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Abstract: In this paper, we discuss the application of smart alternating group explicit (SMAGE)
iteration and Newton-SMAGE iteration methods for the cubic spline solution of non-linear
differential equation u” = f (Xx,u,u’) subject to given natural boundary conditions. We compared

the results of proposed SMAGE iteration method with the results of corresponding two parameter
alternating group explicit (TAGE) iteration methods to demonstrate computationally the
efficiency of the proposed method.
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1. INTRODUCTION

Consider the two point boundary value problem

Llu()]=-u"(x)+ f(x,u,u)=0, 0<x<1 (1)
with natural boundary conditions

u@=A u@®=8B (2)

where A and B are constants. We assume that for 0<x <1 and —o<u,v<oo

0] f (x,u,Vv)is continuous,
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(i) (gi and a exist and are continuous, and

u ov

(iii) Z—L >0and ‘% <W for some positive constant W.

These conditions assure that the boundary value problem (1)-(2) has a unique solution
(Keller, 1992).

(Chawla & Subramanian, 1988) constructed a fourth order cubic spline method for
second-order mildly nonlinear two point boundary value problems. In the recent past,
many authors have suggested various numerical methods based on cubic spline
approximations for the solution of linear singular two point boundary value problems
(Al-Said, 2001; Ravi Kanth & Reddy, 2005; Al-Said & Noor, 2006). (Evans, 1985)
developed the group explicit method for solving large linear systems arising from the
discretization of differential equations. (Sukon & Evans, 1996) introduced two parameter
alternating group explicit (TAGE) iterative methods for the solution of tri-diagonal linear
system of equations. Later, (Mohanty & Evans, 2003; Mohanty et al, 2004) discussed the
application of TAGE iterative method to fourth order accurate cubic spline
approximation for the solution of non-linear singular two point boundary problems. In
this paper, we discuss the smart alternating group explicit (SMAGE) and Newton-
SMAGE iteration methods, and fourth order cubic spline finite difference approximation
and their application to linear and nonlinear differential equations.

2. CUBIC SPLINE APPROXIMATION AND APPLICATION

To obtain a cubic spline solution of the boundary value problem (1) and (2), we choose a
uniform mesh spacing h> 0along the x-direction. The interval [0, 1] is divided into a set
of points with interval spacing of h=1/(N +1), N being a positive integer. The cubic spline
approximation to equation (1) is obtained on [0,1] which consists of the central point
X =kh and the two neighboring points x,, =% +h and x_,=x -h, k=11)N, where x=0
and xy+1 = 1. Let U, =u(X,) be the exact solution of u at the grid point X, and is
approximated by u.

At each internal mesh point xi, we denote:

M, =u"(x) = f (X, u(x.),u’ (%)), k=0@)N +1.
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Given the values u,,u,,...,uy, of the function u(x)at the mesh points X,, X;,..., Xy
and the values of the second derivatives of u at the end points uy and ug,,,, there exists a
unique interpolating cubic spline function S(x) with the following properties:

0] S(x) coincides with a polynomial of degree three on each [x, ,,x. 1, k =1()N +1
(i)  S(x)eC?0,1] and
@)  S(x.)=u,,k=0Q)N +1

The interpolating cubic spline polynomial may be written as:

—x)° _ 3 2 B
S(X):MW1+MMK{UH_%MHJ(XK X)

6h 6h h 3)
2 _
+[uk—%MkJ(x—hx“), X1 XX, k=1()N+1
We consider the following approximations:
Xeey =% T10, 0<p<l, 4.1)
mk = U;L = (Uk+l _h_Uk_l),
2 (4.2)
(£3U,,, F AU, £ U, )
My = oh )
(4.3)
f = f (X, U, m,), (4.4)
f_kﬂ = F (e Upsrs Micsr), (45)
ﬁkin =1y + (L—u, +h*( pf_kﬂ + q]?k ) (4.6)
g l * 7 * 7
My, :iﬁ(ukﬂ_uk)ih(p fea +0 f), 4.7)
.~ h - -
m, =m, _E(fkﬂ = fi), (4.8)
Fien = T sy M, ) (4.9)

fo = f (%, U, hy), (4.10)
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_n0’ =) . _dp 1, 1

where p= 5 p T 2[77 3}
@-m[a-n"-1] . dq 1[1

= y == —— 1— 2 .

q 5 q a 2{3 ( 77)}

Then the cubic spline method with order of accuracy four for the differential equation (1)
may be written as:

—h

h? - .
Uk+1—2Uk+UH=T[ k+,7+fk,,,+(12772—2)fk}+Tk, 0<n<l k=1ON (5)

772
where T, =0(h®) ( Jain & Aziz, 1983) with u,=Aandu,,, =B.
Let us discuss the application of the difference formula (5) to the following singular

problems

u"=D(X)u'+E(X)u+ f(x), 0<x<1 (6)

and
w"=B(X)u’+uu’+C(x)u+g(x), O0<x<1 (7

where v=R;'>0 isa constant and
D(X)=-a/x and E(X)=a/x*,B(x)=-av/x and E(x)=av/x’.

Fora =0, the non-linear singular problem (7) represents steady-state Burger’s equation in
Cartesian coordinates.

Now applying the difference formula (5) to the singular equations (6) and (7) and using
the technique discussed by (Mohanty et al., 2003), we may obtain the following fourth
order difference scheme

au,, +2bu, +cu,,,=d,, 0<n=<l k=11)N, (8)

for the numerical solution of the differential equation (6), where

o (6n 1 (2—am)

1 2O D (s an—2a)+ 2V
a, +12ﬂ( ” +2k3( n+an—2a)+ |
1

1
b, =1+ %(F(GnJrom— 2)+W(6n+an— 2(1)},
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o -6n 1 2—om
Ck =—1+E(T—W(6n+om—2a)+%],

_h2 hO( ’ 2¢nm a 2
dkzm{n(12fk+?fk+h ka+ka(377 -29)|.

and the following fourth order difference scheme

hZ
¢(uk—1' Uy vuk+1) = _V[uk+1 —2u, + uk—l] + E[ Lu, +1, (uk+1 - kal)
+1; (Uk+1 —2u, + uk—l) +1,Ug + 15U, (Uk+1 _uk—l) + 16U, (Uk+1 —2u, + kal)
+1, (ufu - Ui—l) +1g (ulil - ulf—l)(uk-ﬂ - uk—l) + |9uf (Uk+1 —2u, + uk—l)

gl (U U ) + ZP} =0, k=1U)N,

9)

for the numerical solution of the differential equation (7), where

2 —_—
| _12av  avh (6-0)

1_(Xk)2 o) —v'h*f/, l, i, + 20T - f,,
|3:0tV(2—20t), 4:2ahz, =4 20chz, I = 20, |
(%) (%) h3(%) (%)
1 ah | =v_’1 VI :_:
"hogx) o6 T g

and
2

SP=12f, +h? fk”+%( )
Kk

In order to avoid the numerical complexity, we consider, =1.

If the differential equation is linear, we can apply the two parameter SMAGE iterative
method and in the non-linear case, we can use the Newton-SMAGE iterative method to
obtain the solution.

3 SMAGE AND NEWTON-SMAGE ALGORITHMS
The linear system (8) in matrix form may be written as:

Ay=RH (10)
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where
2y ¢
a 2b,
A:

)

an1
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2by 4

Cn-1

INxN

Y1
Yo

LYN

INx1

and RH =

_z fi—aYo
2.t

z fN —CnYnsa

Nx1

'RH,
RH,

RHy

ANx1

(say).

To implement the SMAGE iterative method, we split the coefficient matrix A into two
sub-matrices A=G, +G,, where G, + wl and G, + wl are non-singular for any o >0. Now

we discuss the case when N is odd (with x,=0, Xy,,;=1).

by 0 b 0]

a b
b, ¢,
N-1 N-1
O ay by
byt Cnat
L an by NxN L O ,b_N_NxN
So that the system (10) can be re-written as
(G,+G,)y=RH (11)

Then a SMAGE method for solving the above system may be written as

(G +al)y*¥? =RH-2¥, s=012,...

29 =(G,-wl)y?, s=012,..

(G, + ol )y =20y**? +20 s=012,...

where z® =[z,z,

(12)
(13)
(14)

z,] and y**?is an intermediate vector. The SMAGE iterative

method saves time because of the single evaluation of the common term (G, -l )y® on
the right-hand side of the iterative method (12)-(14).

The algorithm for the method (12)-(14) is as follows:
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For simplicity, let us denote p, =b, +®,q, =b, —® , then the SMAGE method in the
matrix form may be written as:

r 7(s)

7 | -

QY1 +GYo
Y+ 0y,

On

0

() Pn-1
L ay
oo
aQH P
Pn-2 Cn-2
a1 Pna

0

anaYn-—2 TANaYN

YN

v L

7(s)

r (s+1/2)

Y1
Y2
Y3

Yn-2
YN

YN |

Ir (s+1)

Y1
Yo
Y3

Yn-2
Yn-1
YN

RH; -z
RH, -z,
RH; -1z,

RHy 2 -2y
RHy.1—Zna

| RHy — 2y

=2w

- ~(s+1/2)

Y1
Yo
Y3

Yn-2
Yn-1
YN

By carrying out the necessary algebra (12)-(14) can be written in the explicit form. We
obtain the following SMAGE algorithms:

Step | For k=1(2)N -1, we have

2 =gy

$ﬂ=%ﬂﬁ”+%ﬂﬁﬂ,s=011m

28 =quyy, s=012,...

and

Step Il For k =1, we have

yl(s+1/2) — (

+CYh S

Py

RH - 2(9)

’

=0,12,...

$s=0,12,...

For k ZZ(Z)N _1, Iet A: pk pk+l —Ckak+1 ?50,

R =RH{ 209, R, =RA(), 21



406 JYOTI TALWAR AND R.K. MOHANTY

(s+1/2) _ (R1 P — RZCk)
( U 1PkdA 27k

Then, Y, , $=012,...
A
R —
Yer'? =—( 2B Rlak”), $s=012,...
A
Step I For k=1(2)N -2, let A=p, p.; —C . %0,

Ro =20y " +22, R, =20y +23)

s4) _ (Rs Pra — R4Ck)

Then, ys e 52012,
y&izl)zwi S=0,1,2,...
A
Finally, for k = N,
Zwy(s+1/2) 470
y,‘\,s)z( N " ) $=012,...

Pn
In a similar manner, we can write the SMAGE algorithm when N is even.
Now, we discuss the Newton-SMAGE algorithm. We follow the technique used by
(Evans, 1985).

Let us define

Y1 #.(y)
y- y2 | oY) = ¢22(y)
YN I A (Y) Nl

and

T L
ak(y) 8}/ ’ () '

k-1

O
2b (y)=22% k=1()N,
(y) Y @

k

e ()= k-10)N-1.

k+1

Then the Jacobian of ¢@(y) can be written as the Nth-order tri-diagonal matrix
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[2b.(y) c(y) 0
5 a,(y) 2b,(y) c(y)
T= ¢(Y)= (15)
oy
. 0 ay(y) 2by(Y) |\.n

Now with any initial vector y®, we define

ye =y LAY 5=012,... (16)
where Ay® is the solution of the nonlinear system

TAY® =—p(y?), $s=0,12,... (17)

For the Newton-SMAGE method, we consider the case when N is odd. We split the
matrix Tas T =T, +T,, where

b O b ¢ O
a b
b, ¢,
T = a; b, . T =
! . 2 bya Cna
. ay by
O bya Cnaa O
L a by L [n Jyen (18)
then we write Newton-SMAGE method as:

2 =(T, —w)AYy", r=0(1)5 (19)
(T, + o)Ay D = (y) -2, r=0(1)5 (20)
(T, + @AY =20y "™? + 20 r=0(1)5 (21)

where o >0 are relaxation parameters and (T, +@l) and (T, + 1) are non-singular.
Since (T, +wl) and (T, +wl) consists of (2x2) sub-matrices, they can be easily inverted.

In order for this Newton-SMAGE method to converge it is sufficient that the initial
vector u© be close to the solution.

In a similar manner, we can write the Newton-SMAGE algorithm when N is even.
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4 CONVERGENCE OF SMAGE METHOD
The SMAGE iteration method is given by:
(G, + @)U =[1-(a+0,)(G +al) " |G, -l )u?
+(@,+@)(G, +@ 1) RH, s=012,.
or, u*? =T u® +RH,, s=0,12,.. (22)

where

T, =(G +&,1) (G, -al)-(a+a,)(G+al) (G, -al)]
and

RH, = (o +@,)(G, +@,1) " (G, + 1) RH

The matrix T, is called the SMAGE iteration matrix.
To prove the convergence of the method, we need to prove that S(T,)<1, where

S(T,, ) denotes the spectral radius of T,, .
. : 2
Lemmal.  For a=1 the eigenvalues of G, and G, are all real, provided 3 <n<l

. . 1
and for =2 the eigenvalues of G, and G, are all real, provided 3 <n<l

Proof: Consider =1,

1(6n, 1 (2-n)
=1+ = -2 , k=1()N
% +1211(|<+2k3(n ) @
£—1+i 6—n+i(7n—2)+(2_n)
2nl k2 K
1(1
P N A
+12n(2k( = )j
1(1 1 2
<1421 +2) |- (<Tn+2)<0, for S<n<l
+12n(2( 0+ )) (<o for 2

(2-m)
k2

<—1+i[(2_n)J <-1+ (2-n) = (2-13n) <0, for z <n<l
12n 12n 7 :

-—(T-2)+

], for k=11)N
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Therefore, for =1 we have a_,c, >0, fork=12)N-1.
Similarly, for a =2, we canshow a,c, >0, fork=1(2)N-1.

Let 4, i=1(1)N,be the eigenvalues of G,. Then / 'sare the roots of the quadratic
equation

22 =(b +b1) 4 +(bbi; —a5,.6) =0 (23)

Simplifying, we get

A=) (40,2 (0 -0, +4a0 | (24)

The discriminants of the quadratic equations are

(b —bi,)* +4a,¢ >0, k=12)N-1

Hence the eigenvalues of G,are real.In a similar manner we can show that the
eigenvalues of G, are real.

Now we give the sufficient condition for the convergence of the SMAGE method.

Theorem 1: Let 4 and g, i = 1(1)N, be the eigenvalues of G, and G, , respectively. If

@, >max{0,—-4,,...,—4} (25)
@, >max{0,—z4,...,— 14} (26)
@, —2min A <@, < @, +2min g (27)

then the SMAGE iterative method is convergent for the system (10).

Proof:

Let D=diag|1,2, 9% &% CNa|_giag(d, d, d,,...,d
¢ |ag( a, a3, a,a,...ay 189 (d Az 0y,

Since the off diagonal entries of A are negative. Therefore a,,,c, >0,k =1,...,N-1.

Therefore the diagonal entries of D are positive.
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The SMAGE iteration matrix is given by:

T,=(C.+01) (G -al)~(a+a) G +al) (G -al)]

(G, +a)2|)_l[| ~(a +a)2)(Gl+a)l|)_l](G2 —al)

Define

T, =(G, +&,1)T, (G, + o, | )71

[1-(@+@) (G +al)" (G, ~a1)(G, + @l )

S(T,)=S(T,)=s(D"*T,D™?)

w w

1

DY*T D2 :[I ~(01+@,)(G, +ay] )‘1](62 ~ay1)(G, +m, )‘l
where G, =D"’G,D™"? and G, = D"’G,D™?,

S(T,)=5s(T.)=5s(D"*1T,D"*)<|D"*T,D**|,

< [I ~(o,+@,) (G, + )1}“2 H(GZ ~a1)(G, + @, )71

2

It is easy to verify that G,and G,are symmetric. Therefore, the matrices

G,-w1)(G,+m,1) and | I —(a,+,)(G, +@1) " |are also symmetric.
(& +@,)

Hence,
&) o) -
[1-(@+0)@ )] -[(6 )G o) (@ oG a)]

= “[(Gl -, )] [(Gl +wl )71}

2

(G,~,1)(G, +@1) " is symmetric, therefore

(ﬂ1 @,)
(3 + )

2 11

H[(Gl —w,) )][(él rayl) }

Therefore, we have
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(4 )
(4 +a,)

(,Ui _a)l)
(ﬂi +a)2)

S(T)=

- A ea(él)

Hi Eff(éz)

From equations (25) and (26) we have: @, @, >0and 4 + @, >0 fork =1,..,N , hence

AZO g )N
A+

Also, from (27) we have:

W, <o +2minA, <o, + 24, i=11)N

AT gy
A+

A — o,

Hence, we conclude that <1, k=1)N
T

(4 —a,)

(4+a)

Thus, max <1

A eo‘(Gl)

(ﬂi _a)l)

<1
(,Ui +a)2)

Similarly, we can prove that ma(lé)
Hi €0\ 52

Hence, S(T,)<1.

Hence, the convergence of the SMAGE method (22) follows.

5 NUMERICAL ILLUSTRATIONS

We have solved the following two problems to illustrate the proposed SMAGE iterative
method, whose exact solutions are known. We have also compared the proposed SMAGE
iterative methods with the corresponding TAGE iterative methods. The right-hand side
functions and boundary conditions can be obtained by using the exact solutions. The
initial vector 0 is used in all iterative methods, and iterations were stopped when

‘u(”l) —u®| <10 was achieved. While solving non-linear difference equations, we have

considered five inner iterations only.

Problem 1 u"=pu’, 0<x<1 (Convection-Diffusion equation) (28)
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The exact solution is u(x) =(1—e’ﬂ(“) ) / (1—e’ﬂ ) .The root mean square (RMS) errors and

the number of iterations both for SMAGE and TAGE methods are tabulated in table 1 for
various values of £.

Problem 2 wi"=(u-p)u’, 0<x<1 (Burgers’ equation) (29)
The exact solution is u(x) =/3[1—tanh(/3x/2v)] .The root mean square (RMS) errors and

the number of iterations both for both Newton-SMAGE and Newton-TAGE methods are
tabulated in table 2 for g =1/2 and various values of R, =v" .

Table 1: Problem 1: the RMS errors

TAGE method SMAGE method
N Oy = Doy | 11T cpu Oy = Doy | 1tET cpu time RMS errors
= Oy time = Wy (in sec) (for both TAGE
(in sec) and CAGE
method)
£ =10
10 0.725 24 0.0016 | 0.72 24 0.0013 0.1619(-03)
20 0.41 48 0.0034 | 0.4 42 0.0021 0.1169(-04)
30 0.28 70 0.0062 | 0.27 66 0.0038 0.2428(-05)
40 0.21 100 0.0108 | 0.21 85 0.0059 0.7884(-06)
60 0.15 150 0.0228 | 0.137 125 0.0116 0.1599(-06)
80 0.11 200 0.0398 | 0.103 163 0.0193 0.5131(-07)
£ =100
10 6.0 18 0.0014 | 5.98 18 0.00118 0.8820(-01)
20 24 17 0.0019 | 2.38 17 0.00145 0.1977(-01)
30 1.61 20 0.0024 | 1.61 21 0.00182 0.6125(-02)
40 1.22 26 0.0035 | 1.22 27 0.00249 0.2331(-02)
60 0.82 38 0.0065 | 0.835 39 0.00423 0.5187(-03)
80 0.62 50 0.0105 | 0.617 52 0.00669 0.1684(-03)
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Table 2: Problem 2: the RMS errors

Newton-TAGE method Newton-SMAGE method
_ — RMS errors
N Dhopt = Cocpt tter cpu time Phopt = Docp tor cpu time (for both Newton-
= Wy (in sec) = Wopt (in sec) TAGE and Newton-
CAGE method)

R=10,4=1/2
20 0.0270 15 0.0190 0.0270 15 0.0173 0.6970(-06)
30 0.0202 21 0.0212 0.0196 21 0.0182 0.1452(-06)
40 0.0154 28 0.0248 0.0150 28 0.0194 0.4719(-07)
60 0.0105 43 0.0353 0.0105 41 0.0228 0.9581(-08)
80 0.0093 57 0.0505 0.0077 55 0.0273 0.3081(-08)
R=50,=1/2
20 0.0100 06 0.0176 0.012 05 0.0168 0.1992(-03)
30 0.0080 06 0.0180 0.0079 06 0.0169 0.4113(-04)
40 0.0054 08 0.0191 0.006 07 0.0172 0.1295(-04)
60 0.0041 09 0.0208 0.0041 09 0.0179 0.2571(-05)
80 0.0029 12 0.0246 0.0031 11 0.0189 0.8188(-06)
R=100, 8 =1/2
20 0.0070 05 0.0175 0.007 05 0.0164 0.1016(-02)
30 0.0078 05 0.0182 0.0061 05 0.0169 0.3038(-03)
40 0.0044 06 0.0183 0.0059 05 0.0171 0.1518(-03)
60 0.0041 06 0.0195 0.004 06 0.0176 0.3085(-04)
80 0.00303 07 0.0212 0.003 07 0.0181 0.9571(-05)

6 FINAL REMARKS

The TAGE method requires two sweeps to solve a problem and also, it requires a lot of
algebra for computational work. In SMAGE method the amount of computational work is
comparatively reduced because of the evaluation of the common term. Experimentally,
although both TAGE and SMAGE method require approximately the same number of
iterations, but as compared to the TAGE method the corresponding SMAGE method
requires less time. We have solved two problems and numerical results shows the
efficiency of the proposed SMAGE method.
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