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Abstract. The numerical methods for solving partial differential equations have been 

one of the significant achievements made possible by the digital computers. With the 

advent of parallel computers, many studies have been performed and a number of new 

techniques have been investigated in order to develop new methods that are suitable 

for these computers.  One of these techniques is the explicit group iterative methods 

which have been extensively studied and analysed in the last two decades. 

The explicit group iterative methods for the numerical solution of self-adjoint 

elliptic partial differential equations have been introduced (Evans & Biggins, 1982; 

Yousif & Evans, 1986) and has been shown to be computationally superior in 

comparison with other iterative methods. These methods were found to be suitable for 

parallel computers as they possess independent tasks (Evans & Yousif, 1990). 

Martins, Yousif & Evans (2002) introduced a new explicit 4-points group accelerated 

overrelaxation (EGAOR) iterative method, a comparison with the point AOR method 

has shown its computational advantages. The point TOR method was developed and a 

number of papers related to the TOR method and its convergence have been presented 

(Kuang & Ji, 1988; Chang, 1996; Chang, 2001; Martins, Trigo & Evans 2003). In this 

paper, we formulate a new group method from the TOR family, the explicit 4-points 

group overrrelaxation (EGTOR) iterative method, the derivation of the new method is 

presented. Numerical experiments have been carried out and the results obtained 

confirm the superiority of the new method when compared to the point TOR method. 
 

Keywords: TOR method, AOR method, SOR method, elliptic partial differential 

equation, group iterative methods. 
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1. INTRODUCTION AND PRELIMINARIES 

 

Many physical phenomena in static field problems particularly in 

electromagnetism field and the incompressible potential flow field are described by 

elliptic partial differential equations (PDEs). In recent years, improved techniques 

using explicit group methods have been developed to approximate the solution of 

these equations. 
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In this paper we will present the 4-points EGTOR iterative method  to 

approximate the solution of elliptic partial equations. Some numerical experiments 

will be performed to compare the behaviour of this explicit TOR group method with 

the corresponding point TOR method.  

In section 2, the 4-points EGTOR iterative method is presented and developed, 

while the point TOR method is given in this section. Some results concerning the 

analysis of convergence of the interval and point iterative TOR method were already 

obtained for different classes of matrices, namely H-matrices (Martins, Trigo & 

Evans, 2003). As it is well-known from literature, this class of matrices involves 

strictly diagonally dominant matrices, irreducible weakly diagonal matrices, M-

matrices and other type of matrices. The study of computational complexity of the 

point and 4-points EGTOR methods is discussed in section 3. Further, in order to 

compare the performance of these two iterative methods, numerical experiments have 

been carried out and the results are summarised in section 4. Finally, concluding 

remarks are presented in section 5. 

 Consider the linear self-adjoint elliptic equation,  
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 Ω (x,y)g(x,y),U(x,y)  (1.2) 

defined in a bounded region , where A(x, y) > 0, B(x, y) > 0 and  F(x, y)  0  and  

is the boundary of . 

The two dimensional elliptic equation such as Poisson’s equation is 

mathematically represented by 
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with a Dirichlet boundary condition on a unit square solution domain, 0  x, y  1, 

with m
2
 internal mesh points. It can be easily concluded that this equation is obtained 

from (1.2) if we consider A(x, y) = B(x, y) = 1 and  F(x, y) = 0 and G(x, y) = y)f(x, . If 

in (1.3) 0),( yxf we have Laplace’s equation. 

It is well-known that the discretisation of (1.3) leads to the linear system 

(Varga,1962) 

 A x = b, (1.4) 

where A nn,C  is a given non-singular, sparse matrix with non vanishing diagonal 

entries, b nC  is a known vector and x nC is the unknown vector. 

Hence, the TOR method, defined in the following, can be used if the block 

diagonal part of the coefficient matrix A of the system (1.4) is non-singular. Some 

authors have obtained results on the convergence of the interval and point TOR 

method (Martins, Trigo & Evans, 2003) and other have obtained some convergence 

conditions for the multisplitting parallel TOR method (Chang, 1996; Chang, 2001). 
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Split the matrix A of (1.4) such that 
 

    A= D – L – F – U    

 (1.5) 

where D = diag (A),  U is a strictly upper triangular matrix, obtained from A, L and F 

are strictly lower triangular matrices, verifying (1.5). 

The corresponding TOR method (Martins, Trigo & Evans, 2003) is given by: 
  

)()1( ])()()1[()( kk xFULDbxFLD   
,  k = 

0,1,…(1.6) 

where ,   and   are real parameters and   0. 

As FLD   is a non-singular matrix for any choice of the parameters   and 

 , with  1E  = LD 1 , 2E = FD 1 and 



U1= 



D1U , the equation (1.6) takes the form 

 

 ,...1,0,)( 1)(

,,

)1(   kbFLDxTx kk          

(1.7) 

where 

  ,,T =



(I E1  E2)1 (1)I  ( )E1 U1  ( )E2 .        

(1.8) 
 

Some special well-known iterative methods can be derived from the TOR iterative 

method by assigning special values to the parameters ,   and  .  The Jacobi(J), 

Gauss-Seidel (GS), Simultaneous Overrelaxation (JOR), Successive Overrelaxation  

(SOR) and Accelerated Overrelaxation (AOR) iterative methods are special cases of 

the TOR iterative method as shown in Table 1. 

 

     Method 

1 0 0 J 

1 1 1 GS 

 0 0 JOR 

   SOR 

     AOR 
 

Table 1: The derivation of some iterative methods from the TOR method. 
 

In what follows we consider the linear system (1.4) where the matrix A has Property 

A
()

 and is -consistently ordered. Thus, we present some definitions (Young, 1971). 

 

Definition 1.1  

An ordered grouping  of W = {1, 2,…, n} is a subdivision of W into disjoint subsets 

R1,  R2, …,  Rq  such that   R1  + R2 + …+  Rq = W. 
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 Given  a  matrix  A  and  an  ordered  grouping    we  define  the  submatrices 

Ar,s  for  r, s = 1, 2,…, q as follows: Ar,s  is obtained from A by deleting all rows 

except those corresponding to Rr  and all columns except those corresponding to Rs. 

  

Definition 1.2   

Let  be an ordered grouping with q groups. A matrix A has Property A
()

 if the q q 

matrix Z = ( z r,s ) defined by 

 z r,s= 









01

00

,

,

sr

sr

Aif

Aif
 (1.9) 

has Property A. 

Definition 1.3  

A matrix A of order n is consistently ordered if for some t there exist disjoint subsets S1,  

S2, …,  St  of  W = {1, 2,…, n} such that WS
t

k k  1  and such that if  i and j are 

associated, then  j  Sk+1  if  j > i and  j  Sk-1   if  j < i , where Sk  is the subset 

containing i.  
 

Definition 1.4  

A matrix A is -consistently ordered if the matrix Z of (1.9) is consistently ordered. 

 

2.  THE 4-POINTS GROUP EXPLICIT TOR ITERATIVE METHOD 

  

In this section we will present an explicit set of equations for the 4-points EGTOR 

iterative method, where each group is formed from 4 points of the net region, 

according to Figure 1, where t = (qm+1), step 2, (q+1)m-1,  m is an even number and  

q = 0, step 2, m-2. Each group Gk, k = 1, 2, … , m
2 

/4 contains only four elements {t, 

t+1, t+m, t+m+1}. 

 

                         t+2      t+m+2   

     

 

   t-m+1             t+1       t+m+1  t+2m+1 

                   
              t-m   t   t+m  t+2m        

  

   

 

           t-1      t+m-1 

                                          Figure 1 

Let us suppose that the groups are ordered in red-black ordering, if we use the five-

point approximation scheme, the finite difference equation at the point P (see Figure 

2) has the form 

 up + 1 uB,P   + 2 uR,P  + 3 uT,P   + 4 uL,P   = bP,  (2.1) 
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where B, R, T and L denote Bottom, Right, Top and Left of the point P, respectively.  

 
 

  3( T ) 

  

 

   4 ( L ) P   2 ( R ) 

 

  

  1 ( B ) 

         Figure 2 

 

If this scheme is used, for all the mesh points, then in the case where the mesh is the 

unit square and x = y = h = 1/7, we have the linear system 
 

    A1u = b1
, 

with, 
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If the groups are taken in the natural row ordering, then the coefficient matrix A1 has 

the block structure 
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 A1 = 
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The matrix A1 (in (2.2) or (2.4)), has Property A
()

 and is - consistently ordered. 

 To derive the explicit group TOR method, we evaluate the transformed matrix A2 

and the modified vector b2, where  

 A2 = 1T  A1
,
 (2.5) 

and 

 b2 = 1T  b, (2.6) 

where  T = diag{R0}. 

 As  1T  is equal to diag{
1

0

R } and the matrix 
1

0

R  is given by 
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where, 

 42315 1   ,  142316   ,  131427   . 

Therefore 

 A2 = 
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
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IB

CI
, (2.8) 

where C and B can be evaluated easily. 

 The matrices A1 and A2 have the same block structures.  The unique difference is 

that instead of the matrices R0 and Ri, i = 1,…,4 we have the identity matrices and 
1

0

R Ri, respectively. 

 If we consider the model problem (1.4) and a square grid, we have  

   1 =  2 =  3 =  4 = 
4

1
 . 

 Hence, from (2.7) 
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and hence, 
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Thus we can set up the computational molecule at the point P as is shown in Figure 3. 

Similarly, we can obtain 1

0

R Ri, i = 2, 3, 4. 
 

 1/12     1/24 

                            

 1/12    1/24 

      

 7/24     P          1/12 

         

 

 7/24     1/12 

           Figure 3  

 

Therefore we can derive the explicit group TOR iterative method, by using this 

molecule. Here, we have considered in the implicit version the partition of matrix in 

the form (1.5)  

where U is associated with the elements ut+2, ut+m+2, ut+2m+1 and ut+2m, L is associated 

the elements ut-m and ut-1, and finally F is associated with ut-m+1 and ut+m-1. This 

version will be called, in the sequel, Variant A. Then we obtain the following  

formulas: 

 

                                                                                                                                           (2.11a) 
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                                                                                                                                         (2.11c) 

                                                                                                                             (2.11d) 

where t = (pm + 1), step 2, (p + 1)m - 1  and  p = 0, step 2, m-2. 
 

 Obviously, equation (2.15) in (Yousif & Evans, 1986), can be obtained from 

(2.11) if we let   =   = 0 and  = 1. 

 Different versions of the 4-points EGTOR iterative method can be obtained 

considering other association of elements in matrices L and F for the partition (1.5). 

For instance, a second version of the 4-points group TOR method was obtained 

associating L with the elements ut-m and ut-m+1 and F with ut-1 and ut+m-1, this version is 

denoted by Variant B.  

 

3.  ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE 

POINT AND 4- POINTS EGTOR METHODS 

 

The computational effort measured by the number of operations needed to obtain an 

approximation of the solution of (1.1) using the two methods presented in section 1 

and section 2 will be discussed. We assume that a multiplication takes the same 

computer time as an addition. 

 

 

 

3.1 The Point TOR Method 

The finite difference solution of the model problem by the point TOR method is given 

by 
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where     
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 It can be observed that the number of operations required (excluding the 

convergence test) for the point TOR method is 14m
2
 operations per iteration. 

 

3.2 The 4-Points EGTOR Iterative Method 

From equations (2.11), it can be seen that the number of operations required 

(excluding the convergence test) for the 4-points EGTOR iterative method is 29.5m
2
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operations per iteration. However, by making use of the fact that not all the elements 

involved in the calculations of the four points are different, we can reduce the work 

requirement to 15.25m
2
 operations per iteration as shown bellow. 

Let     11 ,   4 ,   5 , ,1/241 b   ,2 12 bb   ,7 13 bb   

,144 bb   ,245 bb   



b6  b1, 



b7  b2, ,28 bb   ,19 bb   ,1510 bb   

,2511 bb   ,112 bb   ,213 bb  9

2

14 bhb   these need only be calculated once. 

 Thus if we set 
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These equations require an average of 15.25m 
2
 operations per iteration. 

 

 If we consider Laplace’s equation then it can be shown that the number of 

operations required for the point TOR and the 4-points EGTOR iterative methods are 

12m
2
 and 11.75m

2
 operations per iteration respectively. 

 

4.  NUMERICAL RESULTS 

 

We now present some numerical experiments in order to compare the point and 4-

points EGTOR iterative methods. 

Problem 1.  Consider Laplace’s equation, 

 



2U

x2

2U

y2
 0 (x,y) (0,1)  (0,1)      

(4.1) 

and the Dirichlet boundary conditions 
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1,0,0)1,(),1(),0(

,10,sin)0,(





yxxUyUyU

xxxU 
  

 (4.2) 

The numerical experiments have been performed using Matlab 7.9, on Core 2 Duo, 

2.26 GHZ (4GM RAM), laptop (MacBook Pro) with Macintosh system. The methods 

have been compared in terms of number of iterations, computing effort and CPU time 

(in seconds). Throughout the experiments the convergence test used was the average 

error test with tolerance error  = 10
-7

. 

 The numerical solution for the problem (4.1)-(4.2), using the 4-points EGTOR 

method whit h = 1/13 is illustrated in Figure 4. 

 

 

 

 

 

    
       Figure 4: Numerical solution of the problem (4.1)-(4.2) obtained with h = 1/13 

 

 

 

 

 

The coefficient matrix for the two methods possesses Property A
()

 and are - 

consistently ordered. Therefore the theory of block SOR is valid and can be used to 

predict . Hence, in this example, we start with an experimental values of  very 

close to the optimal parameter of the SOR method with   and   close to . 

 In Table 2 and Table 3, we sum up the computational results for the point TOR 

and the 4-points EGTOR method applied to the problem (4.1)-(4.2) respectively. 

From these two tables and Figures 5a and 5b, it can be noted that the 4-points EGTOR 

method is more efficient when compared to the point TOR method. 
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h
-1

      
No. of 

Iterations 

Computing 

effort 
CPU time 

  1.62 1.62    

13 1.63 1.63 1.61 38 456 m2 0.05 

  1.64 1.60    

  1.68 1.88    

 1.77- 1.69 1.87    

25 1.78 : : 74 888 m2 0.25 

  1.89 1.67    

37 1.85 1.77 1.92 109 1308 m2 0.91 

  1.78 1.91    

  1.82 1.94    

  1.83 1.93    

49 1.88 : : 145 1740 m2 2.77 

  1.91 1.85    

  1.85 1.96    

  1.86 1.95    

61 1.90 : : 176 2112 m2 6.00 

  1.95 1.86    

Table 2: Computational results for the point TOR method in problem (4.1)-(4.2) 

 

 

  h
-1

                   
No. of   

Iterations 

 Computing 

effort 
   CPU time 

  1.49 1.53    

13 1.50- 1.50 1.52 26 305.5 m2 0.02 

 1.51 : :    

  1.81 1.21    

  1.42 1.99    

25 1.65- 1.43 1.98    

 1.68 : : 51 599.2 m2 0.07 

  1.99 1.42    

  1.59 1.99    

37 1.74- 1.60 1.98    

 1.75 : : 74 869.5 m2 0.17 

  1.99 1.59    

  1.69 1.99    

49  1.70 1.98    

 1.72 : : 100 1175 m2 0.50 

  1.99 1.69    

  1.74 1.99    

61  1.75 1.98    

 1.84 : : 123 1445.2 m2 1.11 

  1.99 1.74    

Table 3: Computational results for the 4-points EGTOR method (problem (4.1)-(4.2)) 

 

The plots of the CPU computation time vs the mesh size for the two methods is given 

in Figure 5a. Also, the logarithm of the number of iterations vs logh
-1

 for the two  
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methods is plotted, these graphs are shown in Figure 5b. As expected, the plots for the 

two methods were straight lines with a slope of unity, thus verifying the SOR theory.  

 

     

 Figure 5a              Figure 5b 

Figures 5a and 5b: Computational results for the point TOR and the 4-points 

EGTOR    methods (problem (4.1)-(4.2)) 
 

In Table 4 we present the computational results obtained with the variant of the 4-

points EGTOR method described at the end of section 2 (Variant B). The results are 

very similar in terms of number of iterations, however as it requires a higher number 

of operations per iteration it is not competitive with Variant A, given by equations 

2.11, even when it reaches the solution with less iterations. 

 
 

 Variant A Variant B 

h
-1 

No. of 

Iterations 

Computing 

effort 

CPU 

time 

No. of 

Iterations 

Computing 

effort 

CPU 

time 

13 26 305.5 m
2
 0.02 27 344.3 m

2
 0.06 

25 51 599.2 m
2
 0.07 51 650.2 m

2
 0.08 

37 74 869.5 m
2
 0.17 74 943.5 m

2
 0.23 

49 100 1175 m
2
 0.50 97 1236.8 m

2
 0.63 

61 123 1445.2 m
2
 1.11 121 1542.8 m

2
 1.39 

Table 4: Comparison results for the two variants of the 4-points group TOR method 

     (problem (4.1)-(4.2)) 
 

 

Problem 2. The Laplace equation (4.1) was also considered with another Dirichlet 

boundary conditions 

 U(0, y) = 100,                                  0  y  1,        

(4.3) 

 U(x, 0) = U(x, 1) = U(1, y) = 0,       0  x, y  1, 
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Figure 6: Numerical solution of the problem (4.1)-(4.3) obtained with h = 1/13 

The numerical solution for the problem (4.1) with the boundary conditions (4.3), 

using the 4-points EGTOR method whit h = 1/13 is illustrated in Figure 6. The 

computational results for the point TOR and 4-points EGTOR methods applied to the 

problem (4.1)-(4.3) are summarised in Table 5 and Table 6 respectively.  

 

 

 

h
-1

      
No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 

13 1.57 1.63 1.61    

 1.58 1.59 1.65    

 1.59 1.55 1.69    

 1.60 1.52 1.72 38 456 m2 0.03 

 1.61 1.49 1.75    

 1.62 1.47 1.77    

 1.63 1.45 1.79    

25  1.69 1.87    

 1.66- 1.70 1.86 71 852 m2 0.24 

 1.67 : :    

  1.73 1.83    

37 1.82- 1.70 1.99    

 1.83 1.71 1.98 100 1200 m2 0.80 

  1.72 1.97    

49 1.85- 1.77 1.99 134 1608 m2 2.58 

 1.86 1.78 1.98    

61 1.81 1.84 1.97    

 1.82 1.83 1.98 171 2052 m2 5.85 

 1.83 1.82 1.99    

Table 5: Computational results for the point TOR method (problem (4.1)-(4.3)) 
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h
-1

      
No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 

13  1.26 1.75    

 1.47- 1.27 1.74 27 317.2 m2 0.01 

 -1.52 : :    

  1.68 1.33    

25 1.57 1.42 1.99    

  1.43 1.98 50 587.5 m2 0.06 

  :     

  1.99 1.42    

37  1.59 1.99    

 1.63- 1.60 1.98 73 857.8 m2 0.16 

 -1.64 : :    

  1.99 1.59    

49  1.68 1.99    

 1.79- 1.69 1.98 96 1128 m2 0.48 

 -1.80 : :    

  1.99 1.68    

61  1.74 1.99    

 1.82- 1.75 1.98 119 1398.2 m2 1.07 

 -1.83 : :    

  1.99 1.74    

Table 6: Computational results for the 4-points EGTOR method (problem (4.1)-(4.3)) 

The plots of the CPU computation time vs the mesh size and the logarithm of the 

number of iterations vs logh
-1

 for the two methods are shown in Figures 7a. and 7b, 

respectively.  

 
 

          

                      Figure 7a               Figure 7b 

Figures 7a and 7b: Computational results for the point TOR and the 4-points 

EGTOR   methods (problem (4.1)-(4.3)) 
 

From the results presented in Table 5, Table 6 and Figures 7a and 7b, it is clear that 

the 4-points EGTOR method offers significant economies over the point TOR 

method.  
 

 In Table 7 we compare the two variants of the 4-points EGTOR methods 

described in this paper. The results are similar to the results given for Problem 1, and 

hence, we reach a conclusion similar to the one given for the previous problem. 
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 Variant A Variant B 

h
-1 

No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 

No. of 

Iterations 

Computing 

effort 

CPU time 

(seconds) 

13 27 317.2 m2 0.01 26 331.5 m2 0.01 

25 50 587.5  m2 0.06 49 624.8 m2 0.07 

37 73 857.8 m2 0.16 73 930.7 m2 0.23 

49 96 1128 m2 0.48 94 1198.5 m2 0.60 

61 119 1398.2 m2 1.07 116 1479.0 m2 1.32 

Table 7: Comparison results for two variants of the 4-points EGTOR method  

               (problem (4.1)-(4.3)) 

 

5.  CONCLUSIONS 

 

From our analysis of the two methods, amount of computational work and minimum 

complexity, and the results given in Table 2, Table 3, Table 5 and Table 6 indicates 

that the new 4-points EGTOR method appears to be more efficient than the point 

TOR method.  

 Further, the group explicit algorithm is suitable for parallel computers as it     

possesses separate and independent tasks, as the groups of 4-points can be executed 

concurrently. Other blocks (groups) are also possible, i.e., the 2, 6, 9 or 16 point group 

and will be matter for further research. 
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