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ABSTRACT. In this work, the modeling and stability problem for queueing systems with failures
in their normal operation is considered. Two types of failures are contemplated. The first one due to
server breakdown while the second due to consumer interruption while in service. Timed Petri nets
is the mathematical and graphical modeling technique utilized. Lyapunov stability theory provides
the required tools needed to aboard the stability problem for fault queuing systems modeled with
timed Petri nets. Employing Lyapunov methods, a sufficient condition for stabilization is obtained.
It is shown that it is possible to restrict the fault queuing systems state space in such a way that
boundedness is guaranteed. However, this restriction results to be vague. This inconvenience is
overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned
to the timed Petri net graphical model.
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1. Introduction

A queuing system, is a dynamical system whose state evolves in time by the

occurrence of events at possibly irregular time intervals, (therefore belong to the

class of dynamical systems known as discrete event systems). Place-transitions Petri

nets (commonly called Petri nets) are a graphical and mathematical modeling tool

that can be applied to queuing systems in order to represent its states evolution.

Petri nets are known to be useful for analyzing the systems properties in addition

of being a paradigm for describing and studying information processing systems.

Timed Petri nets are an extension of Petri nets, where now the timing at which

the state changes is taken into consideration. This is of critical importance since

it allows to consider useful measures of performance as for example: how long does

the queuing system spends at a given state etc. For a detailed discussion of Petri

net theory see [1] and the references quoted therein. One of the most important

performance issues to be considered in a queuing system is its stability. Lyapunov

stability theory provides the required tools needed to aboard the stability problem

for queuing systems modeled with timed Petri nets whose mathematical model is

given in terms of difference equation. By proving practical stability one is allowed
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to preassigned the bound on the queuing systems dynamics performance. Moreover,

employing Lyapunov methods, a sufficient condition for the stabilization problem is

also obtained. It is shown that it is possible to restrict the queuing systems state space

in such a way that boundedness is guaranteed. However, this restriction results to be

vague. This inconvenience is overcome by considering a specific recurrence equation,

in the max-plus algebra, which is assigned to the the timed Petri net graphical model.

This paper is about the modeling and stability problem for queueing systems with

failures in their normal operation. Two types of failures are contemplated. The first

one due to server breakdown while the second due to consumer interruption while

in service. For work dealing with fault queueing systems, which (up to the author’s

knowledge) mainly take a stochastic approach, the reader is asked to search in the

web, where a huge bibliography can be found. The paper is organized as follows.

In section 2, Lyapunov theory for discrete event systems modeled with Petri nets is

given. Section 3, presents max-plus algebra. In section 4, the solution to the stability

problem for discrete event systems modeled with timed Petri nets is considered .

Finally, in section 7 the modeling and stability analysis for fault queuing systems is

addressed. Some conclusion remarks are also provided.

2. Lyapunov Stability and Stabilization of Discrete Event Systems

modeled with Petri Nets [2, 3]

NOTATION: N = {0, 1, 2, . . . }, R+ = [0,∞), N+
n0

= {n0, n0 + 1, . . . , n0 + k, . . . },
n0 ≥ 0. Given x, y ∈ Rn, x ≤ y is equivalent to xi ≤ yi,∀i. A function f(n, x),

f : N+
n0
× Rn → Rn is called nondecreasing in x if given x, y ∈ Rn such that x ≥ y

and n ∈ N+
n0

then, f(n, x) ≥ f(n, y). Consider systems of first ordinary difference

equations given by

(2.1) x(n + 1) = f [n, x(n)], x(no) = x0, n ∈ N+
n0

where n ∈ N+
n0

, x(n) ∈ Rn and f : N+
n0
×Rn → Rn is continuous in x(n).

Definition 1. The n vector valued function Φ(n, n0, x0) is said to be a solution of

(2.1) if Φ(n0, n0, x0) = x0 and Φ(n + 1, n0, x0) = f(n, Φ(n, n0, x0)) for all n ∈ N+
n0

.

Definition 2. The system (2.1) is said to be i). Practically stable, if given (λ, A)

with 0 < λ < A, then

|x0| < λ ⇒ |x(n, n0, x0)| < A, ∀n ∈ N+
n0

, n0 ≥ 0;

ii). Uniformly practically stable, if it is practically stable for every n0 ≥ 0.

Definition 3. A continuous function α : [0,∞) → [0,∞) is said to belong to class K
if α(0) = 0 and it is strictly increasing.

Consider a vector Lyapunov function v(n, x(n)), v : N+
n0
× Rn → Rp

+ and define

the variation of v relative to (2.1) by

(2.2) ∆v = v(n + 1, x(n + 1))− v(n, x(n))

Then, the following result concerns the practical stability of (1).
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Theorem 4. Let v : N+
n0
× Rn → Rp

+ be a continuous function in x, define the

function v0(n, x(n)) =
∑p

i=1 vi(n, x(n)) such that satisfies the estimates

(2.3) b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|); a, b ∈ K, ∆v(n, x(n)) ≤ w(n, v(n, x(n)))

for n ∈ N+
n0

, x(n) ∈ Rn , where w : N+
n0
× Rp

+ → Rp is a continuous function

in the second argument. Assume that: g(n, e) , e + w(n, e) is nondecreasing in e,

0 < λ < A are given and finally that a(λ) < b(A) is satisfied. Then, the practical

stability properties of

(2.4) e(n + 1) = g(n, e(n)), e(n0) = e0 ≥ 0

imply the practical stability properties of system (2.1).

Corollary 5. In Theorem 4: i). If w(n, e) ≡ 0 we get uniform practical stability

of (1) which implies structural stability. ii). If w(n, e) = −c(e), for c ∈ K, we get

uniform practical asymptotic stability of (2.1).

Definition 6. A Petri net is a 5-tuple, PN = {P, T, F, W, M0} where: P = {p1, p2, . . . ,

pm} is a finite set of places, T = {t1, t2, . . . , tn} is a finite set of transitions, F ⊂
(P × T ) ∪ (T × P ) is a set of arcs, W : F → N+

1 is a weight function, M0: P → N is

the initial marking, P ∩ T = ∅ and P ∪ T 6= ∅.

Definition 7. The clock structure associated with a place pi ∈ P is a set V = {Vi :

pi ∈ P } of clock sequences Vi = {vi,1, vi,2, . . . }, vi,k ∈ R+, k = 1, 2, . . .

The positive number vi,k, associated to pi ∈ P , called holding time, represents

the time that a token must spend in this place until its outputs enabled transitions

ti,1, ti,2, . . . , fire. We partition P into subsets P0 and Ph, where P0 is the set of places

with zero holding time, and Ph is the set of places that have some holding time.

Definition 8. A timed Petri net is a 6-tuple TPN = {P, T, F, W, M0,V} where

{P, T, F, W, M0} are as before, and V = {Vi : pi ∈ P } is a clock structure. A timed

Petri net is a timed event petri net when every pi ∈ P has one input and one output

transition, in which case the associated clock structure set of a place pi ∈ P reduces

to one element Vi = {vi}

Notice that if W (p, t) = α (or W (t, p) = β) then, this is often represented graph-

ically by α, (β) arcs from p to t (t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at

time k and let Mk = [Mk(p1), . . . ,Mk(pm)]T denote the marking (state) of PN at

time k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj) for

all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there exists at

least one transition to fire. If a transition is enabled then, it can fire. If an enabled

transition tj ∈ T fires at time k then, the next marking for pi ∈ P is given by

(2.5) Mk+1(pi) = Mk(pi) + W (tj, pi)−W (pi, tj).
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Let A = [aij] denote an n × m matrix of integers (the incidence matrix) where

aij = a+
ij − a−ij with a+

ij = W (ti, pj) and a−ij = W (pj, ti). Let uk ∈ {0, 1}n de-

note a firing vector where if tj ∈ T is fired then, its corresponding firing vector

is uk = [0, . . . , 0, 1, 0, . . . , 0]T with the one in the jth position in the vector and zeros

everywhere else. The nonlinear difference matrix equation describing the dynamical

behavior represented by a PN is:

(2.6) Mk+1 = Mk + AT uk

where if at step k, a−ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and if this ti ∈ T

fires then, its corresponding firing vector uk is utilized in the difference equation to

generate the next step. Notice that if M ′ can be reached from some other marking

M and, if we fire some sequence of d transitions with corresponding firing vectors

u0, u1, . . . , ud−1 we obtain that

(2.7) M ′ = M + AT u, u =
d−1∑
k=0

uk.

Let (Nm
n0

, d) be a metric space where d : Nm
n0
×Nm

n0
→ R+ is defined by

d(M1, M2) =
m∑

i=1

ζi|M1(pi)−M2(pi)|; ζi > 0

and consider the matrix difference equation which describes the dynamical behavior

of the discrete event system modeled by a PN , see (2.7).

Proposition 9. Let PN be a Petri net. PN is uniform practical stable if there exists

a Φ strictly positive m vector such that

(2.8) ∆v = uT AΦ ≤ 0

Moreover, PN is uniform practical asymptotic stable if the following equation holds

(2.9) ∆v = uT AΦ ≤ −c(e), c ∈ K

Lemma 10. Let suppose that Proposition 9 holds then,

(2.10) ∆v = uT AΦ ≤ 0 ⇔ AΦ ≤ 0

Remark 11. Notice that since the state space of a TPN is contained in the state

space of the same now not timed PN, stability of PN implies stability of the TPN.

2.1. Lyapunov Stabilization.

Definition 12. Let PN be a Petri net. PN is said to be stabilizable if there exists

a firing transition sequence with transition count vector u such that system (2.7)

remains bounded.

Proposition 13. Let PN be a Petri net. PN is stabilizable if there exists a firing

transition sequence with transition count vector u such that the following equation

holds

(2.11) ∆v = AT u ≤ 0
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Remark 14. By fixing a particular u, which satisfies (2.11), the state space is re-

stricted to those markings that are finite.

3. Max-Plus Algebra [4, 5]

3.1. Basic Definitions. NOTATION: ε = −∞, e = 0, Rmax = R ∪ {ε}, n =

1, 2, . . . , n. Let a, b ∈ Rmax and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b)

and a⊗ b = a + b.

Definition 15. The set Rmax with the two operations ⊕ and ⊗ is called a max-plus

algebra and is denoted by <max = (Rmax,⊕,⊗, ε, e).

Definition 16. A semiring is a nonempty set R endowed with two operations ⊕R,

⊗R, and two elements εR and eR such that: ⊕R is associative and commutative with

zero element εR, ⊗R is associative, distributes over ⊕R, and has unit element eR, ∈Ris

absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R.

In addition if ⊗R is commutative then R is called a commutative semiring, and

if ⊕R is such that a⊕R a = a, ∀a ∈ R then it is called idempotent.

Theorem 17. The max-plus algebra <max = (Rmax,⊕,⊗, ε, e) has the algebraic struc-

ture of a commutative and idempotent semiring.

3.2. Matrices and Graphs. Let Rn×n
max be the set of n×n matrices with coefficients

in Rmax with the following operations: The sum of matrices A, B ∈ Rn×n
max , denoted

A⊕B is defined by: (A⊕B)ij = aij⊕bij = max(aij, bij) for i and j ∈ n. The product of

matrices A ∈ Rn×l
max, B ∈ Rl×n

max, denoted A⊗B is defined by: (A⊗B)ik =
l⊗

j=1

(aij⊗bjk)

for i and k ∈ n. Let E ∈ Rn×n
max denote the matrix with all its elements equal to ε and

denote by E ∈ Rn×n
max the matrix which has its diagonal elements equal to e and all

the other elements equal to ε. Then, the following result can be stated.

Theorem 18. The 5-tuple <n×n
max = (Rn×n

max ,⊕,⊗, E , E) has the algebraic structure of

a noncommutative idempotent semiring.

Definition 19. Let A ∈ Rn×n
max and k ∈ N then the k-th power of A denoted by A⊗k

is defined by: A⊗k = A⊗ A⊗ · · · ⊗ A, (k times), where A⊗0 is set equal to E.

Definition 20. A matrix A ∈ Rn×n
max is said to be regular if A contains at least one

element distinct from ε in each row.

Definition 21. Let N be a finite and non-empty set and consider D ⊆ N ×N . The

pair G = (N ,D) is called a directed graph, whereN is the set of elements called nodes

and D is the set of ordered pairs of nodes called arcs. A directed graph G = (N ,D) is

called a weighted graph if a weight w(i, j) ∈ R is associated with any arc (i, j) ∈ D.

Let A ∈ Rn×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N (A) = n and a pair (i, j) ∈ n× n will be a

member of D(A) ⇔ aji 6= ε, where D(A) denotes the set of arcs of G(A).
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Definition 22. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈
D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists of

the nodes i = i1, i2, . . . , im, jm = j with length m denoted by |p|1 = m. In the case

when i = j the path is said to be a circuit. A circuit is said to be elementary if nodes

ik and il are different for k 6= l. A circuit consisting of one arc is called a self-loop.

Let us denote by P (i, j; m) the set of all paths from node i to node j of length

m ≥ 1 and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight of

a path p ∈ P (i, j; m) denoted by | p |w is defined to be the sum of the weights of all

the arcs that belong to the path. The average weight of a path p is given by |p|w/|p|1.
Given two paths, as for example, p = ((i1, i2), (i2, i3)) and q = ((i3, i4), ((i4, i5) in

G(A) the concatenation of paths ◦ : G(A) × G(A) → G(A) is defined as p ◦ q =

((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph G(A) and powers of matrix

A are closely related as it is shown in the next theorem.

Theorem 23. Let A ∈ Rn×n
max , then ∀k ≥ 1 : [A⊗k]ji = max{|p|w : p ∈ P (i, j; k)},

where [A⊗k]ji = ε in the case when P (i, j; k) is empty i.e., no path of length k from

node i to node j exists in G(A).

Definition 24. Let A ∈ Rn×n
max then define the matrix A+ ∈ Rn×n

max as: A+ =
∞⊕

k=1

A⊗k

where the element [A+]ji gives the maximal weight of any path from j to i. If in

addition one wants to add the possibility of staying at a node then one must include

matrix E in the definition of matrix A+ giving rise to its Kleene star representation

defined by: A∗ =
∞⊕

k=0

A⊗k.

Lemma 25. Let A ∈ Rn×n
max be such that any circuit in G(A) has average circuit

weight less than or equal to ε. Then it holds that: A∗ =
n−1⊕
k=0

A⊗k.

Definition 26. Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable from

node i, denoted as iRj, if there exists a path from i to j. A graph G is said to be

strongly connected if ∀i, j ∈ N , jRi. A matrix A ∈ Rn×n
max is called irreducible if its

communication graph is strongly connected, when this is not the case matrix A is

called reducible.

Definition 27. Let G = (N ,D) be a not strongly connected graph and i, j ∈ N ,

node j communicates with node i, denoted as iCj, if either i = j or iRj and jRi.

The relation iCj defines an equivalence relation in the set of nodes, and therefore a

partition of N into a disjoint union of subsets, the equivalence classes, N1,N2, . . . ,Nq

such that N = N1 ∪N2 ∪ · · · ∪ Nq or N =
⋃

i∈N
[i]; [i] = {j ∈ N : iCj}.

Given the above partition, it is possible to focus on subgraphs of G denoted by

Gr = (Nr,Dr); r ∈ q where Dr denotes the subset of arcs, which belong to D, that

have both the begin node and end node inNr. If Dr 6= ∅, the subgraph Gr = (Nr,Dr)

is known as a maximal strongly connected subgraph of G.
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Definition 28. The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ =

{[i1] , [i2] , . . . [iq]} and ([ir], [is]) ∈ D̃ if r 6= s and there exists an arc (k, l) ∈ D for

some k ∈ [ir] and l ∈ [is].

Let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e.,

[Arr]kl = akl ∀k, l ∈ [ir]. Then ∀r ∈ q either Arr is irreducible or is equal to ε.

Therefore since by construction the reduced graph does not contain any circuits, the

original reducible matrix A after a possible relabeling of the nodes in G(A), can be

written as:

(3.1) A =


A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
...

...
...

. . . . . .
...

E E · · · E Aqq


with matrices Asr 1 ≤ s < r ≤ q, where each finite entry in Asr corresponds to an

arc from a node in [ir] to a node in [is].

Definition 29. Let A ∈ Rn×n
max be a reducible matrix then, the block upper triangular

given by (3.1) is said to be a normal form of matrix A.

3.2.1. Spectral Theory and Linear Equations.

Definition 30. Let A ∈ Rn×n
max be a matrix. If µ ∈ Rmax is a scalar and v ∈ Rn

max is

a vector that contains at least one finite element such that: A⊗ v = µ⊗ v then, µ is

called an eigenvalue and v an eigenvector.

Let C(A) denote the set of all elementary circuits in G(A) and write: λ = max
p∈C(A)

|p|w
|p|1

for the maximal average circuit weight. Notice that since C(A) is a finite set, the

maximum is attained (which is always the case when matrix A is irreducible). In case

C(A) = ∅ define λ = ε.

Definition 31. A circuit p ∈ G(A) is said to be critical if its average weight is

maximal. The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the graph

consisting of those nodes and arcs that belong to critical circuits in G(A).

Theorem 32. If A ∈ Rn×n
max is irreducible, then there exists one and only one fi-

nite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to the

maximal average weight of circuits in G(A) λ(A) = max
p∈C(A)

|p|w
|p|1

Theorem 33. Let A ∈ Rn×n
max and b ∈ Rn

max. If the communication graph G(A) has

maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b solves the

equation x = (A⊗ x)⊕ b. Moreover, if the circuit weights in G(a) are negative then,

the solution is unique.
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3.3. Max-Plus recurrence equations for timed event Petri Nets.

Definition 34. Let Am ∈ Rn×n
max for 0 ≤ m ≤ M and x(m) ∈ Rn

max for−M ≤ m ≤ −1;

M ≥ 0. Then, the recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k −m); k ≥ 0 is called

an Mth order recurrence equation.

Theorem 35. The M th order recurrence equation, given by equation x(k) =
M⊕

m=0

Am⊗

x(k−m); k ≥ 0, can be transformed into a first order recurrence equation x(k +1) =

A⊗ x(k); k ≥ 0 provided that A0 has circuit weights less than or equal to zero.

With any timed event Petri net, matrices A0, A1, . . . , AM ∈ Nn×Nn can be defined

by setting [Am]jl = ajl, where ajl is the largest of the holding times with respect to

all places between transitions tl and tj with m tokens, for m = 0, 1, . . . ,M , with M

equal to the maximum number of tokens with respect to all places. Let xi(k) denote

the kth time that transition ti fires, then the vector x(k) = (x1(k), x2(k), . . . xm(k))T ,

called the state of the system, satisfies the Mth order recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k − m); k ≥ 0. Now, assuming that all the hypothesis of Theorem 35

are satisfied, and setting x̂(k) = (xT (k), xT (k − 1), . . . , xT (k − M + 1))T , equation

x(k) =
M⊕

m=0

Am ⊗ x(k −m); k ≥ 0 can be expressed as: x̂(k + 1) = Â⊗ x̂(k); k ≥ 0,

which is known as the standard autonomous equation.

4. The Solution to the stability Problem for Discrete Event Dynamical

Systems Modeled with timed Petri Nets

Definition 36. A TPN is said to be stable if all the transitions fire with the same

proportion i.e., if there exists q ∈ N such that

(4.1) lim
k→∞

xi(k)

k
= q,∀i = 1, . . . , n

This means that in order to obtain a stable TPN all the transitions have to be

fired q times. It will be desirable to be more precise and know exactly how many

times. The answer to this question is given next.

Lemma 37. Consider the recurrence relation x(k + 1) = A ⊗ x(k), k ≥ 0, x(0) =

x0 ∈ Rn arbitrary. A an irreducible matrix and λ ∈ R its eigenvalue then,

(4.2) lim
k→∞

xi(k)

k
= λ, ∀i = 1, . . . , n

Proof. Let v be an eigenvector of A such that x0 = v then,

x(k) = λ⊗k ⊗ v ⇒ x(k) = kλ + v ⇒ x(k)

k
= λ +

v

k
⇒ lim

k→∞

xi(k)

k
= λ
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Now starting with an unstable TPN , collecting the results given by: proposition

(13), what has just been discussed about recurrence equations for TPN at the end of

subsection (3.3) and the previous lemma (37) plus theorem (32), the solution to the

problem is obtained.

5. Modeling and Stability Analysis of Fault Queueing Systems

In this section the modeling and stability problem for queueing systems with failures

is addressed. Two cases are contemplated. The first one due to server breakdown

while the second due to consumer interruption while in service.

Case I: Server breakdown

Figure 1. Server breakdown timed Petri net model

Consider a simple one server queuing system whose regular operation fails due to

server breakdown. Its TPN model is depicted in Fig 1, where the events (transitions)

that drive the system are: q: consumers arrive to the queue, s: service starts, b: the

server breaks, r: the service is restored, d: the customer departs. The places (that

represent the states of the queue) are: A: consumers arriving, P: the consumers are

waiting for service in the queue, B: the consumer is being served, D: service out of

order, I: the server is idle. The holding times associated to the places A and I are Ca

and Cd respectively, (with Ca > Cd). The incidence matrix that represents the PN

model is

A =


0 1 0 0 0

0 −1 1 −1 0

0 0 −1 1 0

0 0 −1 0 1

0 0 0 1 −1


Therefore since there does not exists a Φ strictly positive m vector such that AΦ ≤ 0

the sufficient condition for stability is not satisfied, (moreover, the PN (TPN) is

unbounded since by the repeated firing of q, the marking in P grows indefinitely).

However, by taking u = [k, k, k/2, k/2, k/2]; k > 0 (but unknown) we get that AT u ≤
0. Therefore, the PN is stabilizable which implies that the TPN is stable. Now, let
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us proceed to determine the exact value of k. From the TPN model we obtain that:

A0 =


ε ε ε ε ε

0 ε ε ε ε

ε 0 ε ε ε

ε ε ε ε ε

ε ε ε 0 ε

 and A1 =


Ca ε ε ε ε

ε ε Cd ε Cd

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε


which implies

A∗
0 =


0 ε ε ε ε

0 0 ε ε ε

0 0 0 ε ε

ε ε ε 0 ε

ε ε ε 0 0

 ,

leading to:

Â = A∗
0 ⊗ A1 =


Ca ε ε ε ε

Ca ε Cd ε Cd

Ca ε Cd ε Cd

ε ε ε ε ε

ε ε ε ε ε


Therefore, λ(A) = max

p∈C(A)

|p|w
|p|1

= max{Ca, Cd} = Ca. This means that in order for the

TPN to be stable and work properly the speed at which the service operates has to

be equal to Ca (the firing speed of transition q) which is attained by taking k = Ca.

Case II: Consumer induced interruption

Figure 2. Consumer induced interruption timed Petri net model

Consider a simple one server queuing system whose regular operation fails due to

consumer induced interruption. Its TPN model is depicted in Fig 2, where the events

(transitions) that drive the system are: q: consumers arrive to the queue, s: service

starts, c: the consumer interrupts the service, r: the consumer returns for service,

d: the consumer departs. The places (that represent the states of the queue) are:

A: consumers arriving, P: the consumers are waiting for service in the queue, B: the

consumer is being served, D: the consumer is busy, I: the server is idle. The holding

times associated to the places A and I are Ca and Cd respectively, (with Ca > Cd).
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The incidence matrix that represents the PN model is

A =


0 1 0 0 0

0 −1 1 −1 0

0 0 −1 1 0

0 0 −1 1 1

0 1 0 0 −1


Therefore since there does not exists a Φ strictly positive m vector such that AΦ ≤ 0

the sufficient condition for stability is not satisfied, (moreover, the PN (TPN) is

unbounded since by the repeated firing of q, the marking in P grows indefinitely).

However, by taking u = [k/2, k, k/2, k/2, k/2]; k > 0 (but unknown) we get that

AT u ≤ 0. Therefore, the PN is stabilizable which implies that the TPN is stable.

Now, let us proceed to determine the exact value of k. From the TPN model we

obtain that:

A0 =


ε ε ε ε ε

ε 0 ε ε ε

ε 0 ε ε ε

ε ε ε ε ε

ε ε ε 0 ε

 and A1 =


Ca ε ε ε ε

ε ε Cd Cd ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε


which implies

A∗
0 =


0 ε ε ε ε

ε 0 ε ε ε

ε 0 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0

 ,

leading to:

Â = A∗
0 ⊗ A1 =


Ca ε ε ε ε

ε ε Cd Cd ε

ε ε Cd Cd ε

ε ε ε ε ε

ε ε ε ε ε


Therefore, λ(A) = max

p∈C(A)

|p|w
|p|1

= max{Ca, Cd} = Ca. This means that in order for the

TPN to be stable and work properly the speed at which the service operates has to

be equal to Ca (the sum of the firing speeds of transition q and r) which is attained

by taking k = Ca.

6. Conclusions

This paper studies the modeling and stability problem for fault queuing systems using

timed Petri nets and Lyapunov methods, unlike most of the approaches found in the

literature which employ stochastic processes theory. Therefore, the results obtained,

which are consistent to what was expected, are qualitative rather that quantitative.
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