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Abstract: In this paper, we develop an O(k*+ k*h+ h,3) nine-point compact off-step finite difference

discretization for the solution of the system of two-dimensional non-linear elliptic equations subject
to Dirichlet boundary conditions, by using variable mesh lengths h; in x-direction and a constant
mesh length k in y-direction. We use only three function evaluations. Further we discuss the
conditions for the convergence of the iterative methods applied to the system of difference equations
so framed for the steady state 2D convection-diffusion equation. Numerical illustrations of some
benchmark problems including 2D non-linear convection equation and 2D steady-state Navier-stokes
equations of motion are provided to depict the efficiency of the method.
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1. INTRODUCTION

We consider the following system of two dimensional non-linear elliptic boundary
value problems
u® +u® = £O(x,y,u®,u® . u® u® u®, L u® u®,u®, ), (1)

1M o Mx o My My My g

defined in a bounded region Q ={(X,y)|0< X, y <1} with boundary 0Q , such that

u®(x, y) =ui"(x,y); (xy)eoQ, )
where throughout this paper, i varies from 1, 2,..., n, where n > 0 is a positive integer.

We assume that for (x,y) e Q and j=1,2,...,n,
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a) each fO(x,y,u® u®, .,u® uP u®, .,u ul ul?,.. ul”) is continuous,

X 1 Mx My My g My g
o0 o0 o _ _
b) —, —— and — exist and are continuous,
X y
of ® of 0 _ (i) _
©) — >0 | (J)|SG((})) and | = <H).
au |oul ou’

where G} and H{) are positive constants. These conditions guarantee the existence and

uniqueness of the solution of the above system of equations (Jain et al, 1991). Further we
assume that each u® eC®(Q), where C™(Q2) denotes the class of functions of x and y
whose partial derivatives upto order m are continuous in Q.

The second order non-linear elliptic partial differential equations (PDEs) occur in the
formulation of many applied problems in physics and engineering. There has been a
considerable interest by many authors in the development of compact finite difference
schemes for the solution of the linear as well as the non-linear elliptic boundary value
problems (Yavneh, 1997), (Zhang, 1997, 1998), (Spotz and Carey, 1995), (Sakurai et al,
2002), (Jain et al, 1994), (Saldanha, 2001), (Ananthakrishnaiah and Saldanha, 1995). The
standard central difference schemes though are simple to apply and yield second order
accuracy, they usually fail when applied to singular perturbation problems, specially when
the perturbation parameter & (say) is small. (Jain et al, 1989) developed a compact fourth
order discretization for elliptic equations with non-linear first derivative terms and constant
coefficients using only 9 grid points, which was further extended to the system of elliptic
PDEs with variable coefficients by (Jain et al, 1991) and (Mohanty, 1997). These schemes
used equal mesh sizes in both the coordinate directions. (Mohanty et al, 2006) proposed an
unequal mesh 9-point fourth order scheme for the solution of non-linear elliptic PDEs with
variable coefficients. However, all these schemes required modification at the points of
singularity. In this regard, (Mohanty and Singh, 2006) developed a high order arithmetic
average discretization for the singularly perturbed 2D nonlinear problems. All the above
schemes (Mohanty et al, 2006), (Jain et al, 1989), (Jain et al, 1991), (Mohanty, 1997) and
(Mohanty and Singh, 2006) were uniform mesh schemes and required five function
evaluations. Even the high order schemes would fail to give accurate results when the
perturbation factor & is small. This is because using a constant mesh length, attaining
convergence at all mesh points uniformly in & becomes difficult. For instance, we consider
the one dimensional steady state convection diffusion equation

gu, =u, + f(X) 3)

subject to the boundary conditions u(0)=« and u()= /. This equation models the
temperature u(x) of a fluid flowing through a pipe with a constant velocity, say a (called the
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convective velocity) where fluid has constant heat diffusion coefficient, say x. Then the
perturbation parameter & is given by the equation e = x/a. Physically, we should expect
difficulties in case where the convective velocity a overwhelms the diffusivity factor «, i.e.
when ¢ <<1, since in this case it would be very difficult to maintain a fixed temperature ( 5
here) at the outflow of the tube. Mathematically, we expect trouble as &£ — 0 because in the
limit £ =0, the above equation (3) reduces to a first order equation u,+ f(x)=0 which
allows only one boundary condition, rather than two. However, for £ >0, no matter how
small ¢ is, we have a second order equation that needs two conditions. Thus as ¢ — 0, the
solution tends towards a discontinuous function that jumps to the value g at the last
possible moment. This region of rapid transition is called the boundary layer. It is from here
that the need of choosing a variable mesh arises. In the past, some variable mesh methods
have been developed for the solution of singularly perturbed two point boundary value
problems by (Jain et al, 1983), (Mohanty, 2005) and (Kadalbajoo and Kumar, 2010).
Recently, (Mohanty and Setia, 2012) have proposed a new nine point fourth order accurate
numerical method based on off-step discretization on a constant mesh for the solution of the
system of two dimensional nonlinear elliptic partial differential equations. In this paper, we
design a high order variable mesh off-step discretization for the solution of the system of
two-dimensional non-linear elliptic PDEs (1), using a constant mesh length k in y-direction
and variable mesh lengths h, in x-direction and 9 grid points of a single computational cell
(see Fig.1). This method not only gives accurate results for small values of perturbation
parameter, but is also relatively simple to apply as it requires only three function evaluations
and can be directly applied to singular problems as well, without any modification.

This paper is organized as follows: In Section 2, the O(k® +k*h, +h*) compact off-step

discretization is described for the corresponding scalar elliptic boundary value problem. In
Section 3, this discretization is derived and extended to the system of equations (1). In
Section 4, we discuss the conditions for the convergence of the iterative methods to be
applied to solve the tri-block-diagonal system of difference equations so obtained. In Section
5, we give numerical examples to illustrate our method. Section 6 contains some concluding
remarks on this paper.

(X1, ym+1) (X1, ym+1)

/I\ (X1, ym+1)
k
)’< (xr1, ym) (Xt y) (X1, ym)
hi hi+1
k
(x;i-l, ym-l) (x;f, _}-’m-l) (x:+1, ¥ -1)

Figure 1: Single Computational Cell
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2. DESCRIPTION OF THE METHOD

For simplicity, we first consider the following two dimensional non-linear elliptic PDE
Uy +Uy, = f (X, y,u,u,,u, 4

defined in Q subject to
u(x, y)=up(x,y); (xy)eoQ ()

We discretize the region Q with a rectangular mesh by taking a constant mesh length k
>0 iny - direction and variable mesh lengths h, in x — direction so that each grid point is
given by (X,Y,) where 0=x, <X <X, <...<Xyy =1, h, =X, —X, for I = 0(1)N with the
mesh ratio o, =(h,/h) >0, for | = 1(1)N, and y, =mk, for m = 0(1)M+1, where N and M
are positive integers such that (M+1)k = 1.

Further, let U, . and u,, be the exact and approximate solution values of u(x,y),
respectively, at the grid point (x,y,) -

At each grid point (x,Y.,), equation (4) may be written as
Uxxl,m +Uyy|,m = f (XI ' ym’UI,miuxl,miuyl,m) = fl,m (6)

We set the following approximations based on the approach of (Chawla and Shivakumar,
1996).

— 1

Ulsim = E(Ulﬂym +U,,) (7.1)

L_Jxl,m _ UI+1,m + (GI2 _1)Ul,m _O-IZUI—I,m (72)

ho,1+0;)

— 1

Ux+l,m:_U+m—Um 73
I+3 O_Ihl(ll, |,) (7.3)

— 1

le—%m =F(Ul,m_ul—l,m) (74)

|

— 1

Uyl,m _E(Ul,mﬂ_ul,m—l) (7'5)

— 1

Uyisgm = E(Ulﬂ,mﬂ “Uima Uy _Ul,m—l) (7.6)

— 1

U yizim _(U|ﬂ,m+1 _Ulﬂ,m—l) (7.7)
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— 2|:Ul+l,m_(1+GI)UI,m+O-IUI—1,m]
U xxI,m = 2 (78)
hio,(1+0;)

— 1

Uyyl,m :P(Ul,mﬂ_zul,m +Ul,m—1) (79)

— 1

U pyrsam = F(Ulﬂ,mﬂ —2U ., JrU|J_r1,m—1) (7.10)

Further, we define

?Ii%,m =f (Xli%’ ym,L_JIJ_r%,m,L_Jin%,m,L_Jyli%,m) (8)

Let

— 2 3\ . 3\ 2 3\

Um=U, —2N[1*o (Froym+ Ty Lo |G 2[00 G 0
’ 8 (1+o0 z 2 1+0, 4 1+,

Unm=Unn +h L e, 6(;.@)}[(@.%”1 Opian)-2(Trpa-Trin)] @2

= — 1+c°) = _ _

U yl,m = U yl,m —m[U yl+l,m — (1+G| )U yl,m +O'|U ylfl,mi| (93)
Finally, we define

TLm = f(X|,ymyil.m,jxl,m,jyl‘m) (10)

Then, at each internal grid point(x,y,), the partial differential equation (4) is
discretized by the following finite difference scheme :

Il (UI+1,m+1 +UI+1,m—l) + |2 (Ul—l,m+1 +UI—1,m—1) +|3 (Ul,m+1 +Ul,m—l) + I4UI+1,m +|5UI—1,m
+1U,

_ U|h|2

3 {q?|+%’m+(l+26'jf|’m+?l%'m}+f|,m, [ =11)N, m=1(1)M] (11)

where

Tim =0(k?h? +k?h® +h°) , and

_ o/ _ 1+o)hy | = oh’ _ o,(1+a)hf
o6k 12k*(l+0)’ 26k 12k’(l+o)
_ oL+ o)y +(1+O'|3)h|2 _ orh’ " (L+o0)h’

I y I - ]
: 3k? 12k? ¢ 3k? 6k (l+a)

2 3\ 2 2 3\ 2
|5=O'|—O-Ih2| +O'|(1-+O'|)h| , I, = (1+0',)+20-'(1+20-')h' +(1+0'|2)h| _
3k 6k‘(l+o)) 3k 6k
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We note that the difference method (11) is a nine-point formulae which can be
conveniently expressed in the matrix form Au =B, where the coefficient matrix A is tri-
block-diagonal. This system of difference equations so obtained can be solved by the
Newton-Raphson method for the non-linear case and by Gauss-Siedal or Jacobi iteration
method for the linear case [see (Kelly, 1995), (Varga, 2000), (Saad, 2003), (Hageman &
Young 2004)].

3. DERIVATION PROCEDURE

At each grid point (x,Y,,), let us denote

an () o (A (&
I,m U I,m’ I,m ou. I,m’ Nim 5Uy .

Simplifying the approximations (7.1) - (7.10), we obtain

_ 212
u@mzuwm+9%lumN+omb (12.1)
T h|2 3
Ui-im =U|_%]m "'Eum,m +0(h) (12.2)
[ oh? 3
U xI,m :le,m +TUXXX|Ym +O(h| ) (123)
_ 212

x+3,m :le+lm + % hl Uxxxl m +O(h|3) (124)

2 24 ’

— h2
u xl-3,m :le—l,m +2_|4Uxxxl,m +O(h|3) (125)
Uyn=U,,+0K>) (12.6)
_ 212
Uyrin=U,.,, +%uw +O(K? +K2hy + 1) (12.7)
Tl h|2 2,12 3
Uyi-im = JioLm +§UXX),,’m +O(k* +kh +h) (12.8)
Uyiam =U,,1, +OK® +k%h) (12.9)
Uyt =Uyiim +O(k* +k*h) (12.10)
Ui =U,,  +O(h) (12.11)

Upim=Uy, , +0(Kk?) (12.12)
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+0O(k* +k?h) (12.13)
+O(K? +k2h) (12.14)

yyl+1,m

Uyyl+1,m = U
Uyyl—l,m = Uyyl—l,m

Further by Taylor series expansion, we first obtain

Il (Ul+l,m+l +Ul+l,m—1) + I2 (Ul—l,m+l +UI—1,m—l) +|3 (Ul,m+l +Ul,m—1) + I4UI+1,m + ISUI—l,m +|6UI,m

=20 (P2 g [r00N ), -a0NmosM]. (19

With the help of approximations (12.1) — (12.8), we obtain

froam=fiim +%T1 +O(k? +kh +h? +k*h? +h') (14.1)
?,% =fiin +2—ZT1+O(k2 +k2h +h® +k2h? +h*) (14.2)
where
T, =3 n@m +Y i mBm +3Uxxy|,m7|,m )
Now, let

Uin = U, +ahf,
xm = L_Jxl,m +b1h| (?H%,m _TI—%,m) + b2h| (L_Jyyl+l,m —Uyyl—l,m) +b3h|2L_Jxxl,m + b4h|2L_Jny,m (152)
yl,m = L_Jyl,m + C|:L_Jy|+1,m — (1+ (o )L_Jyl,m + U|Uy|—1,m:| (153)

3l L+ 80U im +2,0PU i (15.1)

Cl <l

where a,s,b,s(q=1(1)4) and c are parameters to be suitably determined.

Now, with the help of (12.9)-(12.14), (14.1), (14.2), from (15.1)-(15.3), we obtain

— 2
Uim=U,, +%'T2 +O(k2h? + 1) (16.1)
— 2
Uam=Uy, +%‘T3 +0(k*h? +h?) (16.2)
— 2
Uym=U,, +%T4 +0(k* +k*h’ +h’) (16.3)
where

T2 = G(al +a2 +a’3)UxxI,m +6(a1 +a2 +a4)Uny,m ’

T3 = [GI +3b1(1+0|)]uxxxl,m +3(1+GI)(b1 + 2b2)nyyl,m +6b3U xxl,m +6b4U yyl,m

T, =3co,(1+0,)U

xxyl,m *
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Now, by the help of the approximations (16.1)-(16.3), from (10), we obtain

f

I,m

2
=, 4—%‘T5 +O(K* +K*h +h?) (17)
where

T5 =TZOCI,m +T3:BI,m +T47/I,m .

Using (13), (14.1), (14.2) and (17) in (11), we obtain

- 3
Tin =—[‘f' oy, o (zg“')Ts}h.uomf+k2h.3+h.5) (18)

Thus, for the proposed difference method (11) to be of O(k* +k?h +h®), we must have

@+ 0',3)
72

L A+a)

T T;,=0 (19)

Equating to zero the coefficients of ¢, 4, and y, . in equation (19), we obtain

5(1+c’ 1+co’ 5(1+0; 1+o7)
a1:a2:__ , a3: , a4:— , C:_—Z’
8| 1+, 1+o0, 4\ 1+o0, 20,(1+0,)
d+07) o, (1+O'|3) O
=— + : b, = + , =h, =0.
b {6a+002 31+0,) 2 12(+0,)? 6(+0,) % =b,
The above values of a,8,b,s (0=1(1)4) and c reduce

Tim =0(k2h2 +k2h® +h%) [ =1())N, m=1(1)M] and thus we obtain the required difference
scheme of O(k® +k?h, +h’).

Now, we generalize our method as follows: For the system of differential equations (1)
subject to the Dirichlet boundary conditions (2), we set the following approximations:

—i 1, . _

U I(i)%,m = E(U&)l,m +U|(,Ir¥1) (20.1)

—(i U +(c?2-Yu® —c2u®

U(x|),m _ Yiam (o —DUin —oiU, (20.2)

ho,(1+ o))

() 1 i i

U x+im = J(Uﬁim _UI(,%) (203)
1My

i) 1 i i
uﬂ%mzﬁ{ug—uﬁh) (20.4)
|
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— (i) 1 i i
Uin = (U1 -Uih) (20.5)
W 1 [ i i i
Uyizsm = m (U |(¢)1,m+1 - Ul(i)l,m—l + UI(,n)1+l - U|(,r31—1) (20.6)
() 1 i i
Ussam =2 (U0 ~Ul ) (20.7)
— () 2|:Ul(i)l,m ~ @+ +oUf,
xl,m =
hici(1+0))
(20.8)
W 1 i i i
Upim = F(UI(,%H ~2U) +U|(,r21—1)
(20.9)
o ® 1 [ i [
U yyl+lm = P (Ul(ii,mﬁ-l -2U I(ir)l,m + Ul(i?l.,m—l)
(20.10)
?I(:-)l m= f ® (X|+;’ Y IUI(i)%,m ) Ul(i)%,m ) ---,Ul(z)%,m , UE(JI-)i%,m , L_Jgjz_r%,m ) ...,Ug(rlli%,m,
o 2 (20.11)

— @ —(2) —(n)
Uyiztm,Uyeim,...,U y|i%’m)

=(i) : 2 3 (— — S 2 3\ —i
Uip = .{'r;—%(lﬂ](f” L1 )+h|2[1+0' juiﬁl,m%ﬁ*q ]u(yy).,m (20.12)

1+, I-L,
8 T2 2 1+0 +0,

o g 1+07) o [ —0) =) =0 =0
S 7 6 (U an-U "m)‘z(f = f s )} 20.13
| | '[ﬂﬂ+mf 6a+qJ whtm L -1 ST (20.13)

=) 1+c° — (i — (i — (i

THTAON _(L‘I)Z[u him — (L 6)0 +alu‘y|)1,mJ (20.14)
20(1+0)

=(i) ) =1 =(2) =(n) =@ =@ =) =0 =) =(n)

f Im = f (')(XI ) ym,U I,m,U I,m,...,U I,m,U xI,m,U xl,m,...,U xI,m,U yI,m,U yI,m,...,U yl,m) (2015)

Then, it can be easily verified that at each grid point (x,y,),[l =1QN, m=11)M], the
given system of nonlinear elliptic PDEs (1) is discretized by

(i) (i) (i) (i) (i) (i) (i) (i) (i)
Il (Uhl-l,m+l +UI+1,m—l) + IZ (Ul—l,m+l +UI—1,m—l) +|3 (Ul,m+l +Ul,m—l) + I4UI-:—1,m + I Sulll,m + I GUI,Im

:0[;5{0.?“ +(1+20'j?(”+?“’ }ff,‘;,[l:l(l)w,m:la)M] @1

I+%,m I,m I—%,m

where Tim =O(k?h? +k?h? +he).
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We observe that for the uniform mesh case, i.e. when o, =1, I=1(1)N, and

h =h,=..=h,,, =h(say), the truncation error reduces to Tim =O(k’h?+k?h*+h°) and
thus, all the methods discussed above are of O(k® +k*h*+h?).

4. CONVERGENCE OF THE ITERATIVE METHODS
Consider the following elliptic partial differential equation
Uy +U, = BU,, (X, y) €eQ (22)

The above equation (22) is the steady state two-dimensional convection-diffusion
equation, where = (1/¢)>0 is a constant, with ¢ (the perturbation parameter) being the

ratio of convective velocity to the diffusion coefficient.

We apply the difference scheme (11) with Tim =0 to the above equation, considering
the constant mesh case by taking o, =1, for I =1(1)N and letting p =k/h and R=(ph/2) >
0, which is called the cell Reynolds number, to obtain

@+ Ry g +10U, o + (=R, g +(12p° = 2+12p°R+4p°R* - 2R)U, , ,,
—(24p* +20+8p°R*)Y, ,, +(12p* —2-12p°R+4p*R* + 2R)U, 1
+(1+ R)ul—l,m+l +10ul,m+1 +(1_ R)u|+l,m+1 = 0 ’ [I :1(1) N ;M :1(1)M] (23)

The above is a system of NM number of linear equations in NM number of unknowns,
which may be expressed in the matrix form as Au =0, where

_ T
U= [ Uy, Upygyeoey Uy 3 Uy U ey Uy e U s Up g e Un g |
A=[P, Q, P]u (Tri-block-diagonal Matrix)
P=[1+R, 10, 1-R]\.x (Tri-diagonal Matrix)

Q=[12p?-2+12p*R+4p?R? - 2R, -(24p? +20+8p°R?), 12p> —2—-12p’R+4p*R? +2R],.
(Tri-diagonal Matrix)

Now, applying the Jacobi Iteration Method to the above system of equations, we obtain

(24p* +20+8p*R*)u™ =
@+R)uS) . +10uS) +@A-R)uS) 4 +(@12p* —2+12p°R+4p*R* —2R)u®) |
+(12 p2 -2-12 sz +4 p2R2 + ZR)ul(i:)L,m +(1+ R)ul(j,mﬂ +10u|(,sn)1+1 +(1- R)ul(ii,mﬂ (24)

wheres=0, 1, 2,...
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We examine the stability of (24) by assuming that an error &) exists at each grid

point (x,Y,) at the sth iteration. The corresponding error equation at the sth iteration is
given by

(24p*+20+8p°R*) e =
@+R)e") 4 +1065)  +1-R)&") 4 +(12p* —2+12p°R+4p*R* - 2R)&) |
+(12p* —2-12p*R+4p*R* + 2R)&l) , + 1+ R)e) 1, #1068 + A-R)&l) (25)

We analyze the behavior of the error &) by assuming it to be of the form

g.(ii=.§SA'Bmsin[ 7l jsin(ﬂbmj, 1<a<N,1<b<M (26)
, N+1)  \M+1

where A and B are arbitrary constants and & is the propagating factor which determines the

rate of growth or decay of the errors. The necessary and sufficient condition for the iterative
method to be stable is |&] <1.

Using (26) in (25), the propagating factor for the Jacobi iteration method is obtained as

)=
b ’ b
cos[m){(l—Rz)[cos( « j+6p2—1} +4p4R4+4p2R{c05( « j+6p2—1}}
N+1 M+1 M +1
b 2 b 2 1/2
7T 2 2p2 | 7T 2p 2 2p2
{[COS(M +1)+6p 1+2p°R } {RCOS(M +J+6p R R} } (6p*+5+2p”R?)

SCOS( 70 j
M +1

(6p° +5+2p°R?)’

1<a<N,1<b<M 27)

Thus, the Jacobi Iteration method is stable for those values of R such that |&,|<1.
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Fig.2. Directed Graph

Similarly, applying the Gauss-Siedal iteration method to (23) and assuming the error at

each grid point (x,y,) at the sth iteration to be of the form (26), the corresponding

propagation factor & is given by the equation

n° ~[10y + (1= R)(6p° ~1+2p°R* +6p’R-R) cos (2 ) ¢* |’

[ 25y* —(1-R?) cos® (i22) #°
~(6p* —1+2p°R* +6p’R—R)(6p’ ~1+2p°R* ~6p’R+R)¢’ |
—¢*(1+ R)(6p2—1+2p2R2 —6p’R+R)cos(:2;)=0,1<a<N, 1<b<M, (28)

cos(%) dy- cos( ;)
6p?+5+2p°R? 6p?+5+2p°R?*

where n=E2, ¢=

Thus, the Gauss-Siedal iteration method is stable for those values of R such that |&;s| <1.

Now, for the coefficient matrix A to be diagonally dominant, we must have

24p” +20+8p°R*| 2[L+ R[+10+[1- R +|(12p* - 2)(1+ R) + 4 p°R’|
+|(12p* —2)(1- R) + 4p°R?|+[1+ R|+10+[1-R| (29)
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Assuming the diffusion dominated case i.e. R <1 and taking p >1/6, it is easy to see

that relation (29) is satisfied. Also, clearly, strict inequality holds for the first row of the
matrix A. Hence A is diagonally dominant. Also, the Directed Graph of A is strongly
connected (see Fig. 2). Hence the matrix A is irreducibly diagonally dominant for R <1 and

p >1//6 (Varga, 2000). Thus, under these conditions, Jacobi and Gauss-Siedal Iteration
methods are convergent for any initial guess.

5. COMPUTATIONAL IMPLEMENTATION

We divided the interval [0, 1] in y-direction into (M+1) parts of equal lengths k > 0, so
that y, =mkfor m = 0(1)M+1. Further, the interval [0, 1] in x-direction is divided into

(N+1) parts with 0=Xx, <X <X, <...<Xy, =1, where h,, =x,,—x, for I = 0(1)N and
o,=(h/h) >0, for I = 1(1)N. This discretizes the solution domain Q with grid points
given by (x,Y,,), | = 0(1)N+1, m = 0(1)M+1.

Now, 1 =Xy =% = Xy = X)Xy = Xyg) +oo (X —X%)
=hy,,+hy +...+h
=({1+o0,+0,0,+...+0,0,..00)h, (30)

which gives the value of the first step length in x-direction as :
h =1/1+o0, + 0,0, +...+0,0,..0y) (31)

Using the above value, we are able to determine the values of subsequent step-lengths
as h,, =oh, | = 1(1)N. Hence we determine each grid point (x,,Yy,) of the rectangular

mesh.

For the sake of simplicity, we assume here that o, = o (constant) for all | = 1(1)N, so that

h=Q1-0)/(1-0"") (32)

Thus having prescribed the total number of mesh points in the x- direction, say, N+2, we
can determine the first step length on the left using (32), and further step lengths are
determined by using the relation h,, =oh,, I =11)N. For uniform mesh case, i.e., for
h.,=h =h, I = 1(1)N, we obtain the corresponding O(k* +k*h*+h*) finite difference
scheme.

Substituting the approximations (20.2), (20.5), (20.8) and (20.9) in the given system of
differential equations (1), we obtain a variable mesh method of O(k® +h,)as
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— (i) i O @ —m) —@0 (@2 —(n)
Uxxlm+Uny —f(')(X|,ym,U(l) U(z) U(n)lem,UxI,m,---,UxI,m,UyI,m,UyI,m,-, ylm)

Im»~1Im:s* I,m?

+0(k*+h); [1=1()N, m=1(1)M] (33)

Note that, for constant mesh case, i.e., for o; =1, the method (33) becomes a constant

mesh method of O(k? +h?). In this section, we have solved two linear and two non-linear

problems to which the exact solutions have been prescribed. The right hand side functions
and the boundary conditions are determined using the exact solutions. We have compared
the numerical results of the proposed method (21) with the corresponding numerical results
obtained by using the method (33). The linear difference equations are solved by the Gauss-
Siedel method and the non-linear ones by the Newton-Raphson method. The iterations were

terminated once the absolute error tolerance <10™** was achieved. All the computations are
carried out using MATLAB programming language.

Problem 1: To solve the convection-diffusion equation (22) whose exact solution is given
by

2 sinry
u(x,y)=-e?
(x.y) sinhy 4

absolute errors (MAE) of u for 0 =0.92 and o =1 are tabulated in Table la and 1lb
respectively. Figure 3 gives a comparison of the plots of the exact and numerical solutions
for £ =1000.

2
{2e23|nh;/x+smh;/(1 x)} where y2=7z2+ﬁ—. The maximum

Problem 2: (Poisson’s equation in polar coordinates)

u,r+%ur+uu=G(r,z), O<r,z<1 (34)

For a =1, the above equation represents the two-dimensional Poisson’s equation in
cylindrical polar coordinates in r-z plane. The exact solution is given by u =coshrcoshz.
The MAE of U with o =1.4 are tabulated in Table 2a for ¢ =1 and 2. Table 2b gives the

MAE of u with & =1for fixed value of mesh ratio parameter 1 =k /h?=20. Figure 4 gives
the plots of the exact and numerical solutions of Problem 2.

Problem 3: (Non-linear Convection Equation)
e(u, +u,)=u(u, +u,)+g(xy),0<xy<1 (35)

The exact solution is given by u= exsin(%y) . The MAE of U for variable and constant

mesh cases are tabulated in Table 3a & 3b respectively. Figure 5 gives a comparison of the
plots of the exact and numerical solutions of Problem 3.
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Problem 4: (2D steady-state Navier Stokes’ model equations in Cartesian coordinates)

& U, +uy ) =uu, +vu, + f(xy),0<xy<1

%(VXX +V, ) =uv, +wW, +g(x,y), 0<xy<l1

0=u,+v,
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(36a)
(36b)
(36¢)

where R, >0 is a constant and is called the Reynolds number. The exact solutions are
u=sin(zx)sin(zy), v=cos(zx)cos(zy). The MAEs of u and v are tabulated in Table 4a
for 0=0.92 and in Table 4b for o =1 and fixed value of mesh ratio parameter A = 20.

Figure 6 gives a comparison of the plots of the exact and numerical solutions.

Table 1a: The MAE (o =0.92) — variable mesh case

Proposed O(k” + k’h, +h®) methods

O(k* +h,) method

(N,M) p =100 £ =1000 £ = 1400 £ =100 S =1000 S = 1400
(30,30) 6.1173(-04) 2.6871(-01) 4.1026(-01) 9.1907(-01) 9.7583(-01) 9.7351(-01)
(40,40) 9.2476(-05) 4.5122(-02) 1.0026(-01) 8.5900(-01) 9.5874(-01) 9.7085(-01)
(50,50) 3.9142(-05) 3.3946(-03) 1.0118(-02) 8.0263(-01) 9.3978(-01) 9.4924(-01)
(60,60) 2.4982(-05) 2.3368(-04) 5.9052(-04) 7.5800(-01) 9.0396(-01) 9.2049(-01)
(70,70) 1.8386(-05) 3.3685(-05) 6.5273(-05) 7.2960(-01) 8.6352(-01) 8.8457(-01)
(80,80) 1.4568(-05) 1.1038(-05) 1.5365(-05) 7.1495(-01) 8.2419(-01) 8.4427(-01)
Table 1b: The MAE (o =1) — constant mesh case

Proposed O(k® +k’h® +h*) methods O(k* +h*) method

h £ =100 £ =1000 £ = 1400 £ =100 £ =1000 £ = 1400

5 4.0098(-02) 7.0453(-01) 7.7859(-01) Oscillations  Oscillations  Oscillations

= 1.7223(-02) 6.2489(-01) 7.1473(-01) Oscillations  Oscillations  Oscillations

55 8.2806(-03) 5.5427(-01) 6.5603(-01) Oscillations  Oscillations  Oscillations

= 4.3251(-03) 4.9167(-01) 6.0216(-01) Oscillations  Oscillations  Oscillations

= 2.4556(-03) 4.3622(-01) 5.5273(-01) Oscillations  Oscillations  Oscillations
= 1.4675(-03) 3.8712(-01) 5.0738(-01) Oscillations  Oscillations  Oscillations
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A comparison of the numerical results in Tables 1a & 1b indicates that a variable
mesh produces significantly better results for large values of g than the corresponding

uniform mesh case. On the other hand, although the lower order variable mesh method
generates oscillation free results, the corresponding uniform mesh method fails totally.

Table 2a: The MAE (o =1.4) - variable mesh case

Proposed O(k’ + k°h, +h’) methods O(k” + h;) method

(N, M) a=1 a=2 a=1 a=2
(30,30) 3.4369(-05) 5.1954(-05) 7.6763(-02) 1.2481(-01)
(40,40) 3.0933(-05) 4.7884(-05) 7.6952(-02) 1.2578(-01)
(50,50) 2.9326(-05) 4.6155(-05) 7.6990(-02) 1.2610(-01)
(60,60) 2.8463(-05) 4.5383(-05) 7.6998(-02) 1.2620(-01)
(70,70) 2.7938(-05) 4.4922(-05) 7.7007(-02) 1.2624(-01)
(80,80) 2.7600(-05) 4.4617(-05) 7.7004(-02) 1.2625(-01)

Table 2b: The MAE (o =1, 4 =20) — constant mesh case

Proposed O(k® +k’h® +h*) methods

O(k* +h*) method

h a=1 a=2 a=1 a=2

& 3.5818(-04) 3.7441(-04) Oscillations Oscillations
35 2.3422(-05) 2.4239(-05) Oscillations Oscillations
% 1.4823(-06) 1.5200(-06) Oscillations Oscillations

Table 3a: The MAE (o =0.92) — variable mesh case

Proposed O(k” +k’h, +h®) methods

O(k* +h,) method

(N, M) £=0.1 £=0.01 =01 £=0.01

(30,30) 2.7145(-04) 8.0162(-04) 1.3032(-01) 2.4512(-01)
(40,40) 1.5411(-04) 4.9423(-04) 1.2397(-01) 2.2878(-01)
(50,50) 1.0010(-04) 3.7439(-04) 1.2138(-01) 2.1490(-01)
(60,60) 7.0922(-05) 3.3317(-04) 1.2020(-01) 2.0296(-01)
(70,70) 5.3450(-05) 3.1724(-04) 1.1957(-01) 1.9230(-01)
(80,80) 4.2179(-05) 3.0890(-04) 1.1938(-01) 1.8249(-01)
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Table 3b: The MAE (o =1, 4 =20 )- constant mesh case
Proposed O(k® +k’h® +h*) methods O(k* +h*) method
h =01 £=0.01 ¢=0.1 £=0.01
i+ 1.0281(-02) 9.7481(-02) Oscillations Oscillations
%5 6.1051(-04) 1.1025(-03) Oscillations Oscillations
= 3.8190(-05) 6.2725(-05) Oscillations Oscillations
Table 4a: The MAE (o = 0.92)- variable mesh case
Proposed O(k’ + k°h, +h’) methods O(k’ +h,) method
(N, M) R, =10 R, =50 R, =100 R,=10 R, =50 R, =100
(50,50) u 2.2913(-04) 8.0941(-04) 3.4184(-03) 5.6489(-01) Oscillations
Oscillations
v 1.4789(-04) 1.8284(-03) 4.9054(-03)  1.7010(-01) Oscillations
Oscillations
(60,60) u 1.6704(-04) 7.7948(-04) 3.1933(-03) 5.6227(-01) Oscillations
Oscillations
v 12777(-04) 1.6766(-03) 4.5701(-03)  1.6940(-01) Oscillations
Oscillations
(70,70) u  1.2995(-04) 7.6902(-04) 3.1160(-03)  5.6106(-01) Oscillations
Oscillations
v 1.1651(-04) 1.5934(-03) 4.3827(-03)  1.6903(-01) Oscillations
Oscillations
(80,80) u 1.0613(-04) 7.6602(-04) 3.0840(-03) 5.6052(-01) Oscillations
Oscillations
v 1.0952(-04) 1.5437(-03) 4.2679(-03)  1.6884(-01) Oscillations

Oscillations
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Table 4b: The MAE (o =1, 4 =20 )- constant mesh case

NIKITASETIA AND R.K. MOHANTY

Proposed O(k® +k’h® +h*) methods

O(k* +h?) method

h R. =10 R. =50 R, =100 R.=10 R. =50
R.=100

% u 1.2387(-03) 3.2983(-03) 5.0097(-03)  Oscillations Oscillations
Oscillations
v 4.8642(-04) 2.6024(-03) 5.2111(-03)  Oscillations Oscillations
Oscillations

= u 7.7636(-05) 2.0260(-04) 3.0227(-04)  Oscillations Oscillations
Oscillations
v 3.0524(-05) 1.5937(-04) 3.1592(-04)  Oscillations Oscillations

QOccillations
SSEHaHORS

accuracy can be verified from Tables 2b, 3b and 4b, using the formula

For the fixed value of mesh ratio parameter A =k/h?, i.e., k =h?, the uniform
mesh O(k* +k*h?*+h*) method becomes fourth order accurate in space. This order of
log(E, / E;)

log(h, /h,)
where E, and E, are the MAEs for two uniform mesh widths h; and h,, respectively.

For example, in Table 3Db, let us choose h;=1/20, h,=1/40, £ =0.1 with the corresponding
MAEs 6.1051E-04 and 3.8190E-05. Using above formula it is easy to verify that the
order of accuracy of the proposed method indeed is 3.99=4.0. Note that, the above
formula can be used only in constant mesh case and cannot be used to calculate the order

of accuracy in variable mesh case.

uvalues

x values

Figure 3: Exact and Numerical Solution of Convection-Diffusion Equation (22) at # =1000 .
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Figure 4: Exact and Numerical Solution of Poisson’s Equation (34) in cylindrical Polar coordinates in r-z
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Figure 6: Exact and Numerical Solutions of Navier Stokes Equations in Cartesian Coordinates (36) at

R =100.

6. CONCLUDING REMARKS

In this paper, we have developed a high order finite difference method based on off-step
discretization for the system of 2D non-linear elliptic boundary value problems on a variable
mesh, using 9 grid points and 3 function evaluations. This new variable mesh strategy
results in solving the tri-block-diagonal system of difference equations. Numerical
experiments have been made to compare the proposed variable mesh methods with the
variable mesh method of O(k® +h,). We have solved four benchmark problems of physical

significance. We observed that unlike the case of high order constant mesh techniques, our
methods work successfully for the small values of the perturbation parameter ¢ for the
solution of the steady state convection diffusion equation. The numerical results show that
the proposed methods do not produce any numerical oscillations when applied to the Navier
Stokes’ model equations for high values of Reynolds number, whereas the corresponding
lower order variable mesh method is unstable for large Reynolds number.
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