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Abstract:  The Runge-Kutta equations of condition are reformulated.  The concept of m-symmetry is defined.  It is 
shown that any m-symmetric method is of order m.  The equations of condition for a twelfth-order explicit Runge-Kutta 
method with twenty-five stages are solved using m-symmetry.  The method contains an embedded tenth-order method 
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1. INTRODUCTION 

 

  The first-order system of ordinary differential equations: 

(1.1a)    ),( xtf
dt

dx
   

subject to the initial condition: 

(1.1b)    00 )( xtx   

has been used to describe and model a wide variety of problems arising in scientific and 

engineering disciplines.  Obtaining the analytical solution of this initial value problem is often 

difficult, especially when ),( xtf  is a nonlinear function of x, the dependent variable(s).  When 

analytical solutions are unavailable, numerical methods are typically employed to obtain 

approximate solutions valid over some range ],[ 0 ftt .  The numerical solution of the initial 

value problem (1.1) is subject to errors due to truncation, rounding, and (potentially) 

numerical instability.   

An n-stage, explicit Runge-Kutta method provides an approximation nx  to 

)( 0 htx  , the solution of (1.1) at the point ht 0 , of the form: 

(1.2a)   ),(
1

0

0 kk

n

k

kn xtfchxx 




    

where htt kk  0   and the intermediate approximations kx  are computed from 

(1.2b)   ),(
1

0

0 jj

k

j

kjk xtfhxx 




   
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for 1,,1  nk  .  The coefficients 1

0}{ 



n

kkc , 1

0}{ 



n

kk , and 1

1

1

0}}{{ 







n

k

k

jkj  are simply real 

constants.  Note that 00   (as is normally assumed); that is, the first evaluation is 

),( 00 xtf .  The method is said to be of order m if the local truncation error, i.e. the 

difference between the approximation nx  and the true solution )( 0 htx  , is O(hm+1).  The 

notation used here follows that of Fehlberg, Bettis, and Horn [14, 1, 17].   

The form (1.2) is often referred to as  the Runge-Kutta ansatz.  The value kx  for 

1k  constitutes an approximation to )( ktx that is of order km , which is almost always less 

than m.  Making the usual assumption that kx is at least of order one for all values of k 

implies that 

(1.3)    





1

0

k

j

kjk     for  1,...,0  nk . 

In fact, alternatively, one could simply view these equations as definitions or abbreviations.  

The 2/)1( nn  unknown coefficients for an n-stage method are thus simply 1

0}{ 



n

kkc  and 

1

1

1

0}}{{ 







n

k

k

jkj .  In the following sections, the k ’s  will not be counted as unknowns and the 

relations (1.3) will not be counted among the equations to be solved.  Nevertheless, the k ’s 

are certainly convenient for both the development and the deployment of Runge-Kutta 

methods.  It should also be noted that the k ’s  are normally chosen or determined such 

that 10  k  for all k.  Otherwise, difficulties could occur for certain problems (1.1) 

arising from trying to evaluate ),( xtf  where it is not even defined. 

For an explicit Runge-Kutta method, the number of stages, n, is the number of times 

the derivative function ),( xtf  must be evaluated during each step of the integration.  

Obviously, in order to obtain an approximation to the solution )(tx  valid over the entire 

range ],[ 0 ftt , a number of steps would normally have to be taken.  At each step, the formula 

(1.2) would be used to provide an approximation to )( 0 htx  ; then the values of 0t  and 0x  

would be updated accordingly.  The stepsize h  might be adjusted at any point based upon 

any available estimate of the local truncation error.  If necessary, for the very last step, h  

would be reduced in order to stop the integration precisely at ft . 

For an mth order method, the global truncation error over the range ],[ 0 ftt  is O(hm) 

[5, p.154].  The total error at any point ],[ 0 fttt  includes the accumulated truncation 

errors, rounding errors, and any errors due to numerical instability.  Depending upon the 

specific initial value problem (1.1), the coefficients of the method (1.2), the value of the 

stepsize h, and the floating-point representation being used, any of these three components 

of the error could be the dominant source of error in the computation.  Whenever possible, 

regions where errors due to rounding or numerical instability dominate are to be avoided. 

The ultimate goal is to determine a high-order Runge-Kutta method with a reasonably 

small number of stages so that the overall efficiency of the method will be superior.  Verner 

[28] has shown that a twelfth-order Runge-Kutta method with twenty-nine stages is possible.   
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The subsequent sections contain a description of the development, the properties, and the 
preliminary testing of an explicit Runge-Kutta method of order twelve that requires only 
twenty-five stages.  Ono [21] has also discovered a twelfth-order method with twenty-five 
stages, however the method has some large coefficients which can cause a loss of significance 
and the method does not provide a convenient way of estimating the local truncation error.  As 
will be shown, the method presented herein does not have these problems. 

 

2. BACKGROUND 

Numerous high-order explicit Runge-Kutta methods [9, 10, 11, 14, 18, 22, 26, 28] have 
been developed.  Most notable is Hairer’s tenth-order method with only seventeen stages [15].  
A number of enhancements of the basic methods have also been studied including the abilities 
to vary the order [7, 8, 17], to estimate the local truncation error (often by providing a lower-
order embedded formula) [1, 6, 12, 14, 22, 29, 30], and to provide for dense output (i.e., to 
make accurate, intermediate results available at any point within a given step) [17, 25, 27].  
 

3. RUNGE-KUTTA EQUATIONS OF CONDITION 

The equations of condition for a Runge-Kutta method are readily available [4, 16].  
Shanks [25], for example, provides a recursive formula that can be readily incorporated into a 
computer program.  The great difficulty for the high-order Runge-Kutta methods lies in solving 
these large systems of nonlinear algebraic equations for the unknown coefficients for a 
minimum (or near minimum) number of stages.  For example, a Runge-Kutta method of order 
twelve, such as the one developed herein, requires the solution of 7,813 equations.  For an n-
stage formula there are 2/)1( nn  coefficients.  The number of new equations for order m, 

m , is exhibited in Table 1 below.  Also, the total number of equations, m , is shown.  For the 

eighth-order and lower-order methods, the value shown for the number of stages has been 
proven to be the minimum possible.   For all of these cases, methods with this minimum 
number of stages have been determined and most of these are in use today.  For methods of 
order greater than nine, the values shown represent the minimum number of stages for known 
methods of the respective order.  A dash in the table indicates an unknown value. 

 

TABLE 1 

The order of the 

formula, m  

The number of new 

equations of order m   

The total number of  

equations for order m   

Number of 

stages  n 

The number of 

unknowns 

1 1 1 1 1 

2 1 2 2 3 

3 2 4 3 6 

4 4 8 4 10 

5 9 17 6 21 

6 20 37 7 28 

7 48 85 9 45 

8 115 200 11 66 

9 286 486 15 120 

10 719 1205 17 153 

11 1842 3047 - - 

12 4766 7813 25 325 

13 12486 20299 - - 

14 32973 53272 35 630 

15 87811 141083 - - 
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It is readily apparent from the table that as the order increases, the number of 

equations increases exponentially and for 6m , surpasses the number of unknowns.  For 

10m , the ratio of equations to unknowns is almost eight; for 12m , the ratio is more than 

twenty-four.  Clearly, certain correlations or dependencies between these equations have been 

identified and/or simplifying assumptions have been made in order to reduce the number of 

equations and to obtain specific solutions. 

The most commonly used and well-known assumptions are those due to Butcher [4].  

The assumptions are of two types, the so-called column simplifying conditions: 

(3.1)   0)1/()1( 1
1

1

 




 icc i

jjkj

n

jk

i

kk   

which might be assumed for certain values of i and j, and the so-called row simplifying 

conditions: 

(3.2)   0)1(
1

1

1  





k

j

jkjk

   

which might be assumed for certain values of μ and k.  Various combinations of these 

assumptions have been utilized by a number of investigators in order to reduce the number 

and complexity of the equations of condition for a given high-order method, thereby greatly 

facilitating their solution. 

The equations of condition sufficient to assure that an explicit n-stage Runge-Kutta 

method (1.2) is of order m can be written as [25]: 

(3.3a)  





1

0

,, 0)1(1
n

k

ikkqci       for      1,,0  mi    and  1,,1  i    

where i  is the number of new equations introduced at the ith-order.  Again, the values for i  

and i  (the total number of equations of condition up to and including the ith-order) are shown 

in Table 1 for 15i .  For 1,,1  nk  , the terms ,,ikq  are recursively defined from the 

following relations,  

(3.3b)  11,0, kq  

(3.3c)  kkq 1,1,  

and for 2i , 

(3.3d)    ,1,,,  ikkik qq           for         i,,1  

(3.3e)  





1

1

,1,,,

k

j

ijkjik qiq      for         ii  2,,1  

with the additional relations for 4i , 

(3.3f)  ywikwkik qqq ,,,,,,        for         1,,12  ii      

  where    1,1  ww  ,  1,1   wiwiy  ,  for 2/2 iw  ,  and 

  zikik qq ,,,,   for z . 

The final restriction on the relation (3.3f) serves to eliminate unnecessary duplication of terms 

(and consequently, of equations).  The restriction is only operative for 7m .  In the following  
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sections, it will sometimes be useful to order the equations of condition given by (3.3) 

according to the value of  i , where 00  . 

 

4. REFORMULATION OF THE EQUATIONS OF CONDITION: PHASE ONE 

The equations of condition can be rewritten in a number of ways.   The reformulation 

described here simplifies the set of equations (3.3) in a way that provides insight and 

facilitates their solution.  The reformulation occurs in two phases.  Define the variables: 

(4.1a)  i

kikp 1,,                     for  1,,0  nk  ,  1,,1  mi  , 

(4.1b)    ,,,, ik

i

kik qp          for  1,,1  nk  ,  1,,2  mi  ,  i 2,,2 , 

  and for 1,,4  mi   

(4.1d)  ywikwkik ppp ,,,,,,        for         1,,12  ii      

  where    1,1  ww  ,  1,1   wiwiy  ,  for 2/2 iw  ,  and 

  zikik pp ,,,,   for z , 

again avoiding unnecessary duplication of terms.  The term ,,ikp  for ii  2,,1  

represents the error in satisfying the th

i )(   of the new ith-order equations of condition for 

the intermediate result kx .  In terms of the new variables, ,,ikp , the equations of condition can 

be rewritten as:  

(4.2a)  





1

0

01
n

k

kc      

(4.2b)  





1

1

1,, 0)1(1
n

k

ikk pci      for      1,,1  mi   

(4.2c)  





1

1

,, 0
n

k

ikk pc       for      1,,2  mi    and  i 2,,2 . 

(4.2d)  





1

1

,, 0
n

k

ikk pc       for     1,,4  mi    and  1,,12  ii       

The equations (4.2a) and (4.2b) are sometimes referred to as the quadrature 

equations, because if they are satisfied and )(tff   only, then the method will be of order m 

(even if the other equations are not satisfied).  The equations (4.2d) contain the “cross terms” 

and are equivalent to the equations arising from (3.3a) and (3.3f) because 

  











 
1

1

,,,,

1

1

,,,, ))((
n

k

ywik

wi

kwk

w

kk

n

k

ywikwkk qqcppc    

  








 
1

1

,,,,,,,, )(
n

k

ywikwkwk

wi

kywik

w

k

i

kk qqqqc   

  




















1

1

,,

1

1

,,

1

1

,,

1

1

n

k

ikk

n

k

wk

wi

kk

n

k

ywik

w

kk

n

k

i

kk qcqcqcc   

  
1

1

1

1

1

1

1

1 1

1

,,

1

1

,,











 






 i
qcqc

iii

n

k

ikk

n

k

ikk   
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Hence, the satisfaction of (4.2d) implies the satisfaction of (3.3a) when ,,ikq  derives from 

(3.3f) and vice versa (provided that all previously occurring equations are satisfied).  It should 

be noted in the above that the two equations: 

   





1

1

,,)1(10
n

k

ywik

w

kk qci    

   





1

1

,,)1(10
n

k

wk

wi

kk qci    

are equivalent to the equations  

   





1

1

,,0
n

k

zikk pc  

   





1

1

,,0
n

k

ikk pc   

respectively, where z  and   are less than   and therefore have already appeared in the 

ordered list of equations.  The equations (4.2) reveal much about the fundamental nature of 

the equations of condition and provide subtle clues about how they might be possibly solved.   

 

5. REFORMULATION OF THE EQUATIONS OF CONDITION: PHASE TWO 

Sometimes the reworked equations (4.2) are useful in their own right.  However, 

recasting the equations into yet another form will prove to be even more useful for helping to 

solve the equations of condition for high-order explicit Runge-Kutta methods. 

Define the variables: 

(5.1) )1/()1( 1
1

1

 




 iccr i

jjkj

n

jk

i

kkji    for  1,,0  nj   and 3,,0  mi   

Note that when 0jir , the corresponding column simplifying assumption (3.1) is true.  

However, jir  will also prove to be of interest when it is non-zero. 

 For 4m , most of the equations (3.3), when expanded, turn out to be of the form: 

(5.2) 0)1()2(1
1

1

1

1

 








k

j

jikj

n

k

w

kk qiciw   with 30  mw  , 21  wmi  

Any equation of this form can be replaced by the equation: 

(5.3)    0
1

1






n

j

jijwqr  .    

The replacement is valid and the resulting set of equations is equivalent to the original set 

(3.3) because  

   



























1

1

1
1

1

1

1

)1/()1(
n

j

ji

w

jjkj

n

jk

w

kk

n

j

jijw qwccqr    

   















 





1

1

1

1

1

1

1
1

1 )1(

1

)1(

1 n

j

jij

n

k

n

j

ji

w

jj

k

j

jikj

w

kk qc
w

qc
w

qc    

  
)1)(1(

1

)2)(1(

11

1

1

1 



 







 iwiww
qc

n

k

k

j

jikj

w

kk   
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)1)(2(

11

1

1

1 
 







 iiw
qc

n

k

k

j

jikj

w

kk  , 

which will be zero if and only if the original equation (5.2) is satisfied,  provided that the two 

equations: 

  0)2(1
1

1

1  





n

j

ji

w

jj qciw   

  0)1(1
1

1

 




n

j

jijqci  , 

which appear before (5.2) in the ordered list of equations, are satisfied.  Moreover, any 

equation replaced by (5.3) either in the original set of equations (3.3) or in the set (4.2), could 

also be replaced by  

(5.4)   0
1

1






n

j

jijw pr   

because  

  000
1

1

1

1

1

1

1

1

1

1

1

 




















n

j

jijw

n

j

jijw

n

j

jijw

n

j

i

jjw

n

j

jijw qrqrqrrpr   , 

where, obviously from (3.3c) and (3.3d), 
i

jjiq 1 .  Here, the replacement (5.4) is only made 

for   2/)4(0  mw   and  21  wmi , so in the resulting equations there are no 

appearances of jwr  such that  2/)4(  mw .  Consequently, the only equations in (4.2) that 

are replaced are those generated via (4.2c) when wiwi    21   for 

  )2,2/)4(min(0  imw . 

 With these replacements, equations (4.2) become: 

(5.5a) 





1

0

01
n

k

kc      

(5.5b) 





1

1

1,, 0)1(1
n

k

ikk pci     for    1,,1  mi   

(5.5c) For 1,,2  mi   and i22  , either  

(5.5c1) 




 


1

1

,1, 0
n

k

wikkw wi
pr    when wiwi    21   where 

  )2,2/)4(min(0  imw , or 

 (5.5c2) 





1

1

,, 0
n

k

ikk pc    for any other values of   in the range  

 (5.5d) 





1

1

,, 0
n

k

ikk pc       for     1,,4  mi    and  1,,12  ii  . 

Note that although the form of any individual equation in the set of equations (3.3) or (4.2) is 

not dependent upon m, this is not true for the set of equations (5.5) because of (5.5c1).  

Nevertheless, the respective sets of equations are all equivalent for a given value of m .  Finally,  
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it should be noted that the equations generated via (5.5c1) could also be generated, albeit in a 

different order, by the simpler expression: 

 (5.6) 





1

1

,, 0
n

k

ikkw pr     for  2/)4(,,0  mw  , wmi  2,,1 , and 1,,1  i  

 

6. DEFINITION OF m-SYMMETRY 

 

 The definition given here will simplify the solution process described in the following 

sections. 

Definition 6.1: Any Runge-Kutta method (1.2) with coefficients, 1

0}{ 



n

kkc , 1

0}{ 



n

kk , and 

1

1

1

0}}{{ 







n

k

k

jkj  will be defined to be m-symmetric if all of the following are true: 

 A. The set of integer subscripts 1

0}{ 



n

kk  can be partitioned into three subsets: 

1. The non-empty set of integers },,,{ 21 ukkkQ   such that the coefficients 

uk

kkkkc
1

},{   are a set of coefficients satisfying 



uk

kk

kc
1

01  and 





uk

kk

i

kkci
1

0)1(1   for 1,,1  mi  .  The u  points uk

kkk 1
}{   will be 

referred to as the quadrature points in the following. 

2. The v  integers },,,,{ 121 vuvuuu kkkkM    where v  is an even number, 

vuvuuu kkkk 
 

121
,, , 

vuvuuu kkkk mmmm



121

,, , and 

vuvuuu kkkk cccc



121

,, .  The coefficients vu

u

k

kkkc 

 1
}{  are all non-zero.  

The points vu

u

k

kkk


 1
}{  will be referred to as the matching points. 

3. The vun   integers },,{ 1 nvu kkN   such that  0,,0
1


 nvu kk cc  .  

The vun   points n

vu

k

kkk 1
}{

  will be referred to as the non-matching points. 

 B. At any quadrature point k ,  0,, ikp  for  2/,,2 mi  , ii  2,,1   

    and 0, wkr  for  2/)4(,,0  mw  . 

 C. For any pair of matching points, },{
1zz kk  , 

    wkwk zz
rr ,, 1

  for  2/)4(,,0  mw   and 

     ,,,, 1 ikik zz
pp


  for 

zkmi  22 , and 12  i , where 

    )ˆ,min(
zzz kkk wm  and 

zkŵ  is the smallest value of w  such that 0, wkz
r . 

 D. At any non-matching point k , 0,, ikkw pr  (i.e., 0,, ikp  or 0kwr )  

    for  2/)4(,,0  mw  , 2 wmi , and 11  i .      

 

One consequence of definition (6.1) is that for any pair of matching points },{
1zz kk  , 
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(6.2)  '',,,,'',,,, 11  ikikikik zzzz
pppp


   where  1'  mii ,  

  
zkmmi  21 , 

zkmmi  2'1 , 11  i , and 1''1  i .  If 1  

and 1' , then (6.2) becomes ''

1

ii

k

ii

k zz




   which is obviously true.  Otherwise and if 

zkmi   

or 
zkmi ' , (6.2) becomes 00  .  If, on the other hand, 

zkmi   and 
zkmi ' , then 

zkmmimi  2'1  and 
zkmmimi  21' , so  ,,,, 1 ikik zz

pp


  and 

'',,'',, 1  ikik zz
pp


  from the definition, and thus (6.2) follows. 

 

                                                                            7. THEOREM 

 Theorem 7.1:  Any m-symmetric Runge-Kutta method (1.2) is of order m. 

 Proof: Given any m-symmetric method, the equation (5.5a) is satisfied because 

according to part A of definition (6.1), 



Qk

kc 1 , 



Mk

kc 0 , and 



Nk

kc 0 , and thus 

1
1

0






n

k

kc .  Similarly, for such a method, (5.5b) is satisfied for 1,,1  mi   because 


 


Qk

i

kk
i

c
1

1
 , 




Mk

i

kkc 0 , and 



Nk

i

kkc 0 , and thus 
1

11

1 




 i
c

n

k

i

kk .   

 The satisfaction of equation (5.5c1) or the simpler form (5.6) derives from the 

following, which are true for wmi  21  with  2/)4(,,0  mw   and 1,,1  i . 

1) 



Qk

kikw pr 0   because 0kwr  for any Qk  from part B of the definition (6.1). 

2)



Mk

kikw pr 0   because 0
11


  ikwkikwk zzzz
prpr  for a given pair of matching points, 

},{
1zz kk  .  Clearly, if 0wkz

r , then it’s true.  If 0wkz
r , then  ikik zz

pp
1

  from the last part 

of part C of the definition (6.1) and so 0
111


  ikwkikwkikwkikwk zzzzzzzz
prprprpr . 

3)



Nk

kikw pr 0   due to part D of the definition.   

 The satisfaction of (5.5c2) derives from the following. 

1) For Qk  and 1 mi , if it can be written that ysikksvkki ppp ,,  


   (where any 

appearance of 1kip  has been replaced by i

k ) for 1 , then either 2/ms   or 

2/msi   , so either 0ksvp  or 0,,  ysikp   which implies 0kip  and therefore that 





Qk

kik pc 0 .   

 On the other hand, if yikkki pp ,, 


    when fully expanded, then it must be true that 

2/)4(  m .  Otherwise, this equation would have been incorporated into (5.5c1). 

Therefore 2/mi    and consequently 0,,  yikp  .  Thus, 0kip  and 



Qk

kik pc 0 . 
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2) For a given pair of matching points, },{
1zz kk  , it suffices to demonstrate that 

 ,,,, 1 ikik zz
pp


  and consequently that 




Mk

kik pc 0 .  First, if ysikvskkik zzzz
ppp ,,,,,,  


  , with 

1 , then ysikvskkysikvskk zzzzzz
pppp ,,,,,,,, 111  

 



   from (6.2) and thus  ,,,, 1 ikik zz

pp


 .  On 

the other hand, if yikkik zzz
pp ,,,, 


   , with 1 , then yikkyikk zzzz

pp ,,,, 11 



   

  using (6.2) 

with 1'  and 'i  and so  ,,,, 1 ikik zz
pp


 . 

3) For Nk  , 0kc , and therefore 



Nk

kik pc 0 . 

Consequently, equations belonging to either form (5.5c1) or form (5.5c2) are satisfied. 

 The satisfaction of (5.5d) derives from the following. 

1) For Qk , 1 mi , and ysikksvki ppp ,,  , then either 2/ms   or 2/msi  , so either 

0ksvp  or 0,,  ysikp  which implies 0kip  and therefore that 



Qk

kik pc 0 . 

2) For a given pair of matching points, },{
1zz kk   with ysikvskik zzz

ppp ,,,,,,  , it is true that 

 ,,,, 11 ikkikk zzzz
pcpc


  using (6.2), and therefore 




Mk

kik pc 0 . 

3) For Nk  , 0kc , and therefore 



Nk

kik pc 0 . 

Consequently, 0
1

1






n

k

kik pc   and all of the equations of condition (5.5) are now satisfied by the 

given method.  □ 

 

8. SOLVING THE EQUATIONS OF CONDITION USING m-SYMMETRY 

 A solution of the equations of condition for the coefficients of an mth order explicit 

Runge-Kutta method can now be accomplished by finding an m-symmetric method.  

Concomitantly, it will be desirable to try to keep the number of stages, n , to a minimum.   

 One approach to determining an m-symmetric method is to perform the steps 

enumerated below.  It should be emphasized that other approaches are feasible. 

 1. Determine a quadrature formula of order m  or higher with u  weights and u  nodes 

uk

kkkkc
1

},{  .  The Gauss-Lobatto formulae are a possible and usually convenient choice, 

especially for even values of m .  The nodes uk

kkk 1
}{  comprise the quadrature points.  It is 

highly recommended to select 01 k  and, for even values of m , to select 1 nku  (i.e., 0  

and 1n  are the first and last, respectively, of the quadrature points).  It should be noted that 

the particular permutation chosen for the values  132 ,...,, ukkk  will often have a significant 

effect upon the performance of the resulting method. The twelfth-order method given in the 

next section is based on the seven-point Gauss-Lobatto formula with the simple ordering, 

10
7654321
 kkkkkkk  , with  01 k , 122 k , 133 k , 144 k , 

155 k , 166 k , and 247 k . 
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 2. Determine (or establish equations governing the values of) the points   1

1

2



k

kk  in 

such a way that the intermediate order, km , for ukkk 2  will be at least  2/m .  When 

determining these points, it is generally advantageous to try to keep 2k  to a minimum which 

aids in trying to keep n  to a minimum, consistent with retaining real values for the coefficients 

and maintaining 10  k  for all values of k.  One approach to building up the order at the 

intermediate points fairly quickly for 5m  is to make the following successive assumptions: 

(8.1)  32
3

2
  ,  5

53

53
4

46

34










 , 

82

886565

2

886565
7

15)(2030

12)(1520










 ,

123

12

2

12109812109108981098

3

12

2

12109812109108981098
11

12)(15)(2030

10)(12)(1520










 , etc. 

For 6m  and 7, only the first assumption is made; for 8m  and 9, only the first two 

assumptions are used; for 10m  and 11, only the first three assumptions are made, etc.  

These assumptions arise from the use of (3.2) and requiring that 11 m , 22 m , 33 m , 

34 m , 45 m , 46 m , 47 m , 58 m , 59 m , 510 m , 511 m , 612 m , etc. while 

maintaining 01, k  for 1,3  ukk  ; 02, k  for 1,5  ukk  ; 03, k  and 04, k  for 

1,8  ukk  ; 05, k , 06, k , and 07, k  for 1,12  ukk  , etc.  For example, in order to 

have 612 m , given the above sequence of values, the system of equations: 

 















































































0

0

0

0

0

12/

2/

2/

3/

2/

11,12

10,12

9,12

8,12

6

12

5

11

5

10

5

9

5

8

5

12

4

11

4

10

4

9

4

8

4

12

3

11

3

10

3

9

3

8

3

12

2

11

2

10

2

9

2

8

2

12111098



















 

must be satisfied, which is true iff  the determinant of the coefficient matrix vanishes.  Given 

that the k ’s are all distinct for ,10,9,8,0k and 11, the determinant will vanish iff 

123

12

2

12109812109108981098

3

12

2

12109812109108981098
11

12)(15)(2030

10)(12)(1520










 .  Similar 

arguments hold for the other assumptions (8.1) made above. 

 In addition, the following successive assumptions are often useful for 6m : 

(8.2)         )1(
3

2
)1( 43   nn  , )1(

)1(4)1(6

)1(3)1(4
)1( 6

64

64
5 




 




 n

nn

nn
n 




 , 

)1(
)1(15)1))(1()1((20)1)(1(30

)1(12)1))(1()1((15)1)(1(20
)1( 92

997676

2

997676
8 




 




 n

nnnnnn

nnnnnn
n 




 , 

etc.  These relations arise from the use of (3.1).  For 7m  and 8, only the first assumption is 

made; for 9m  and 10, only the first two assumptions are used; for 11m  and 12, only the  
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first three assumptions are made; etc.  These assumptions allow for 0kwr  as much as is 

reasonably possible for 11  nkku  where  2/)4(0  mw , thereby simplifying step 

6 below. 

 3. Finally, the matching and non-matching points must be identified.  For example (if 

11 n , as is often the case especially when m is even), one might assume: 

(8.3)  21  n , 32  n , 44  n , 56  n , 67  n , 79  n , 810  n , …  

for the matching points and 3 , 5 , 8 , 11 , … for the non-matching points.  The precise 

selection of these points (as to which point should match which other point) often has an effect 

on how easy it is to solve the resulting combined system of nonlinear equations (8.1), (8.2), 

and (8.3).  Note that, for any non-matching point,  k , it is also usually desirable to require that 

2kk   in order to try to minimize the total number of stages. 

 4. Obtain values for any of the k ’s yet to be determined.  If the above approach is 

taken, obtain these values by solving the nonlinear equations resulting from the assumptions 

(8.1), (8.2), and (8.3).  For the twelfth-order method given in the next section, these 

assumptions comprise fourteen equations in eighteen unknowns (the seven pairs of matching 

points and the four non-matching points).  The fourteen equations are composed of the first 

four assumptions from (8.1), the first three from (8.2), and the first seven from (8.3).  When 

solving these equations, it is important to maintain 10  k  for all k.   One way to solve the 

equations is as follows: 

a. Pick a value for 1  and obtain 23  from the first equation in (8.3). 

b. Pick a value for 5 .  Solve the first two equations from (8.1), the first 

equation from (8.2), and the second and third equations from (8.3), thereby 

obtaining values for 2 , 3 , 4 , 21 , and 22 . 

c. Pick a value for 8 .  Solve the third equation from (8.1), the second from 

(8.2), and the fourth and fifth from (8.3), thereby obtaining values for 6 , 7 , 

19 , and 20 . 

d. Pick a value for 11 .  Using the values for 12  and 16  established in step 1, 

solve the four remaining equations for 9 , 10 , 17 , and 18 . 

 5. Select non-zero values for the free parameters   vu

u

k

kkkc 

 1
 such that 

21 


uu kk cc , …, 

vuvu kk cc



1

.  It should be noted that the particular values selected can influence the 

properties of the method with respect to truncation errors, rounding errors, and numerical 

stability.  At this point, all of the values 1

0},{ 



n

kkkc   and some of the vanishing kj ’s are known. 

 6. Solve the remaining equations required to make the method m-symmetric.  For 

example: 

  a. Solve 0222 p , making 22 m  (i.e., make the result at ht 20   second- 

    order), if 4m .  In other words, solve  02 121

2

2     for 21 . 
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  b. Solve 022 kp , 033 kp , and 034 kp , making 3km  for 4,3k  (i.e.,   

    make the results at ht 30   and ht 40   third-order), if 6m .  In other  

    words, obtain  32 , 42 , and 43 . 

  c. Continue in this way, making 45 m , 46 m , 47 m , 58 m , 59 m ,  

    510 m , 511 m , 612 m , etc. up to  2/
2

mmk  . 

  d. Continue with the remaining quadrature points, making  

     2/
3

mmk  , …,  2/mm
uk  . 

  e. Continue with the remaining points, making 
21 


uu kk mm , …, 

vuvu kk mm



1

. 

  f. For any pair of matching points, },{
1zz kk  , solve any remaining conditions 

    of the form  ,,,, 1 ikik zz
pp


  as required by (6.1C) for m-symmetry. 

  g. Impose the conditions on wkr ,  according to (6.1B), (6.1C), and (6.1D). 

 7.  With the exception of step 4, almost all of the above conditions constitute linear 
equations or can be made to do so by appropriately choosing special values for some of the 

kj ‘s.  At this point, all of the conditions for m-symmetry have been satisfied.  If there are any 

remaining free parameters, they can be used along with any free parameters occurring in step 
2 or step 5 above to attempt to improve the method in various ways.  Also, consideration of 
alternate permutations of the ordering of the quadrature points in step 1 can provide 
additional improvement. 
 For the twelfth-order method described in the next section, there are at least eighteen 

free parameters and the method has been improved somewhat by judiciously adjusting the 

values of a few of these parameters.  The free parameters include 1 , 3 , 5 , 8 , 11 , 1c , 2c , 

4c , 6c , 7c , 9c , 10c , 9,11 , 10,11 , 9,17 , 13,19 , 14,24 , and 17,24 .  An exhaustive search for the 

globally optimal values of all of these parameters and of all of the 120 permutations of the five 

interior quadrature points would have required an enormous computational effort.  In fact, 

simply evaluating the leading terms of the truncation error (i.e., the thirteenth-order terms) 

for a given set of values of these parameters requires measuring the dissatisfaction of 982 of 

the 12,486 thirteenth-order equations of condition.  Consequently, conducting such a search in 

a space of dimension eighteen is a daunting task best postponed for a future effort. 

 The steps given in this section have been tested and successfully employed in obtaining 

m-symmetric methods of orders one, two, three, four, five, six, eight, ten, and (of course) 

twelve.  The number of stages in each case is the minimum known value. 

 

9. THE COEFFICIENTS OF AN EXPLICIT RK METHOD OF ORDER TWELVE 

 
 Using the procedure outlined in the previous section and encoded in Mathematica, an 
m-symmetric Runge-Kutta method of order twelve has been found with twenty-five stages and 
will be referred to as RK12.  The method is based on the seven-point Gauss-Lobatto quadrature 
formula.  There are seven pairs of matching points and four non-matching points.   
 The Figures 1-4 below are provided in order to offer some insight regarding the 

method RK12 as it relates to m-symmetry.  In the chart of Figure 1, the values of the k ’s are 

depicted.  The quadrature points are shown in black.  The brackets below the chart indicate the  
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respective pairings of the matching points, which are depicted in various shades of gray.  The 

non-matching points are shown in white.  The kc ’s are similarly depicted in Figure 2.  Note the 

symmetry of the values of the k ’s and the anti-symmetry of the kc ’s for the matching points 

in these figures.   

 

  FIGURE 1    m-SYMMETRY IN RK12 – αk vs k 
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  FIGURE 2    m-SYMMETRY IN RK12 – ck vs k 
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Figure 3 portrays an example of the behavior of the kwr ’s by showing what occurs when 

4w .  Figure 4 illustrates the behavior of the kip ’s for the example case of 6i  and 21 . 

Note the anti-symmetric characteristics of the kwr ’s and the symmetric characteristics of the 

kip ’s for the matching points in these figures.  Also observe that these variables vanish at the 

quadrature points.  These characteristics are the hallmark of m-symmetric methods. 
 

 

 

k  

kc  

k  

k  
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 FIGURE 3    m-SYMMETRY IN RK12 – rk4  vs k 
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  FIGURE 4    m-SYMMETRY IN RK12 – pk,6,21 vs k 
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The coefficients of RK12, as well as those of some other m-symmetric methods, are given to 60 

significant digits at the website:  http://sce.uhcl.edu/rungekutta/.  About 40% of the 

coefficients are zero.  The largest absolute value of any coefficient is less than 12.4.  

Consequently, the method is well-behaved with respect to rounding errors.   The coefficients of 

the method satisfy not only all of the 7,813 equations for the twelfth-order, but also 11,504 of 

the 12,486 additional equations for thirteenth-order (more than 92%) and 27,819 of the 

32,973 additional equations for fourteenth-order (more than 84%).  Consequently, the method 

promises to be a favorable twelfth-order method with regard to reduced truncation errors.   

10. NUMERICAL EXPERIMENTS  

 

The twelfth-order method RK12, given in the previous section, has been applied to a number of 

initial value problems of the form (1.1).  Three applications are described in this section.  The 

performance of the method with respect to its ability to obtain an accurate numerical solution 

over the range ],[ 0 ftt  for each of these problems has been compared with that of several 

other methods using efficiency diagrams.  For a given method displayed in these diagrams, the  

k  

21,6,kp  

k  

4kr  
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negative logarithm (base 10) of the absolute value of the largest component of the error 

(denoted by E) is plotted as a function of the logarithm (base 10) of the number of evaluations 

of ),( xtf  required (denoted by NF).  For those problems in which ),( xtf  is computationally 

expensive, the time of computation is essentially proportional to NF.  On such a diagram, the 

curve connecting the individual experimental results is usually a nearly straight line with slope 

equal to the order of the method for those regions where the dominant source of error is 

truncation error.   

Figure 5 exhibits an efficiency diagram for the initial value problem (1.1) where the 

differential equations represent the equations of motion for the two-body problem:  

(10.1a)  2
1 x

dt

dx
 , 2

3

2

3

2

11
2 )(



 xxx
dt

dx
, 4

3 x
dt

dx
 , 2

3

2

3

2

13
4 )(



 xxx
dt

dx
 

subject to the initial conditions: 

(10.1b)  1)0(1 x ,  ex )0(2 ,  0)0(3 x ,  2

4 1)0( ex   

where the eccentricity 5/1e . 

The error is measured at the end of two complete revolutions, i.e. at 4t .  In the 

diagram, the results for RK12 are connected by the solid line, the results for Hairer’s tenth-

order method RK10H [15] by the dash-dotted line, Cooper and Verner’s eighth-order method 

RK8CV [9] by the dotted line, a sixth-order method due to Butcher RK6B [5, p.177] by the 

dash-dash-dotted line, and the classical fourth-order Runge-Kutta method RK4 by the dashed 

line. 

 

     FIGURE 5    EFFICIENCY DIAGRAM – TWO-BODY PROBLEM  
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 It can be seen from the diagram that as NF increases (i.e., as the stepsize decreases), the 

RK12 method provides the most accurate results for this problem.  For low accuracy, other 

methods provide more efficient approximations. 
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RK8CV 
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Figure 6 exhibits an efficiency diagram for the simple harmonic oscillator:  

(10.2a)   ,2
1 x

dt

dx
   ,1

2 x
dt

dx
  

with the initial conditions: 

(10.2b)   ,0)0(1 x  1)0(2 x . 

The error is measured at 2t . 

 

 

 

   FIGURE 6    EFFICIENCY DIAGRAM  -  SIMPLE HARMONIC OSCILLATOR   
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Again, it can be seen from the diagram that as NF increases, the RK12 method 

(represented by the solid line) provides the most accurate results.  

Figure 7 exhibits an efficiency diagram for the Lotka-Volterra equations:  

(10.3a)   ),2( 21
1 xx

dt

dx
   ),1( 12

2  xx
dt

dx
 

with the initial conditions: 

(10.3b)   ,2)0(1 x   2)0(2 x . 

The error is measured at 4t . 
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   FIGURE 7    EFFICIENCY DIAGRAM  - LOTKA-VOLTERRA EQUATIONS   
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The Lotka-Volterra equations are also known as the predator-prey equations.  For this 

problem, as NF increases, the RK12 method again provides the most accurate results.  

 

 11. THE NUMERICAL STABILITY OF RK12 

The twelfth-order Runge-Kutta method RK12, given in section 9, has a reasonably large 
absolute stability region, very similar to that of the tenth-order method developed by Hairer 
[15].  The absolute stability region of RK12 in the complex plane is shown in Figure 8 for the 
scalar ordinary differential equation xx ' .  The treatment is sufficient for describing the 

stability of coupled systems of ordinary differential equations by letting   assume the values 
of the eigenvalues of the coefficient matrix of the differential equation [20].  The relative 
stability region is depicted in Figure 9. 
 

12. ESTIMATION OF LOCAL TRUNCATION ERRORS 

 

The twelfth-order method, RK12, was developed without consideration for estimating 
the local truncation errors.  However, the method does admit certain embedded, lower-order 

results without additional evaluations of ),( xtf .  Let nx̂  represent an approximation to 

)( 0 htx   of order mm ˆ  such that  

(12.1)   ),(ˆˆ
1

0

0 kk

n

k

kn xtfchxx 




 . 

The coefficients 1

0}ˆ{ 



n

kkc  represent new weights for an embedded lower-order method.  For 

RK12, the largest value of m̂  that is possible is ten.  In other words, any method of order 

eleven that uses the same values for the coefficients 1

0}{ 



n

kk  and 1

1

1

0}}{{ 







n

k

k

jkj  must also have 

kk cc ˆ  for 1,...,0  nk  and consequently would not be distinct from RK12. 
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     FIGURE 8    THE ABSOLUTE STABILITY REGION - RK12  
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  FIGURE 9    THE RELATIVE STABILITY REGION - RK12  
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 A tenth-order result for nx̂  can be obtained by taking kk cc ˆ  for all values of k  except 

for 1k  and 23k .  Choosing, for example, the values 10/1ˆ
1 c  and 10/1ˆ

23 c  (vis à vis 

128/31 c  and 128/323 c  for RK12) causes nx̂  to be a tenth-order result.  The difference 

(12.2)    ),(),(
640

49
ˆ

232311 xtfxtfhxx nn    

can then be used as an estimate of the local truncation error of the tenth-order result, which in 

turn could be used to adjust the stepsize of the numerical integration and hopefully provide for 

a more efficient algorithm overall.  It should be noted, however, that the difference nn xx ˆ  

vanishes for problems in which )(tff   only (i.e., for quadrature problems).  Consequently, 

the error estimate must be used with caution.   

 As it turns out, the tenth-order result described above satisfies all but forty-eight of the 

1,842 additional eleventh-order equations.  The estimate of the local truncation error (12.2) is 

a very good estimate as is illustrated by the following experiment.  The actual and estimated 

local truncation errors for the embedded tenth-order method have been computed at each step 

of the numerical solution of the initial value problem (10.1).  In Figure 10, the maximum 

absolute value of the four components of these errors is plotted (on a log scale) as a function of 

the number of steps taken for a given stepsize ( 628319.05/  h ).  The solid line depicts 

the actual error and the dashed line depicts the estimate of the error.  As one might expect, the 

estimate tracks the  

 

  FIGURE 10    ACTUAL AND ESTIMATED LOCAL TRUNCATION ERRORS  
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true error very well, even though the range of the error extends over several orders of 

magnitude.  Experiments at other stepsizes for this problem have shown that the estimate  
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(12.2) is always within a few percent of the actual error.  Of course, the estimate 

asymptotically conforms with the actual error as 0h .  

Consequently, when applying the RK12 method, the associated estimate (12.2) of the 

local truncation error of the embedded result could be used to monitor the accuracy of the 

numerical integration and to control the stepsize, thus providing for a more reliable and 

efficient algorithm overall.  Of course, the twelfth-order result would be used to propagate the 

solution to the next step. 

 

13. CONCLUSIONS 

 

The concept of m-symmetry and its use in solving the equations of condition for high-

order explicit Runge-Kutta methods has been demonstrated.  The equations of condition have 

been solved and the resulting coefficients have been exhibited for a particular twelfth-order 

method.  Preliminary numerical experiments indicate that the new twelfth-order method, 

RK12, seems to be a reasonably stable, effective, and efficient method, particularly for those 

problems where highly accurate solutions are desired.  In addition, an embedded tenth-order 

result has been identified that could be used to provide an estimate of the local truncation 

error, thereby permitting the accuracy to be monitored and the stepsize of the numerical 

integration to be varied in a meaningful way. 
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