.0008 0.0008 0.0009 0 0.0005 0.0011 0.0033

22 0.0013 0.0003 0.0014 0.0005 0 0.0016 0.0039

22 0.0003 0.0019 0.0002 0.0011 0.0016 0 0.0022

25 0.0025 0.0041 0.0025 0.0033 0.0039 0.0022 0

highlights the significant role that attitudes toward diversity can play in making con-

nections via its similarity measures which account for categorical preferences thus

adding an element of realism.
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(a) Before Infiltration

(b) After Infiltration

Figure 4. Social Distance between Actor 14 and Clique 2
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